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It is shown that interacting many-particle quantum systems can be described in terms of fully
correlatedn-particle densities, which determine uniquely the potential acting on the system and satisfy
a minimum principle with respect to the ground-state energy. This leads to a generalization of
ordinary density functional theory in terms afparticle densities which allows the direct and self-
consistent treatment of correlation effects within electronic structure methods for atoms, molecules, and
solids. [S0031-9007(96)01364-6]
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The treatment of correlations in interacting quantumbut the application to other particles interacting by pair
many-particle systems presents a significant challengeotentials is evident.
to mathematical and computational condensed-matter The formal construct presented here combines two
physics. Of all possible forms of correlation and systemdifferent general approaches that have been used in the
affected by it, the electron gas in an atom, a molecule, ostudy of the electron gas, namely, DFT and methods
a solid has received the greatest attention by solid-stafd9,20] used in the study of “small” systems, such as
physicists and quantum chemists. As a consequence,aoms and molecules. In these methods,Xhelectrons
number of well-known approximation methods have beenn a system are viewed as forming a single particle in
developed for its study. Among the most prominent, thea space of 8 dimensions (which is the direct-space
local density approximation (LDA) to density functional part of a 6V-dimensional phase space). In thié-
theory (DFT) [1,2], the various forms of the Hartree- particle phase space or hyperspace, the single particle
Fock (HF) [3] approximation, theGW approximation satisfies a Schrodinger equation in which all interparticle
[4-7], methods based on the direct study of two-particlénteractions appear as an external potential. A partial-
guantities [8—11], such as two-particle Fermion reducedvave analysis in terms of hyperspherical harmonics [21]
density matrices [12], can be mentioned. These methodsan be used to obtain the solution of this single-particle
and many of their modifications and improvementsequation determining th&-particle states of the system.
[13-16], have been discussed in a number of reviewhis idea can be used to study systems of large num¥ers
articles [1,17,18], and their numerous applications alon@f particles in terms ofi-particle units. The methodology
with theoretical studies have revealed [18] much aboufor accomplishing this by using essentially single-
their internal structure as well as their advantages angarticle formalism forms the central contribution of this
limitations when compared to one another, or againspaper.
general criteria of a formal nature. Let us consider the Hamiltonian of a fully interacting

In spite of the great effort that has been expendedv-particle system,
toward the study of correlated systems, however, no single 1
unifying framework for this study has appeared which H=Y-VI+>uv+ B} D vy, 1)
would provide direct insight into the electron correlation i i i
problem, would apply to systems of arbitrary size, wouldwhere V? is the Laplacian operator for partice v; =
provide_for_ well-defined and syst_ema_tic extensions anq,(rl.) is a single-particle potential for particle, and
genera_lllzafuons as wel! as approximation schemes for ity,; = v(r;, 1)) is the interparticle potential, with;; = 0.
numerical implementation, and could be shown to become The Hamiltonian of Eq. (1) can also be written in a
exact in a uniquely defined limit. The purpose of thisform describing distinct, nonoverlapping pairs of particles
Letter is to introduce such a formal construct based on thgz2] (so that a given particle belongs to only one pair),
general formalism of density functional theory. The basigabeled byi,
of the method is that DFT applies @ny collection of 1
interacting particles ini-dimensional space, particularly H = Z—V% + ZV, + = ZVU. 2
when the many-particle system is taken to consist of 1 1 2%
n-particle units which are treated asimgle particlein a  We view each pair of particles with respective coordinates
space ofid dimensions. For ease of presentation, in what;, andr;, as asinglepoint particle in a space defined by
follows we develop the method for the case of electronsthe orthogonal (Euclidean) combination of the individual
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particle spaces. A point in this two-particle space has th¢éhe exchange-correlation functional is not known, but can

form x; = (r;,,r;,) so that for each such pai; = V2 =  be used in a LDA sense through, for example, the study
Vi + Vi is the six-dimensional Laplacian, of 6-dimensional jellium.
V, = V(x;) = V(r;.r) Both formal analysis and computational developments
r= " i th associated with DFT can be carried over intact RF T.
_ 1 For example, the exact two-particle ground-state density,
= v(r) + vlry) + Ir;, — ;] 3) no(x), can be determined through a constrained search

h[23] for that many-particle, properly symmetrized or anti-
gymmetrized wave function, with symmetry imposed with
respect to ordinary particles, which yieldgs and also
minimizes the many-particle energy;, + V,,, where

is the external potential acting on a pair of particles, whic
includes the interaction between the ordinary particle
forming the pair, and

Vig = V(xp,x)) = V(. ri;rj,1),) V,, denotes the interparticle interaction in two-particle
1 1 1 phase space. Essentially any method developed within a
= single-particle application of DFT for the study of elec-
ey —wl ey =l e, =

tronic structure can, with appropriate technical modifica-
i 1 (4) tions, be extended to two- or-particle states. The use
lr;, —rjl’ of multiple-scattering theory as a possible way to calcu-

which describes the interaction between single particle?te fully correlated two-particle densities in solids will be

. ; . . in a future publication.
in hyperspace or, equivalently, between pairs of ordinary?'/" I" & .
particles. In analogy with the Hamiltonian of Eq. (1), We now comment on the general scheme which leads to

Vi = 0. We have now completely defined the Hamil- the minimization of the energy functional Wi_thin 2LDA:
tonian in Eqg. (2). Given the formal similarity between We. first note that the_cpncept Of. an effecpve potential
the Hamiltonians defined in Egs. (1) and (2), it follows acting on a parthle pairis a sen5|blg one since the exact
that the ground-state energy, is given in terms of a uni- ”?a”V'bOdY Hamiltonian can be written as a sum over
versal functional of the (pair) density(x), attaining its SinNgle-particle terms (suppressing internuclear repulsion)

minimum value for the exact pair density. Furthermore, . 1

within a Kohn-Sham scheme, the form of this functional H = g[v’ + D) 2V11:|. (8)

is identical to the functional of ordinary DFT but is given ) ] .

in terms of the pair density. The details of this derivationcorfeseond'ng_ly- we search for an etfe_ctlve smgle"-
are identical to those of ordinary DFT, and we confineParticle Ham.lltonlan and .assomated single-particle
ourselves to the final result. The energy functional whicrStates that satisfy the equation

determines the density in two-particle phase space can be [-V: + v (X)]¢ha(x) = Egra(x). (9)

written in the form In analogy with ordinary DFT,vf consists of the

E[n(x)] = Ts[n(x)] + Uln(x)] + Exc[n(x)], (5) external potential acting on a particle in two-particle
whereT,[n(x)] represents the kinetic energy of a systemSPace, which includgs (i) the action of th_e nuclei with the
of noninteracting particles (in two-particle space) at thePalr, (i) the interaction between the particles of the pair,

densityn(x), the quantityU[n(x)] is defined by (iii) the interaction of the other pairs with a given pair,
which is mediated byV(x,x’), and (iv) the exchange-
Uln(x)] = [ dSxV (x)n(x) correlation potential defined by the functional derivative

of the exchange-correlation energy with respect to the
two-particle density. From/,(x), the fully correlated
6 6
+ fd xlfd xn(x)V(x1.x2)n(x2). (6)  pair density is obtained in the form

occe

and E,.[n(x)] contains the difference between the exact _ 2 10
kinetic energyT[n(x)] and that represented B[n(x)], n(x) % e T (10)
as well as the difference between the exact interparticl

Eterg;tlon and its “classical” approximation given by two-particle states. We note that fronfx) — n(r,, ry),
q- (), the single-particle densityn(r;), is obtained through
E S -7 4+ | 4f f 46 integration ovetr;. Thls_ dgnsﬂy can be use(_:i to construct
reln(x)] [n(x)] sln(x)] [ e 2 a single-particle potential in hyperspace which would lead
directly to the corresponding single-particle electronic
X - .
V(x1,x2) [n(x1,%2) — n(x)n(xz2)]. (7) structure of the system.
Here,n(x1, x,) represents the two-particle correlated den- In order to illustrate the role played by the two-particle
sity in two-particle space or, equivalently, the correlateddensity in the determination of the electronic structure,
density of four ordinary particles. As in ordinary DFT, we study the single-particle spectrum of four electrons of

%onsisting of a sum over the lowest in energy, occupied,
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total spin zero on a four site single-band ring described by < E) = i L[ —OMW (NG AE — w)d
a Hubbard Hamiltonian 2ij(E) n"—n»o 27 ) € i5(@)Gi w)do,

t 1 t (14)
H=) €cici+ — ) tijcici + U nigniz, (11) _ , .
Zi: ) ZZ; v Zl: e is given in terms of the exact single-particle Green

" _ o function and the exact screened interaction which is
WhereCi and c; are creation and annihilation OperatorSdetermined in terms of the noninteracting (Zero Su-
for an electron on sité, the site energieg; are chosen perscript), and exact two-particle Green functions,
equal to zero, the hopping term; is confined to near (E) = {G-(Q.)_l — Gk
neighbors and set equal to 1.0, and the on-site Coulomrjv”’kl ij3kl ijikt ]

. . ) o For single-particle spectra which are derived from an
interactionU felt by electrons of opposite spin is taken to frective t il E}»-(E) i derived throuah
have the values 1.0 and 10.0, with the respective resul eclive two-particie approacky;; IS derive roug

shown in Figs. 1 and 2. In order to validate the results o own-folding from an effective two-particle Green func-

an effective two-particle approach, we include the exacion in which two-particle states are obtained in the pres-

single particle spectrum as well as the results obtaine§"c€ of amther pair .Of parUchs. For example,éach
within a version of the3W approximation. configuration of a pair of particles on the ring, one cal-

The single-particle spectra are obtained from the famil—g ?IZ:]ej d:jr}'ﬁoig?r%)i/r of_rtﬁs sgs‘:;n iex(ngryC()tnl;lguratlon i
iar expression . . pair. rresponding states are con
sistent with the Pauli exclusion principle, but neglect the
pi(E) = — 1 MG (E), (12) interactions among configurations associated with the first
™ existing pair. These configurations are treated indepen-
dently of one another.

In all three cases the energy was assigned an imaginary
For the exact spectrum, we use the definition of thé) a,z[sOfisOlgeBefr?riEriﬁggéa?igzr%irpglsees;ésults based on an
Green function as the probability amplitude for addingeffective two-particle Green fl'Jnction are in consider-
and removing particles to obta@; (E) by summing over ably better agreement with the exact spectra than those
(integrating out) the degrees of freedom (coordinates) ofpiained in the present version of th8W approxi-

where the Green functioﬁ;ii(E) is determined in three
different ways.

three patrticles in the four-particle Green function: mation, particularly for large values @f. One also sees
~ . that these results overestimate the gap in the stiigng
Gijy(E) = iizl_ Giiviisirojninis(E) 13 jimit as may be expected in a non-self-consistent pro-
s cedure of this type. Even fot//r = 1.0, a region in

) ) ] which the GW approximation has been found to give ac-
Givinisisiirjaninis (E), 0 tUrn, is obtained through the usual ¢yrate results for real systems, the averaging of the two-
procedure as a “single-particle” Green function in a four-particle Green function in the presence of a finite density
particle phase space, which in the present case leads tq@solves the electronic structure much more accurately.
256-dimensional matrix. A similar procedure can be useqye note the resonance &t = 1.0 which is missed in

to obtain exact two-particle Green functions which will be the Gw results, and that both approximate results are dis-

used below. N _ . _ placed somewhat with respect to the exact ones. Much
For the GW approximation,G;;(E) is a single-particle  f this effect, along with the wider gap in the stroby
Green function in which the self-energy, limit mentioned above can be traced back to the incom-
plete treatment of the Pauli principle, i.e., the neglect of
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FIG. 1. Exact single-particle spectrum (solid line) for four 420 2 4E6 8 10 12 14
electrons on a four-site ring compared with the results Givdl
approximation (dash-dotted line) and those obtained from afrIG. 2. Results analogous to those of the previous figure, but

effective two-particle Green function (dashed line) &6r= 1.0. for U = 10.0.
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