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Synchronization and Chaos Induced by Resonant Tunneling in GaAsyAlAs Superlattices
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A semiconductor superlattice represents an ideal one-dimensional nonlinear dynamical system
with a large number of degrees of freedom. The effective nonlinear coupling originates from
sequential resonant tunneling between adjacent wells. We have observed spontaneous chaotic
and periodic current oscillations in a doped GaAsyAlAs superlattice by changing only the ap-
plied bias. When the system is driven with an incommensurate sinusoidal voltage for a fixed
bias, transitions between synchronization and chaos are observed via pattern forming bifurca-
tions. A driving signal of sufficiently large amplitude can suppress the occurrence of chaos
and produce a synchronized oscillation mode with a subharmonic of the driving frequency.
[S0031-9007(96)01318-X]
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Chaotic behavior of nonlinear systems with many de-
grees of freedom is a subject of great current interest
[1–6]. In particular, the influence of disorder on the
chaotic behavior has been reported very recently [6].
Some authors have performed theoretical investigations
of chaotic behavior induced by a purely quantum mechan-
ical process such as resonant tunneling [7,8]. Recently,
theoretical and experimental investigations on the quan-
tum signatures of classical chaos in single particle systems
have been reported, where the effect of classical chaotic
motion on the quantum mechanical energy spectrum of
quantum wells in high magnetic fields has been investi-
gated [9]. Criteria for stability in systems with negative
differential resistance have also attracted recent attention
[10]. Although many theoretical investigations have dealt
with a system with a large number of degrees of free-
dom, there are only a few reports available of experimen-
tal studies.

Semiconductor superlattices are known to represent
a nonlinear system exhibiting the formation of electric
field domains [11–16]. The nonlinearity originates from
negative differential conductance induced by sequential
resonant tunneling. Under domain formation theI-V
characteristic clearly shows multistability [17], which
is a typical property of a nonlinear system. Recently,
spontaneous self-oscillations of the current were observed
in a biased GaAsyAlAs superlattice (SL) [18]. Sequential
resonant tunneling between adjacent wells leads to a
complete loss of the phase memory of the electrons
after completion of the sequential tunneling process.
Therefore, the system can be described by two dynamical
variables (electron density and electric field) and a quasi-
Fermi level for each quantum well. The chaotic behavior
of oscillating electric field domains in semiconductor
superlattices was investigated theoretically by Bulashenko
and Bonilla [19]. However, it was assumed that all wells

of the superlattice are identical so that the transport can be
described by an effective drift velocity, which is the same
for all wells. In this description, the number of degrees
of freedom is small, although the studied system contains
many wells.

In this Letter, we demonstrate that such a biased,
weakly coupled GaAsyAlAs superlattice exhibits sponta-
neous periodic and chaotic current oscillations as well as
transitions between synchronization and chaos via pattern
forming bifurcations when driven with an incommensu-
rate sinusoidal modulation voltage. In contrast to the re-
sults in Ref. [19], the observed pattern is much richer in
structure leading to the conclusion that this system rep-
resents a model system for a one-dimensional chain of
nonlinear oscillators with a large number of degrees of
freedom. At sufficiently large driving amplitudes, chaos
is suppressed and a synchronized oscillation mode with a
subharmonic of the driving frequency is observed.

The investigated sample consists of a 40-period, weakly
coupled GaAsyAlAs superlattice with 9.0-nm GaAs wells
and 4.0-nm AlAs barriers with each GaAs well being
Si doped at3.0 3 1017 cm23 within the central 5.0 nm.
Further details of the sample structure and characteriza-
tion are given in Refs. [17,18]. All experimental data
have been recorded in a He-flow cryostat using high-
frequency coaxial cables with a bandwidth of 20 GHz.
The time-averaged current voltage characteristics are
recorded by a Keithley SMU 236 using a time constant,
which is orders of magnitude larger than the period of the
oscillations. The current oscillations are detected with a
Tektronix CSA 803 sampling oscilloscope and an Advan-
test R3361 spectrum analyzer. The driving voltage is pro-
vided by a Wavetek 81 function generator.

Figure 1(a) shows the frequency spectra of spontaneous
current oscillations as a function of the bias for voltages
between 6.670 and 8.222 V. The current oscillations ex-
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hibit no damping when measured in real time. The log-
arithm of the amplitude of the current oscillation is indi-
cated on a gray scale. The oscillations occur in a plateau
of the time-averagedI-V characteristic, which is shown
in the inset of Fig. 1(b). This plateau originates from
electric-field domain formation due to sequential resonant
tunneling between different conduction subbands in adja-
cent wells. With increasing bias, several chaotic windows
are observed. Between the chaotic windows the oscilla-
tions are periodic except for the voltage regime between
6.694 and 6.728 V, where no oscillations appear. The evo-
lution process of the current oscillation with bias exhibits
a small hysteresis. The transitions from the chaotic to the
periodic windows occur over a very small voltage range,
which is on the order of mV. However, the transitions
from periodic to chaotic window usually take place over
a much wider voltage range through a random-enhancing
process, which contains several chaotic and periodic win-

FIG. 1. (a) Frequency spectra of spontaneous current oscilla-
tions vs applied voltage at 30 K. The current power spectra are
shown as a density plot on a logarithmic scale, where darker
areas correspond to larger amplitudes. (b) Time-averagedI-V
characteristic at 30 K with the inset showing the whole plateau.

dows. Surprisingly no quasiperiodic oscillatory modes are
observed.

The structures in the current plateau shown in Fig. 1(b)
are quite different from the regular spikes in theI-V char-
acteristic, which are induced by the motion of the do-
main boundary under static electric-field domain forma-
tion [11–14]. The chaotic windows in Fig. 1(a) are cor-
related with the appearance of regions with large negative
differential conductivity (NDC) in theI-V characteristics
in Fig. 1(b), while the periodic windows occur for posi-
tive differential conductivity (PDC) or small NDC. The
transitions from the chaotic to the periodic windows take
place over a very narrow voltage range, over which the
average current decreases sharply. Note that the shape
of the peaks between 6.8 and 7.6 V are to some extent
self-similar in the same way as the chaotic windows in
Fig. 1(a). This self-similarity could indicate universality
for the transitions from synchronization to chaos.

From the time-averagedI-V characteristics, we can ob-
tain some important information about this spatially dis-
tributed dynamical system. In theoretical investigations,
some authors use averaged equations in order to analyze
the dynamics of an oscillator system with N degrees of
freedom [20,21]. For our SL system, a change in the dc
voltage can result in a different coupling between the de-
grees of freedom. PDC regions characterize attractive cou-
pling between the degrees of freedom, i.e., the SL system
behaves as a self-synchronized unit. Therefore, we ob-
serve the spontaneous periodic current oscillation in the
PDC regions [2,22]. However, for NDC regions the cou-
pling is repulsive. For large NDC, the coupling becomes
strongly repulsive. With increasing repulsion, the synchro-
nized oscillations between the degrees of freedom become
more and more destabilized [2], and finally this SL system
enters a chaotic or even turbulent state for large NDC.

In order to investigate the transition from synchroniza-
tion to chaos for an external driving voltage, the dc bias
was fixed at 8.35 V and temperature was set to 4.2 K,
where periodic current oscillations are observed with a
fundamental frequencyf0 of 23.14 MHz. In order to vary
the nonlinear coupling, the amplitude of the driving volt-
age was changed between 0 and 0.1 V, and the response
of the superlattice was studied for different driving fre-
quencies. In Fig. 2 two examples are displayed show-
ing the evolution of the current amplitude spectra as a
function of the amplitude of driving signal forfd  50
[Fig. 2(a)] and 37.5 MHz [Fig. 2(b)]. For each ampli-
tude step, the logarithm of the amplitude of the current
oscillation is shown on a gray scale. For small driv-
ing amplitudes at 50 MHz, the driven SL system en-
ters frequency-locked states with a rational winding num-
ber f0yfd of 6y13, which is close to the frequency ra-
tio of 0.463. Outside the first frequency-locked region,
each frequency branch splits into two or three branches,
and the frequency spacing continuously increases with
increasing driving amplitude. When the branches cross,
they are locked to new periodic states. In this regime,
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FIG. 2. Frequency bifurcation diagrams for a driving fre-
quency of 50.0 (a) and 37.5 MHz (b) at 4.2 K. The logarithmic
current power spectra are shown as a density plot vs the driv-
ing voltage. Darker areas correspond to larger amplitudes. The
winding numbers are indicated above each graph.

the SL system alternately enters quasiperiodic and pe-
riodic states with rational winding numbernys2n 1 1d
for n  7, 8, 9, . . . , respectively. The periodic windows,
however, are very narrow. This alternate transformation
becomes more frequent with increasing driving amplitude
before the SL system finally enters the chaotic state.

Although the frequency bifurcations of this driven
system are complicated, all the peaks in the spectra
as shown in Fig. 2(a) are linear combinations of the
two basic frequenciesf0 and fd. The scenario of
quasiperiodic and frequency-locked behavior is associated
with a characteristic self-similar emergence of high-order
mixing frequencies [23]. The spatial synchronization
remains until the chaotic state is reached. Furthermore, at
the onset of the chaotic window in Fig. 2(a), the spectra
consist of broad peaks with a weaker noisy background,
i.e., the chaos is synchronized. A further increase of
the driving amplitude enhances the noisy background
and results in a randomization of the current oscillations.

Actually, the chaotic state attains a higher complexity, in
which the SL has entered chaos with the breakdown of
spatial coherence [1].

Other driving frequencies can produce much more com-
plicated patterns. Figure 2(b) shows the frequency bifur-
cation diagram of this SL system for a driving frequency
adjusted to the golden mean (1.618) times the fundamen-
tal frequency. A pattern forming bifurcation sequence
is observed with increasing driving amplitude. Several
distinct windows appear with different behavior. When
the driving amplitude is smaller than 0.028 V, the tran-
sition to chaos is ascribed to a quasiperiodic route with
two independent frequenciesf0 andfd . In this window,
the chaos remains synchronized, since now the driven
SL system acts as a forced single anharmonic oscilla-
tor. As the driving amplitude is increased to 0.030 V,
the chaotic behavior disappears and the system enters a
frequency-locked state with a rational winding number
of nys2n 2 1d with n  3, which again is close to the
frequency ratio of 0.617. The driving signal seems to
have effectively suppressed the chaotic signal [3]. This
state remains until the driving amplitude reaches 0.031 V.
Then, each peak splits into many peaks, and the frequency
spacing between these new peaks increases with increas-
ing driving amplitude. In contrast to the situation at low
driving amplitudes (,0.028 V), the closely spaced peaks
will lock together to form a new frequency-locked state.
The widths of the frequency-locked windows are deter-
mined by the strength of the locked peaks. The crossings
of the main peaks are responsible for the alternating for-
mation of a series of frequency-locked windows, whose
corresponding rational winding numbers arenys2n 2 1d
for n  4, 5, 6, 7, 8, . . . . While this kind of bifurcation
is similar to the one in Fig. 2(a), there are more compli-
cated bifurcations between the frequency-locked windows
in Fig. 2(b), which exhibit self-similarity.

The bifurcation sequence between the main frequency-
locked windows as shown in Fig. 2(b) is indeed of high
complexity. The new frequency-locked states, which
evolve from coupled crossings of the frequency branches,
are unstable and always superimposed by intermittent
chaos, which originates from the burst instabilities of spa-
tial synchronization. These so-called frequency-locked
states are actually laminar periodic oscillations. The
frequency-locked peaks are then divided into many peaks,
which alternately produce new frequency-locked states
(actually laminar periodicity) [1]. During these bifurca-
tion sequences, the evolution tendency of the main peaks
remains almost unchanged, even though they also inter-
act with other peaks. This kind of cascade bifurcation
sequence has resulted in the complicated mosaic struc-
ture as shown in Fig. 2(b). The theoretical investigation
of such a system did not reveal such a pattern formation
with the sequence of winding numbers given above [19].
There are several possible explanations for this discrep-
ancy. First, the periodicity of the experimental superlat-
tice might by disturbed by fluctuations of doping and/or
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well and barrier thickness. This would clearly add ad-
ditional degrees of freedom to the experimental system.
Second, the drift velocity curve assumed for the calcula-
tions in Ref. [19] was assumed the same for all periods.
This curve might change from period to period due to dif-
ferences in doping, layer thickness, and interface quality,
which again would result in an increase of the number of
degrees of freedom.

Finally, we will discuss the driving amplitude range
above 0.08 V. In Fig. 3 the power spectra for three
different driving amplitudes are shown. At 0.0805 V,
the system exhibits a spectrum with broadened peaks
indicating that the system has entered the chaotic state,
but with some residual spatial stability. For 0.0810 V,
the spectrum has evolved to broadband noise. The spatial
and temporal motion has become more randomized and
unstable; i.e., the SL system has now entered the chaotic
state, which may be of spatiotemporal nature. However,
the chaotic window is narrow. As the driving amplitude
is further increased to 0.0830 V, some chaotic modes are
softened, but the distribution of the softened modes in
the spectra is randomized in time. Figure 3 only displays
snapshots of the spectra. The enhanced driving amplitude
will produce more softened modes until the formation of
a new, stable frequency-locked state with a subharmonic
and harmonics of the driving frequency occurs.

In conclusion, we have observed synchronization and
temporal chaos without an external driving voltage in a
semiconductor superlattice. In the synchronized state, the
SL exhibits a large internal multiplicity. A small driving
signal can destroy this multiplicity and create a series of
new oscillation modes, which results in a complex pat-
tern forming bifurcations. When the driving amplitude

FIG. 3. Snapshots of the current power spectra for a driving
frequency of 37.5 MHz with different driving amplitudes as
indicated at 4.2 K.

becomes very large, the driving, linear oscillator domi-
nates, and the coupled oscillator system is locked to peri-
odic states with the driving frequency, its harmonics, and
a subharmonic.
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