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A General Minimum Principle for Correlated Densities in Quantum Many-Particle Systems
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It is shown that interacting many-particle quantum systems can be described in terms of fully
correlatedn-particle densities, which determine uniquely the potential acting on the system and satisfy
a minimum principle with respect to the ground-state energy. This leads to a generalization of
ordinary density functional theory in terms ofn-particle densities which allows the direct and self-
consistent treatment of correlation effects within electronic structure methods for atoms, molecules, and
solids. [S0031-9007(96)01364-6]
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The treatment of correlations in interacting quant
many-particle systems presents a significant challe
to mathematical and computational condensed-ma
physics. Of all possible forms of correlation and syste
affected by it, the electron gas in an atom, a molecule
a solid has received the greatest attention by solid-s
physicists and quantum chemists. As a consequen
number of well-known approximation methods have b
developed for its study. Among the most prominent,
local density approximation (LDA) to density function
theory (DFT) [1,2], the various forms of the Hartre
Fock (HF) [3] approximation, theGW approximation
[4–7], methods based on the direct study of two-part
quantities [8–11], such as two-particle Fermion redu
density matrices [12], can be mentioned. These meth
and many of their modifications and improveme
[13–16], have been discussed in a number of rev
articles [1,17,18], and their numerous applications al
with theoretical studies have revealed [18] much ab
their internal structure as well as their advantages
limitations when compared to one another, or aga
general criteria of a formal nature.

In spite of the great effort that has been expen
toward the study of correlated systems, however, no si
unifying framework for this study has appeared wh
would provide direct insight into the electron correlati
problem, would apply to systems of arbitrary size, wo
provide for well-defined and systematic extensions
generalizations as well as approximation schemes fo
numerical implementation, and could be shown to beco
exact in a uniquely defined limit. The purpose of t
Letter is to introduce such a formal construct based on
general formalism of density functional theory. The ba
of the method is that DFT applies toany collection of
interacting particles ind-dimensional space, particular
when the many-particle system is taken to consist
n-particle units which are treated as asingle particlein a
space ofnd dimensions. For ease of presentation, in w
follows we develop the method for the case of electro
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but the application to other particles interacting by p
potentials is evident.

The formal construct presented here combines
different general approaches that have been used in
study of the electron gas, namely, DFT and meth
[19,20] used in the study of “small” systems, such
atoms and molecules. In these methods, theN electrons
in a system are viewed as forming a single particle
a space of 3N dimensions (which is the direct-spa
part of a 6N-dimensional phase space). In thisN-
particle phase space or hyperspace, the single par
satisfies a Schrödinger equation in which all interpart
interactions appear as an external potential. A par
wave analysis in terms of hyperspherical harmonics [
can be used to obtain the solution of this single-part
equation determining theN-particle states of the system
This idea can be used to study systems of large numbeN
of particles in terms ofn-particle units. The methodolog
for accomplishing this by using essentially asingle-
particle formalism forms the central contribution of th
paper.

Let us consider the Hamiltonian of a fully interactin
N-particle system,

H ­
X

i

2=2
i 1

X
i

yi 1
1
2

X
ij

yij , (1)

where =
2
i is the Laplacian operator for particlei, yi ­

ysrid is a single-particle potential for particlei, and
yij ­ ysri , rjd is the interparticle potential, withyii ­ 0.

The Hamiltonian of Eq. (1) can also be written in
form describing distinct, nonoverlapping pairs of partic
[22] (so that a given particle belongs to only one pa
labeled byI,

H ­
X

I

2=2
I 1

X
I

VI 1
1
2

X
IJ

VIJ . (2)

We view each pair of particles with respective coordina
ri1 andri2 as asinglepoint particle in a space defined b
the orthogonal (Euclidean) combination of the individu
© 1996 The American Physical Society 2981
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particle spaces. A point in this two-particle space has t
form xI ­ sri1 , ri2 d so that for each such pair=

2
I ­ =2

x ­
=

2
i1

1 =
2
i2

is the six-dimensional Laplacian,

VI ; V sxI d ­ V sri1 , ri2d

­ ysri1 d 1 ysri2 d 1
1

jri2 2 ri1 j
(3)

is the external potential acting on a pair of particles, whic
includes the interaction between the ordinary particle
forming the pair, and

VIJ ; V sxI , xJd ­ V sri1 , ri2 ; rj1 , rj2d

­
1

jri1 2 rj1 j
1

1
jri1 2 rj2 j

1
1

jri2 2 rj1 j

1
1

jri2 2 rj2 j
, (4)

which describes the interaction between single particl
in hyperspace or, equivalently, between pairs of ordina
particles. In analogy with the Hamiltonian of Eq. (1)
VII ­ 0. We have now completely defined the Hamil
tonian in Eq. (2). Given the formal similarity between
the Hamiltonians defined in Eqs. (1) and (2), it follow
that the ground-state energy,E, is given in terms of a uni-
versal functional of the (pair) density,nsxd, attaining its
minimum value for the exact pair density. Furthermore
within a Kohn-Sham scheme, the form of this functiona
is identical to the functional of ordinary DFT but is given
in terms of the pair density. The details of this derivatio
are identical to those of ordinary DFT, and we confin
ourselves to the final result. The energy functional whic
determines the density in two-particle phase space can
written in the form

Efnsxdg ­ Tsfnsxdg 1 Ufnsxdg 1 Excfnsxdg , (5)

whereTsfnsxdg represents the kinetic energy of a system
of noninteracting particles (in two-particle space) at th
densitynsxd, the quantityUfnsxdg is defined by

Ufnsxdg ­
Z

d6xV sxdnsxd

1
Z

d6x1

Z
d6x2nsx1dV sx1, x2dnsx2d , (6)

and Excfnsxdg contains the difference between the exa
kinetic energyTfnsxdg and that represented byTsfnsxdg,
as well as the difference between the exact interpartic
interaction and its “classical” approximation given by
Eq. (6),

Excfnsxdg ­ T fnsxdg 2 Tsfnsxdg 1
Z

d6x1

Z
d6x2

3 V sx1, x2d fnsx1, x2d 2 nsx1dnsx2dg . (7)

Here,nsx1, x2d represents the two-particle correlated den
sity in two-particle space or, equivalently, the correlate
density of four ordinary particles. As in ordinary DFT
2982
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the exchange-correlation functional is not known, but c
be used in a LDA sense through, for example, the stu
of 6-dimensional jellium.

Both formal analysis and computational developmen
associated with DFT can be carried over intact tonDFT.
For example, the exact two-particle ground-state dens
n0sxd, can be determined through a constrained sea
[23] for that many-particle, properly symmetrized or an
symmetrized wave function, with symmetry imposed wi
respect to ordinary particles, which yieldsn0 and also
minimizes the many-particle energy,T 1 Vpp , where
Vpp denotes the interparticle interaction in two-partic
phase space. Essentially any method developed with
single-particle application of DFT for the study of elec
tronic structure can, with appropriate technical modific
tions, be extended to two- orn-particle states. The use
of multiple-scattering theory as a possible way to calc
late fully correlated two-particle densities in solids will b
given in a future publication.

We now comment on the general scheme which lead
the minimization of the energy functional within 2LDA
We first note that the concept of an effective potent
acting on a particle pair is a sensible one since the ex
many-body Hamiltonian can be written as a sum ov
single-particle terms (suppressing internuclear repulsio

H ­
X

I

"
VI 1

1
2

X
J

VIJ

#
. (8)

Correspondingly, we search for an effective “singl
particle” Hamiltonian and associated “single-particle
states that satisfy the equation£

2=2
x 1 yeffsxd

§
casxd ­ Ecasxd . (9)

In analogy with ordinary DFT,yeff consists of the
external potential acting on a particle in two-partic
space, which includes (i) the action of the nuclei with th
pair, (ii) the interaction between the particles of the pa
(iii) the interaction of the other pairs with a given pai
which is mediated byV sx, x0d, and (iv) the exchange-
correlation potential defined by the functional derivativ
of the exchange-correlation energy with respect to
two-particle density. Fromcasxd, the fully correlated
pair density is obtained in the form

nsxd ­
occX
a

jcasxdj2, (10)

consisting of a sum over the lowest in energy, occupi
two-particle states. We note that fromnsxd ­ nsr1, r2d,
the single-particle density,nsr1d, is obtained through
integration overr2. This density can be used to constru
a single-particle potential in hyperspace which would le
directly to the corresponding single-particle electron
structure of the system.

In order to illustrate the role played by the two-partic
density in the determination of the electronic structu
we study the single-particle spectrum of four electrons
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total spin zero on a four site single-band ring described
a Hubbard Hamiltonian

H ­
X

i

eic
y
i ci 1

1
2

X
i.j

tijc
y
i cj 1 U

X
i

nisnis , (11)

where c
y
i and ci are creation and annihilation operator

for an electron on sitei, the site energiesei are chosen
equal to zero, the hopping termtij is confined to near
neighbors and set equal to 1.0, and the on-site Coulo
interactionU felt by electrons of opposite spin is taken t
have the values 1.0 and 10.0, with the respective res
shown in Figs. 1 and 2. In order to validate the results
an effective two-particle approach, we include the exa
single particle spectrum as well as the results obtain
within a version of theGWapproximation.

The single-particle spectra are obtained from the fam
iar expression

risEd ­ 2
1
p

ImbGiisEd , (12)

where the Green functionbGiisEd is determined in three
different ways.

For the exact spectrum, we use the definition of t
Green function as the probability amplitude for addin
and removing particles to obtainbGiisEd by summing over
(integrating out) the degrees of freedom (coordinates)
three particles in the four-particle Green function:

bGi1j1 sEd ­
X

i2,i3,i4
j2,j3,j4

Gi1,i2,i3,i4;j1,j2,j3,j4sEd (13)

Gi1,i2,i3,i4;j1,j2,j3,j4 sEd, in turn, is obtained through the usua
procedure as a “single-particle” Green function in a fou
particle phase space, which in the present case leads
256-dimensional matrix. A similar procedure can be us
to obtain exact two-particle Green functions which will b
used below.

For theGW approximation,bGiisEd is a single-particle
Green function in which the self-energy,

FIG. 1. Exact single-particle spectrum (solid line) for fou
electrons on a four-site ring compared with the results of aGW
approximation (dash-dotted line) and those obtained from
effective two-particle Green function (dashed line) forU ­ 1.0.
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SijsEd ­ lim
h!0

1
2p

Z
e2ivhWijsvdGijsE 2 vd dv ,

(14)
is given in terms of the exact single-particle Gre
function and the exact screened interaction which
determined in terms of the noninteracting (zero s
perscript), and exact two-particle Green function
Wij;klsEd ­ hGs0d21

ij;kl 2 G21
ij;klj.

For single-particle spectra which are derived from
effective two-particle approach,bGiisEd is derived through
down-folding from an effective two-particle Green func
tion in which two-particle states are obtained in the pre
ence of another pair of particles. For example, foreach
configuration of a pair of particles on the ring, one ca
culates the energy of the system foreveryconfiguration
of an additional pair. The corresponding states are co
sistent with the Pauli exclusion principle, but neglect t
interactions among configurations associated with the fi
existing pair. These configurations are treated indep
dently of one another.

In all three cases the energy was assigned an imagin
part of 0.25t for presentation purposes.

As is seen in these figures, the results based on
effective two-particle Green function are in conside
ably better agreement with the exact spectra than th
obtained in the present version of theGW approxi-
mation, particularly for large values ofU. One also sees
that these results overestimate the gap in the strongU
limit as may be expected in a non-self-consistent p
cedure of this type. Even forUyt ­ 1.0, a region in
which theGW approximation has been found to give a
curate results for real systems, the averaging of the t
particle Green function in the presence of a finite dens
resolves the electronic structure much more accurat
We note the resonance atU ­ 1.0 which is missed in
theGW results, and that both approximate results are d
placed somewhat with respect to the exact ones. M
of this effect, along with the wider gap in the strongU
limit mentioned above can be traced back to the inco
plete treatment of the Pauli principle, i.e., the neglect

FIG. 2. Results analogous to those of the previous figure,
for U ­ 10.0.
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configuration interactions. Both of these approximatio
can be expected to improve with increased dimension
ity and lattice connectivity. More detailed discussions
these and other similar numerical results than can be
sented here will be given in a future publication.

The formalism presented here indicates the unifyi
power of DFT and provides an extension of the theo
to the treatment of fully correlated two-particle states (a
by a straightforward extension ofn-particle states). Thus
it leads to a general minimum principle governing co
related densities in quantum systems which is analog
to the principle governing single-particle densities. A
though its computational implementation, say within
partial-wave analysis, increases in difficulty rapidly wi
increasing dimensionality of then-particle phase space
its application to two-particle states is well within the d
main of present computational technology.

One of the authors (A. G.) is grateful to John Perde
Mel Levy, Kieron Burke, W. H. Butler, and X.-G. Zhan
for clarifying discussions. Support for this work wa
provided by Lawrence Livermore National Laborato
under the auspices of the U.S. Department of Ene
under Contract No. W-7405-ENG-48.

[1] Theory of the Inhomogeneous Electron Gas,edited by
S. Landqvist and N. H. March (Plenum, New York, 1983

[2] R. O. Jones and O. Gunarson, Rev. Mod. Phys.61, 689
(1989), and references therein.

[3] S. Massidda, M. Posternak, and A. Baldereschi, Ph
Rev. B48, 5058 (1993).

[4] The GW approximation has been derived in particular
clear fashion by Lars Hedin, Phys. Rev.139, A796 (1965).

[5] M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett.55, 1418
(1985); Phys. Rev. B34, 5390 (1986).

[6] R. W. Godby, M. Schlütter, and L. J. Sham, Phys. Re
Lett. 56, 2415 (1986); Phys. Rev. B37, 10 159 (1988).

[7] C. Verdozzi, R. W. Godby, and S. Holloway, Phys. Re
Lett. 74, 2327 (1995).
2984
s
l-
f
e-

y
d

s

,

y

.

.

[8] L. Pauling, The Nature of the Chemical Bond and the
Structure of Molecules and Crystals(Cornell University
Press, Ithaca, NY, 1960).

[9] K. A. Brueckner and C. A. Levinson, Phys. Rev.97, 1344
(1955).

[10] Gordon Baym and Leo P. Kadanoff, Phys. Rev.124, 287
(1961).

[11] Paul Ziesche, Phys. Lett. A195, 213 (1994).
[12] P.-O. Löwdin, Phys. Rev.97, 1474 (1955); R. McWeeny,

Rev. Mod. Phys. 32, 335 (1969), see especially
Sec. III; A. J. Coleman, Rev. Mod. Phys.35, 668 (1960),
see especially Part II.

[13] R. D. Cowan, Phys. Rev. B163, 54 (1967).
[14] A. Zunger, J. P. Perdew, and G. L. Oliver, Solid State

Commun.34, 933 (1980).
[15] J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).
[16] R. G. Par and Weidao Yang,Density Functional Theory of

Atoms and Molecules(Oxford University Press, Oxford,
1989).

[17] Lars Hedin and Stig Lundqvist, Solid State Physics
(Academic Press, New York, 1969), Supplement 23.

[18] Peter Fulde,Electron Correlations in Molecules and
Solids (Springer Verlag, Heidelberg, Berlin, New York,
1995).

[19] Only a few works can be cited from a very active field of
research. U. Fano, Rep. Prog. Phys.46, 97 (1983); Phys.
Rev. A 24, 2402 (1981).

[20] J. G. Frey and B. J. Howard, Chemical Physics111, 33
(1987).

[21] John Avery, Hyperspherical Harmonics(Kluwer, Dor-
drecht, 1989), and references therein.

[22] We consider explicitly systems with infinite numbers of
particles (or with finite but even numbers) so that the
partition into pairs can be effected exactly. The treatmen
of systems with explicitly odd numbers of particles will
be discussed in a future publication. Also, for simplicity
of presentation, we consider singlet pairs so that effects o
the spatial part of the wave function arise only from the
interchange of particles across pairs.

[23] Mel Levy and John P. Perdew, inDensity Functional
Methods in Physics,edited by Reiner M. Dreizler and Joao
da Providencia (Plenum, New York, 1985), p. 11.


