VOLUME 77, NUMBER 14 PHYSICAL REVIEW LETTERS 30 BPTEMBER1996

Conductivity of a Disordered Wigner crystal
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We extend our previous theory for the ground state of a disordered electron solid to calculate its
transport properties. The Coulomb interaction is taken in the Hartree-Fock approximation and the
potential of charged impurities in the self-consistent Born approximation. In agreement with recent
experiments by Liet al. we find, for strong disorder, a linear frequency dependence of the in-phase
conductivity. We show how the dc conductivity of the system can be determined in our theory. At
strong disorder an algebraic temperature dependence of the conductivity results which is consistent with
experiments by Goldmaet al. [S0031-9007(96)01310-5]

PACS numbers: 72.10.Bg, 71.23.An

In a series of experiments on high-mobility two- order potential in the self-consistent Born approximation
dimensional electron gases a metal-insulator transitio(SCBA). These approximations are discussed in detail and
was found in strong magnetic fields. Depending on thgustified in Ref. [6]. A considerable simplification for the
degree of disorder three different mechanisms for the elesolution of Dyson’s equation [Fig. 1(a)] is achieved using
tron localization are possible: First, the formation of ana representation;(lz,z) of the Green'’s function
electron crystal which is expected for the clean system

when the are@w[> of the “magnetic confinement” of G(F,rl,z) = Z G(x,x’,z)q>x(;)q);,(;/)

the quantum cyclotron orbits is much smaller than the XX 5
mean area per electron'. Second, the formation of a ~ Y6l z)ex;(ik ¥ l.kxkyl )
“glassy” electron solid at intermediate disorder, and third, < T " 2

an Anderson-type single particle localization at dominant o +,

disorder. While a few studies have been devoted to the X q)X(r)q)(X—kjle)(r ), 1)

single particle localization [1], the majority of authors in- whereG(Iz, z) depends on only one wave vectoof the
terpreted their data in terms of the formation of an elechexagonal reciprocal lattice. Th&y(7) are the lowest
tron lattice for filling factors smaller than about= 1/5. | andau-level eigenfunctions in the Landau gauge which
Arguments are, among others, the thermally activate@iepend on the center coordinate Since all higher Lan-
transport in the lineat-V regime [2], the threshold be- dau levels are neglected, we can write the exchange term

havior of the electrical transport in the nonlinear regimein the same formve,. like the Hartree termvg;, [6,8] [see
[3,4], and the detection of the magnetophonon mode in

rf experiments [5]. Very little is known about the re- &
sponse properties of the glassy phase which we want t Q X
focus on in this Letter. Our previous mean field theory 7
of the ground state of the disordered electron crystal [6] e T e b o +
has allowed us to define a glassy phase with a hexagc
nal short-range order on one hand and a finite density o v
states at the Fermi level on the other hand. Based on thi A A L
theory, we develop for the first time a microscopic quan- VNN = BANy F S
tum theory for the transport properties of the disorderec
electron solid. In the following, we outline our formalism b
and show that the results of two independent experiment e
can be understood with the defined glassy phase. Firs &_H) = Q + @ + @ £
a recent experiment by Let al. [7] in which a close-to- N : g
linear frequency dependence of the real and the imaginar
parts of the longitudinal conductivity has been reported. —
Second, the weak (algebraic) temperature dependence @ = i Hfj“ + m"f@
the longitudinal resistance which turns over to an acti- -
vated behavior (IR o« T~ in the Wigner crystal regime FIG. 1. Our formalism in diagrammatic form: (a) ground state
at very low temperatures as found by Goldnearal. [4].  @Pproximation, (b) the response. The upper line in (b) shows

In Fig. 1(a) our approximations for the ground statethe summation of the impurity vertex corrections in the self-

) ) ! “*“consistent Born approximation (dashed lines with crosses), the

are shown diagrammatically: The Coulomb interactioniower line the inclusion of the Coulomb interaction (double
is taken in the Hartree-Fock approximation and the diswavy line).
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second line of Fig. 1(a)] leading to an effective interactionspace of the reciprocal lattice vectors. In the first step we
verr [EQ. (8)]. As derived in Ref. [9], the density responseperform the ladder-sum sum over the SCBA vortex cor-
function y (71, 72, ) = n(r1, w)/Svex (2, w) to the ex-  rections indicated in the upper line of Fig. 1(b). We insert
ternal potentiab. (72, w) is obtained consistent with our the representation Eg. (1) for the Green’s function in the
approximation for the Green'’s function as shown diagramstandard expression for the “bare bubbl&®(7,, 7>, iw,)
matically in Fig. 1(b). A similar approximation has been and take the two-dimensional Fourier transfoftfi(g +
applied in Ref. [10] to a two-dimensional electron gask,g + k', iw,) = 119 (7.iw,) to find
without lateral modulation. For the description of the elec- ,?1,» @)
tron sollq, hovye_ver, the inclusion of the reciprocal lattice 0 (G, iwn) = ki #0- (G, ion, i), (@)
vectors is decisive. ki B o kK

The diagrams in Fig. 1(b) can be evaluated for a system '
with lateral modulation using a matrix formalism in the with

7 (Giwpiol) = D> GE" + k,iw, + i0)G(—K" — K, iw))

Kk £

“ il? > o i? - -

X ex —721><(k+k’) ex 7k”><(221+k+k’) , (3)

|
. 27re? 172 272 22

and - . Vert(q) = e |:1 - <Z> gl ex 4’ Iy 1.
R . 1 (ZI + k)212 + (6/ + k/)2l2 q 2 4 4
Ari(q) = 2.2 &9 - 2 . o

(4) Here I, is the modified Bessel function of the first kind.

Here 7 is in the first Brillouin zone of the hexagonal As shown in Ref. [6] the first factor in Eq. (8) gives the
reciprocal latticek B = 1/kT, w, = 2n + 1)m/B is contribution of the Hartree term and the second the Fock

a fermionic Matsubara frequency, and the hat, e.g., iferm. , _ _
1193, w,), denotes a matrix in the reciprocal space. The correlatlon. functiony evaluated in Eq. (7) de-.
The ladder sum over the vertex corrections of theSCTiPes the density response to the external potential,
impurity interaction can now be written as a geometricXi.i (4> @) = dn(g + k, w)/Svex(q * k', ). Through
series the continuity equationvn(g, w) = ¢j(g, ») we can re-
X late the density response to the induced currents
#(G, 0, 0)) = #G, 0, 0))[6 = VI#(G, 0, )]

(5) —iwdn(G + ko) = (G + k)Y 611G, »)
3
The impurity interaction enters through the maﬁ’l&, = X (G + K)overt(@ + K, w),
SiiVi(g + /Z). For an ensemble of — scatterers with (9)
an individual scattering potentialr) = V,8(r) we obtain
[11] whered, i (@, ) = 8j.(G + k, 0)/SE,(G + K, w).
. r2 G212 Assuming a slowly varying external potential
Vi(g) = s B b 6)  Sve(F.1) = dvoexpligr)exp—iwt) with ¢ — 0 we

have to expect short-range componedig(g + ko),

wherel'? = 4n,V{$ /2712 provides a measure of the impu- k # 0 in the effective potential. However, a good
rity strength. I1 is obtained fromr by replacing in Eq. (2) approximation is obtained averaging out the short-range
I1° with IT and#° with #. The Matsubara frequency sum- components in the effective potential in Eq. (9) (“coarse
mation in Eq. (2) can be carried out for each componen@raining method”). We define
of the matrixIT as demonstrated in Ref. [10].

The calculation of the density-density response function o(q,w) =
x is now carried out according to the second equation in
Fig. 1(b). Using the matrix representation we obtain

o én(q, w)
q° Sverr(q + o)
o X00(q, )
q* 1 + 2me?/q)j00(q, @)

(10)

%(G.e) = T(g. e)[6 — V(@G )], (7)
oo L - Here o (g, w) is the longitudinal component, , of the
with V27 (q) = 63 pVerr(¢ + k) and conductivity tensor, where thedirection is parallel tq;.
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The described formalism is used to evaluate numertdn/du)(—iw/q*)Dq*/(—iw + Dg?*) with the diffusion
ically the transport properties of a disordered electrorconstantD. Then we expect fow < Dg? a parabolic
solid at a filling factory = 1/4 and a disorder strength frequency dependence of the real and a negative linear
of I' = 0.33¢2/1. This relatively large filling factor was dependence of the imaginary part. &4 = Dq” the real
chosen for numerical convenience, as our previous capart of the conductivity has a turning point and the imag-
culations [6] revealed no qualitative differences betweerinary part a minimum. This can clearly be seen in the
v = 1/4 and1/7. In [6] it was shown that the chosen results for the larger wave vectors. For small wave vec-
disorder strength is slightly below a certain critical value.tors, w, decreases to a very small value where the nu-
Above this critical value the system remains in the limitmerical resolution becomes insufficient. As expected, in
T — 0 in a state with crystalline short-range order on onethe regime ofw > Dg? the transport is not diffusive
hand but finite density of states at the Fermi level on theany more and linear frequency dependemcéq, w) =
other hand. As in the case of an amorphous semiconduer;(,T) + o1(¢’,T)w of the real part of the conductiv-
tor the local order preserves the band structure leading tity is clearly observed. Another general result is that—
a tail of the density of states in the forbidden gap of theas expected—the upper bound of the diffusive frequency
disorder-free structure. This tail amounts to a more oregime decreases with vanishing wave vector leaving the
less sharp local minimum of the density of states aroundegime with linear frequency dependence mf to start
the chemical potential. However, in the present case cdit zero frequency. The imaginary part of the conductiv-
weaker disorder this tail vanishes at low temperatures (iity has a more complex behavior: For frequencies above
our case belowkgT = 0.005¢2/1) and we obtain a true the diffusive transport regime the imaginary part has one
energy gap. As we will show transport properties changeero and increases slightly less than linearly with further
qualitatively belowkzT = 0.005¢2/1 from a phase show- increasing frequency. With decreasing wave vector the
ing a “metallic” conductivity with a weak (algebraic) tem- conductivity zero shifts to vanishing frequency. For nu-
perature dependence to a second phase, where we expewrical reasons wave numbers with| < 0.2]X]| (see
an activated temperature dependence. caption Fig. 2) cannot be evaluated so that we have to

In Fig. 2 we consider the frequency dependence oéxtrapolate to zero wave vector. In the experiments of
the longitudinal conductivity at four wave vectors which Ref. [7], which were performed at finite frequencies, a
represent the results for a variety of temperatures anlihear frequency dependence of the real and the imagi-
wave vectors: For a givery we obtain two fre- nary part of the conductivity was found. Deviations were
quency domains: For small frequencies the transport casmall. This directly agrees with our results for the real
be qualitatively understood in a diffusion picture,=  part of the conductivity. The sublinear dependence of the

imaginary part of the theory can be explained taking into
account that the frequency interval probed in the experi-

0.040 ments was small on the scale &/! allowing a linear fit
to the theory curve.
0.030 Since the temperature dependence of the dc conductiv-
— ity is often probed in experiments we want to demonstrate
S 0020 the extraction of such results in our formalism: Assuming
- a regular behavior ofr (7, T) and (g, T) for fixed tem-
0.010 perature, we can perform the limjt— 0 as demonstrated
in Fig. 3. A good fit of the numerical data is obtained
0.000
0.00
0.10 M;
z 002 =
g, ‘: NE M
g -0.04 f g 0.05 \D\D\&\a\!
; 1]
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o [e/]
[ _] _ FIG. 3. Extrapolation ofo(g,T) (lower part) as defined
FIG. 2. (a) Real parlo; and (b) imaginary part, of the in the text to zero wave vector at the temperatukg® =
conductivity vs frequency aksT = 0.01¢*/I for G = aX,  0.01¢?/I (circles),0.02¢%/1 (squares)).03¢*/I (diamonds), and
a = 0.2 (circles), 0.4 (squares), 0.6 (diamonds), and 0.80.04¢%/I (triangles),4 and X as defined in Fig. 2. In solid
(triangles). TheX point at the border of the first Brillouin straight lines of a linear regression determining the result for
zone of the hexagonal lattice is defined like in Ref. [12]. zero wave vector.
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assumingr(g,T) = oo + yq*> with a free parametey.  an exponentially activated transport. Because of the small

It is found that the procedure fer](g, T) is analogous. size of the energy gap this range of temperatures is not
Figure 4 shows the temperature dependencec@f accessible at the given disorder strength.

The arrow marks the temperature below which there is Experimental results by Goldmaet al.can be de-

an energy gap comparable to or larger than the thermaicribed with Eq. (11). In Ref. [4] these authors found

energy. Above this temperature we find crystalline shortin the regime of electron localizatiorR{, > h/ve?) a

range order and an enhanced real part of the conductivitturnover from a weak temperature dependence of the lon-

showing an algebraic temperature dependence gitudinal resistance for larger temperatures to an activated
longitudinal resistance (IR = T~!) in the crystal phase.
oo = s(T — Tp)'. (11)  As pointed out in Ref. [13] one can assume in the regime

. of electron localization a simple matrix relatian,, =
As can be seen from Fig. 4 the curve foj(T) closely R../(R%, + R%). Furthermore, the experimental Hall re-

follows the increase of the density of states at theigiance is close to its classical valRg, = h/ve? and
chemical potentialD,, revealing this increase as the can thus be neglected agaim®t, to yield o, = R

i Under these assumptions we rescale the experimental val-
below the position of the arrow we expect a turnover toues(rexp — 1/R,, with filling-factor dependent fit param-
eterss, Ty, andr as defined in Fig. 4 and find agreement
with Eqg. (11). The experimental temperatures of the melt-
ing transition are found to fall together on the normalized
.10 /,9 temperature scale &/T, =~ 3. In our numerical calcula-

e tion this is atT” = 8.7 X 107 3¢2/1 below which tempera-
ture a true gap in the density of states starts to build up,
and the Wigner crystal is formed.

.- In conclusion, we present a microscopic quantum the-
! é/é' ory of the transport properties of a disordered electron
8- solid. At strong disorder we find a glassy phase. lIts trans-
port properties—a close-to-linear frequency dependence
and an algebraic temperature dependence of the longitu-
dinal conductivity—are consistent with experimental data
by Li et al. and Goldmaret al.
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