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We extend our previous theory for the ground state of a disordered electron solid to calcu
transport properties. The Coulomb interaction is taken in the Hartree-Fock approximation a
potential of charged impurities in the self-consistent Born approximation. In agreement with
experiments by Liet al. we find, for strong disorder, a linear frequency dependence of the in-p
conductivity. We show how the dc conductivity of the system can be determined in our theor
strong disorder an algebraic temperature dependence of the conductivity results which is consist
experiments by Goldmanet al. [S0031-9007(96)01310-5]

PACS numbers: 72.10.Bg, 71.23.An
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In a series of experiments on high-mobility tw
dimensional electron gases a metal-insulator transi
was found in strong magnetic fields. Depending on
degree of disorder three different mechanisms for the e
tron localization are possible: First, the formation of
electron crystal which is expected for the clean sys
when the area2pl2 of the “magnetic confinement” o
the quantum cyclotron orbits is much smaller than
mean area per electronn21. Second, the formation of
“glassy” electron solid at intermediate disorder, and th
an Anderson-type single particle localization at domin
disorder. While a few studies have been devoted to
single particle localization [1], the majority of authors i
terpreted their data in terms of the formation of an el
tron lattice for filling factors smaller than aboutn ­ 1y5.
Arguments are, among others, the thermally activa
transport in the linearI-V regime [2], the threshold be
havior of the electrical transport in the nonlinear regi
[3,4], and the detection of the magnetophonon mode
rf experiments [5]. Very little is known about the re
sponse properties of the glassy phase which we wan
focus on in this Letter. Our previous mean field theo
of the ground state of the disordered electron crystal
has allowed us to define a glassy phase with a hex
nal short-range order on one hand and a finite densit
states at the Fermi level on the other hand. Based on
theory, we develop for the first time a microscopic qua
tum theory for the transport properties of the disorde
electron solid. In the following, we outline our formalis
and show that the results of two independent experim
can be understood with the defined glassy phase. F
a recent experiment by Liet al. [7] in which a close-to-
linear frequency dependence of the real and the imagi
parts of the longitudinal conductivity has been report
Second, the weak (algebraic) temperature dependen
the longitudinal resistance which turns over to an a
vated behavior (lnR ~ T21) in the Wigner crystal regime
at very low temperatures as found by Goldmanet al. [4].

In Fig. 1(a) our approximations for the ground sta
are shown diagrammatically: The Coulomb interact
is taken in the Hartree-Fock approximation and the d
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order potential in the self-consistent Born approximat
(SCBA). These approximations are discussed in detail
justified in Ref. [6]. A considerable simplification for th
solution of Dyson’s equation [Fig. 1(a)] is achieved usi
a representationGs $k, zd of the Green’s function

Gs $r , $r 0, zd ­
X
X,X 0

GsX, X0, zdFX s$rdFp
X 0 s $r 0d

­
X
$kX

Gs $k, zd exp

µ
ikxX 2 i

kxkyl2

2

∂
3 FXs$rdFp

sX2kyl2ds $r 0d , (1)

whereGs $k, zd depends on only one wave vector$k of the
hexagonal reciprocal lattice. TheFXs$rd are the lowest
Landau-level eigenfunctions in the Landau gauge wh
depend on the center coordinateX. Since all higher Lan-
dau levels are neglected, we can write the exchange
in the same formyexc like the Hartree termydir [6,8] [see

FIG. 1. Our formalism in diagrammatic form: (a) ground sta
approximation, (b) the response. The upper line in (b) sho
the summation of the impurity vertex corrections in the se
consistent Born approximation (dashed lines with crosses),
lower line the inclusion of the Coulomb interaction (doub
wavy line).
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second line of Fig. 1(a)] leading to an effective interaction
yeff [Eq. (8)]. As derived in Ref. [9], the density response
function xs$r1, $r2, vd ­ dns$r1, vdydyexts$r2, vd to the ex-
ternal potentialyexts$r2, vd is obtained consistent with our
approximation for the Green’s function as shown diagram-
matically in Fig. 1(b). A similar approximation has been
applied in Ref. [10] to a two-dimensional electron gas
without lateral modulation. For the description of the elec-
tron solid, however, the inclusion of the reciprocal lattice
vectors is decisive.

The diagrams in Fig. 1(b) can be evaluated for a system
with lateral modulation using a matrix formalism in the

space of the reciprocal lattice vectors. In the first step
perform the ladder-sum sum over the SCBA vortex c
rections indicated in the upper line of Fig. 1(b). We ins
the representation Eq. (1) for the Green’s function in
standard expression for the “bare bubble”P0s$r1, $r2, ivnd
and take the two-dimensional Fourier transformP0s $q 1
$k, $q 1 $k0, ivnd ; P̂

0
$k,$k0

s $q, ivnd to find

P̂
0
$k,$k0

s $q, ivnd ­
Â$k,$k0s $qd

b

X
iv0

n

p̂
0
$k,$k0

s $q, ivn, iv0
nd , (2)

with
p̂
0
$k,$k0

s $q, ivn, iv0
nd ­

X
$k00

Gs $k00 1 $k, ivn 1 iv0
ndGs2 $k00 2 $k0, iv0

nd

3 exp

"
2

il2

2
$q 3 s $k 1 $k0d

#
exp

"
il2

2
$k00 3 s2 $q 1 $k 1 $k0d

#
, (3)
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Â$k,$k0 s $qd ­
1

2pl2 exp

"
2

s $q 1 $kd2l2 1 s $q0 1 $k0d2l2

4

#
.

(4)

Here $q is in the first Brillouin zone of the hexagon
reciprocal lattice$k, b ­ 1ykBT , vn ­ s2n 1 1dpyb is
a fermionic Matsubara frequency, and the hat, e.g.
P̂0s $q, vnd, denotes a matrix in the reciprocal space.

The ladder sum over the vertex corrections of
impurity interaction can now be written as a geome
series

p̂s $q, vn, v0
nd ­ p̂0s $q, vn, v0

nd fd̂ 2 V̂ Ip̂0s $q, vn, v0
ndg21.

(5)

The impurity interaction enters through the matrixV̂ I
$k,$k0

­

d$k,$k0VI s $q 1 $kd. For an ensemble ofd2 scatterers with
an individual scattering potentialysrd ­ V0dsrd we obtain
[11]

VI s $qd ­
G2

4
exp

"
2

$q2l2

2

#
, (6)

whereG2 ­ 4nIV 2
0 y2pl2 provides a measure of the imp

rity strength. P̂ is obtained fromp by replacing in Eq. (2)
P̂0 with P̂ andp̂0 with p̂. The Matsubara frequency sum
mation in Eq. (2) can be carried out for each compon
of the matrixP̂ as demonstrated in Ref. [10].

The calculation of the density-density response func
x is now carried out according to the second equatio
Fig. 1(b). Using the matrix representation we obtain

x̂s $q, ed ­ P̂s $q, ed fd̂ 2 V̂ effs $qdP̂s $q, edg21, (7)

with V̂ eff
$k,$k

s $qd ­ d$k,$k0Veffs $q 1 $kd and
2994
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Veffs $qd ­
2pe2

q

"
1 2

µ
p

2

∂1y2

ql exp

√
q2l2

4

!
I0

√
q2l2

4

!#
.

(8)

Here I0 is the modified Bessel function of the first kind
As shown in Ref. [6] the first factor in Eq. (8) gives th
contribution of the Hartree term and the second the F
term.

The correlation functionx evaluated in Eq. (7) de
scribes the density response to the external poten
x̂$k,$k0s $q, vd ­ dns$q 1 $k, vdydyexts$q 1 $k0, vd. Through
the continuity equationvns $q, vd ­ $q$js $q, vd we can re-
late the density response to the induced currents

2ivdns$q 1 $k, vd ­ s $q 1 $kd
X
$k0

ŝ$k,$k0s $q, vd

3 s $q 1 $k0ddyeffs $q 1 $k0, vd ,

(9)

whereŝm,n;$k,$k0 s $q, vd ­ djms$q 1 $k, vdydEns $q 1 $k0, vd.
Assuming a slowly varying external potenti
dyexts$r , td ­ dy0 expsi $q $rd exps2ivtd with $q ! 0 we
have to expect short-range componentsdyeffs $q 1 $k, vd,
$k fi 0 in the effective potential. However, a goo
approximation is obtained averaging out the short-ra
components in the effective potential in Eq. (9) (“coar
graining method”). We define

ss $q, vd ; 2
iv
q2

dns$q, vd
dyeffs$q 1 vd

­ 2
iv
q2

x̂0,0s $q, vd
1 1 s2pe2yqdx̂0,0s $q, vd

. (10)

Here ss $q, vd is the longitudinal componentsx,x of the
conductivity tensor, where thex direction is parallel to$q.
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The described formalism is used to evaluate num
ically the transport properties of a disordered electr
solid at a filling factorn ­ 1y4 and a disorder strength
of G ­ 0.33e2yl. This relatively large filling factor was
chosen for numerical convenience, as our previous
culations [6] revealed no qualitative differences betwe
n ­ 1y4 and 1y7. In [6] it was shown that the chose
disorder strength is slightly below a certain critical valu
Above this critical value the system remains in the lim
T ! 0 in a state with crystalline short-range order on o
hand but finite density of states at the Fermi level on
other hand. As in the case of an amorphous semicond
tor the local order preserves the band structure leadin
a tail of the density of states in the forbidden gap of t
disorder-free structure. This tail amounts to a more
less sharp local minimum of the density of states arou
the chemical potential. However, in the present case
weaker disorder this tail vanishes at low temperatures
our case belowkBT ­ 0.005e2yl) and we obtain a true
energy gap. As we will show transport properties chan
qualitatively belowkBT ­ 0.005e2yl from a phase show-
ing a “metallic” conductivity with a weak (algebraic) tem
perature dependence to a second phase, where we e
an activated temperature dependence.

In Fig. 2 we consider the frequency dependence
the longitudinal conductivity at four wave vectors whic
represent the results for a variety of temperatures
wave vectors: For a given$q we obtain two fre-
quency domains: For small frequencies the transport
be qualitatively understood in a diffusion picture,s ­

FIG. 2. (a) Real parts1 and (b) imaginary parts2 of the
conductivity vs frequency atkBT ­ 0.01e2yl for $q ­ a $X,
a ­ 0.2 (circles), 0.4 (squares), 0.6 (diamonds), and 0
(triangles). The $X point at the border of the first Brillouin
zone of the hexagonal lattice is defined like in Ref. [12].
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sdnydmds2ivyq2dDq2ys2iv 1 Dq2d with the diffusion
constantD. Then we expect forv , Dq2 a parabolic
frequency dependence of the real and a negative lin
dependence of the imaginary part. Atv0 ­ Dq2 the real
part of the conductivity has a turning point and the ima
inary part a minimum. This can clearly be seen in t
results for the larger wave vectors. For small wave v
tors, v0 decreases to a very small value where the
merical resolution becomes insufficient. As expected
the regime ofv . Dq2 the transport is not diffusive
any more and linear frequency dependences1s $q, vd ­
s1s $q, T d 1 s

0
1s $q0, T dv of the real part of the conductiv

ity is clearly observed. Another general result is that
as expected—the upper bound of the diffusive freque
regime decreases with vanishing wave vector leaving
regime with linear frequency dependence ofs1 to start
at zero frequency. The imaginary part of the conduc
ity has a more complex behavior: For frequencies ab
the diffusive transport regime the imaginary part has o
zero and increases slightly less than linearly with furth
increasing frequency. With decreasing wave vector
conductivity zero shifts to vanishing frequency. For n
merical reasons wave numbers withj $qj , 0.2jXj (see
caption Fig. 2) cannot be evaluated so that we have
extrapolate to zero wave vector. In the experiments
Ref. [7], which were performed at finite frequencies,
linear frequency dependence of the real and the im
nary part of the conductivity was found. Deviations we
small. This directly agrees with our results for the re
part of the conductivity. The sublinear dependence of
imaginary part of the theory can be explained taking in
account that the frequency interval probed in the exp
ments was small on the scale ofe2yl allowing a linear fit
to the theory curve.

Since the temperature dependence of the dc condu
ity is often probed in experiments we want to demonstr
the extraction of such results in our formalism: Assumi
a regular behavior ofs1s $q, Td ands

0
1s $q, Td for fixed tem-

perature, we can perform the limitq ! 0 as demonstrated
in Fig. 3. A good fit of the numerical data is obtaine

FIG. 3. Extrapolation ofs1s $q, T d (lower part) as defined
in the text to zero wave vector at the temperatureskBT ­
0.01e2yl (circles),0.02e2yl (squares),0.03e2yl (diamonds), and
0.04e2yl (triangles), $q and $X as defined in Fig. 2. In solid
straight lines of a linear regression determining the result
zero wave vector.
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assumings1s $q, T d ­ s0 1 gq2 with a free parameterg.
It is found that the procedure fors

0
1s $q, Td is analogous.

Figure 4 shows the temperature dependence ofs0.
The arrow marks the temperature below which there
an energy gap comparable to or larger than the ther
energy. Above this temperature we find crystalline sho
range order and an enhanced real part of the conducti
showing an algebraic temperature dependence

s0 ­ ssT 2 T0dr . (11)

As can be seen from Fig. 4 the curve fors0sT d closely
follows the increase of the density of states at t
chemical potentialDm, revealing this increase as th
origin of the enhanced conductivity. For temperatur
below the position of the arrow we expect a turnover

FIG. 4. Upper panel: dc-transport conductivity (in circle
inner label of they axis) with a fit of an algebraic ex-
pression defined in Eq. (11) with the parametersT0 ­ 0.29,
s ­ 7.75 (temperatures in units of1022e2yl, conductivity
in e2yh), and r ­ 1.3. Marked with crosses the densit
of states at the chemical potentialDm (left label of the
y axis). Lower panel: Rescaled experimental conductiv
s̄exp ­ ssexpysd1yr yT0 at the filling factorsn ­ 0.215 [crosses;
(s ­ 299,r ­ 1.6,T0 ­ 1.35)], 0.19 [triangles; (825,2.4,2.0)],
0.18 [diamonds; (326,2.1,4.1)], 0.17 [squares; (234,2.0,5.
0.15 [circles; (474,2.7,5.6)], the solid line is the algebraic co
ductivity in Eq. (11). The experimental temperature interva
for the transition to the crystalline phase atn ­ 0.215 (dash-
dotted horizontal line), 0.19 (dashed), 0.18 (long-dashed), 0
(dotted), and 0.15 (solid).
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an exponentially activated transport. Because of the sm
size of the energy gap this range of temperatures is
accessible at the given disorder strength.

Experimental results by Goldmanet al. can be de-
scribed with Eq. (11). In Ref. [4] these authors foun
in the regime of electron localization (Rxx . hyne2) a
turnover from a weak temperature dependence of the
gitudinal resistance for larger temperatures to an activa
longitudinal resistance (lnR ~ T21) in the crystal phase
As pointed out in Ref. [13] one can assume in the regi
of electron localization a simple matrix relationsxx ­
RxxysR2

xx 1 R2
xyd. Furthermore, the experimental Hall re

sistance is close to its classical valueRxy ­ hyne2 and
can thus be neglected againstRxx to yield sxx ­ R21

xx .
Under these assumptions we rescale the experimental
uessexp ­ 1yRxx with filling-factor dependent fit param
eterss, T0, andr as defined in Fig. 4 and find agreeme
with Eq. (11). The experimental temperatures of the me
ing transition are found to fall together on the normaliz
temperature scale atTyT0 ø 3. In our numerical calcula-
tion this is atT ­ 8.7 3 1023e2yl below which tempera-
ture a true gap in the density of states starts to build
and the Wigner crystal is formed.

In conclusion, we present a microscopic quantum t
ory of the transport properties of a disordered electr
solid. At strong disorder we find a glassy phase. Its tra
port properties—a close-to-linear frequency depende
and an algebraic temperature dependence of the long
dinal conductivity—are consistent with experimental da
by Li et al. and Goldmanet al.
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