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Energy and Momentum Growth Rates in Breaking Water Waves
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Finding a parameter whose threshold controls the onset of breaking in nonlinear modulating s
gravity wave trains has been an elusive problem. Our numerical study of the fully nonlinear
dimensional inviscid problem on a periodic spatial domain for a range of wave group struc
examined the behavior of dimensionless relative growth rates of the local mean wave energ
momentum densities. We found that these growth rates at the envelope maxima of the wave
oscillate on a fast time scale with a significant dynamic range and that a universal threshold
for the maximum of either of these growth rates that determines whether breaking will o
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Ocean wind waves propagate in groups over the sea
face, with intermittent wave breaking occurring in the fo
of whitecaps at the maxima of the group envelopes.
spite the importance of wave breaking in both geophys
and offshore engineering applications, present underst
ing of its onset and consequences is very incomplete.
mathematical counterpart, the prediction of wave break
within modulating wave groups of nonlinear surface gr
ity waves, is a time honored and particularly challeng
nonlinear free surface instability problem.

Previous efforts to find a breaking criterion in terms
a threshold of the local wave steepness, crest accelera
or surface fluid velocity have been unsuccessful b
from field observations and from computational mode
Holthuijsen and Herbers [1] reported that it was alm
impossible to distinguish the population of breaki
waves at sea from the overall wave population on
basis of their slope probability distributions. A rece
survey of previous investigations in Banner and Pereg
[2] and subsequent studies (e.g., [3–5]) further highli
the present lack of understanding of what determi
whether breaking will occur within a modulating wav
group.

The phenomenon is illustrated clearly by the compu
tional wave examples shown in Fig. 1 where two wa
groups with five waves in the modulation are sho
at the top of each panel. They differ only margi
ally in the initial carrier wave slopesakd0. With ini-
tial slopes of 0.11 and 0.1125, respectively, the left a
right side wave trains are both nonlinear. After abo
250 carrier wave periods during the evolution, the t
envelopes have deformed due to the nonlinearity
there is a pronounced local growth of the wave
velope. Later, at 535 and 440 carrier wave perio
for the left and right panels, respectively, the dom
nant (largest amplitude) section of the wave envelope
grown larger at the expense of the amplitude of the o
parts of the group. At this stage, the local steepnessak,
the potential energy, and the vertical particle crest ac
0031-9007y96y77(14)y2953(4)$10.00
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eration of the center wave in the left and right panels
virtually identical.

Subsequently, two distinct modes of behavior occ
The steepest wave in the left-hand side panel cea
to grow and then decreases in steepness as the w
train undergoes a recurrence towards the original gr

FIG. 1. Free surface profiles for an evolving wave gro
with five waves in one modulation. The initial group has
dominant center frequency and two small spectral sideba
The left-hand panel (a)–(d) has initial slopesakd0  0.11 and
shows evolution with recurrence. The associated times in w
periods are (a)t  0, (b) t  80p, (c) t  170p, and (d)
t  330p. The right-hand panel (e)–(h) hassakd0  0.1125
and shows evolution to breaking. The evolution times in wa
periods are (e)t  0, (f ) t  80p, (g) t  140.2p, and (h)
t  149.8p.
© 1996 The American Physical Society 2953
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structure. The steepest wave in the right panel, with
comparable steepness, subsequently amplifies rapidly
evolves to breaking. The evolution process involves v
strong spatial modulations in the local wave steepnes
well as in the local propagation characteristics such as
wave number, frequency, and phase speed of the ca
waves.

This intriguing behavior was described previously b
Dold and Peregrine [6] who reported results of the
detailed computational model study of a fully nonlin
ear, two-dimensional, periodic domain free surface flo
They investigated the evolution of surface gravity wa
trains that had small upper and lower sideband insta
ities, using as parameters the initial carrier wave slo
sakd0 and the number of waves in the groupN, where
3 , N # 10. They found a strong dependence of t
wave train evolution on the parameter spacehN, sakd0j.
In particular, they determined a stability threshold cur
for which breaking occurred above the indicated thre
old, while below it a recurrence towards the origin
wave group ensued. The surprising aspect was the st
sensitivity of this stability threshold onN. Using their
code, we reproduced the sensitivity of breaking on
to hN , sakd0j, but found that the actual slope at brea
ing varied only modestly for3 , N # 10 and showed
no systematic dependence onN . This curious depen-
dence of the initial slope of wave trains that ultimate
break on the number of waves in the modulating gro
is one of many fascinating aspects of this problem t
motivated the present effort to determine whether th
exists an appropriate physical parameter with a “univ
sal” threshold that controls the evolution to recurrence
breaking.

The carrier waves in a modulating wave group w
grow if there are convergences of momentum flux a
energy flux to a particular region of the group that o
the average remain coherent with the group as it evol
under the influence of nonlinear interactions. In cons
vative systems, such sustained local convergences, a
through an exchange process with other regions within
wave group, leading to a corresponding reduction of th
local energy or momentum density. If these local wav
coherent momentum and energy fluxes remain cohe
with the growing part of the wave group for sufficientl
long, the wave envelope will continue to grow and carr
waves passing through this region should evolve to br
if the relative growth rates of the local mean wave m
mentum and energy densities are sufficiently large. O
erwise, the envelope may grow initially and then sudde
start to decay. Figure 1 illustrates these diverse scena

To investigate the dynamics underlying a modulati
wave group, we used the Dold-Peregrine free surf
code (see Ref. [7] for details) to compute the evoluti
of the free surface in conjunction with our own code
generate the associated interior flow field. As the mot
is irrotational, it is a potential flow and by Cauchy
2954
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integral theorem, the interior velocity field is determin
at each time step by the boundary configuration.

From the interior flow field, at each time step w
calculated the mean momentum densityM̂sx, td and mean
energy densityÊsx, td. The local mean value is th
spatial average taken over a suitable spatial distance,
as the local wavelengthL, whose strong local modulatio
(see Fig. 1) needs to be carefully taken into acco
When low-pass filtered, the Hilbert transform of t
surface elevation yielded smoothed envelope and p
functions Asx, td and fsx, td, respectively. Subseque
computation ofk  ≠fy≠x andv  2≠fy≠t provided
accurate estimates of the distribution of local wa
numberk and frequencyv along the wave group. Th
wavelength-averaged local mean momentum densityM̂ is
defined by M̂sx, td  L21

Rx1Ly2
x2Ly2

Rh
2d usx0, y, tddydx0.

Herex andy are the usual horizontal and vertical spat
coordinates,su, yd is the velocity field,y  hsx, td is
the free surface,d is the water depth (taken as seve
wavelengths), andLsx, td is the local wavelength. Th
water density is taken as unity. The wavelength-avera
local mean wave energy density along the groupÊ is de-

fined by Êsx, td  L21
Rx1Ly2

x2Ly2 f
Rh

2d
1
2 su2 1 y2ddy 1

1
2 h2gdx0. Other localized mean momentum and ene
densities were also found to the useful. These were b
on half-wavelength averages, in whichL is replaced by
Ly2 in these definitions. These averages are denote
M̂1y2sx, td and Ê1y2sx, td, respectively. Dimensionles
growth ratesbM sx, td andbEsx, td were then constructe
for the relative growth rates of these locally averag
quantities as follows:

bM  svM̂d21DpM̂yDt andbE  svÊd21DpÊyDt .

In these growth rate expressions, the derivativeDpyDt 
≠y≠t 1 ckE or Ml≠y≠x is the derivative following the
envelopeof Êsx, td or M̂sx, td. Also, the local frequency
v varied along the wave group by up to 25%, but for t
purpose of determining a breaking threshold paramete
was more convenient to normalize by the constant lin
mean carrier wave frequency. When rescaled by
true local frequency at the envelope maxima, the ac
maximum relative growth rate is reduced byOs25%d.

The major aim of the calculations carrier out
this study was to investigate the role ofbM and bE

as threshold variables to predict the onset of break
in arbitrary modulating wave group situations. Th
required calculating the propagation characteristics
the associated envelopes. The envelope ofÊ resulted
directly as this quantity is positive definite, but that
M̂ required calculation using the Hilbert transform.
the absence of explicit expressions, the speedsckEl and
ckMl of the peak of each envelope were computed fr
divided first differences of the horizontal displaceme
of the envelope peak at successive incremental t
steps of0.4p. Envelope propagation speeds for the
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quantities were calculated for different stages of evolut
of the nonlinear wave groups, both recurrent and break
The end result was that the behavior was consiste
represented by takingckEl , ckMl , 0.75 for both the full
and half wavelength averages of both densities. The e
incurred subsequently by taking this value as cons
throughout the evolution was found to be insignificant
assessing the maximum value of the dimensionless gro
rates.

For small slope, spatially uniform gravity wave train
Ê andM̂ have constant values of second order in the w
slope. For the unsteady, highly nonlinear wave gro
in this study,Ê and M̂ are still small quantities but ar
spatially nonuniform due to the strong local modulatio
that occur. Local mean energy and momentum dens
along the wave group can become arbitrarily small, w
the latter becoming negative. This behavior distorts
relative growth rates and was suppressed by appl
lower bound thresholds. The physically relevant grow
rates of the unstable section of the wave group were
affected by this process.

We validated the numerical procedures for the fami
test case of an infinitesimal slope wave group formed
the superposition of two slightly different wavelengt
equal amplitude, infinitesimal slope wave trains w
sakd0 , 0.01. Our computations reproduced the know
results that when traveling with the lineargroup velocity
sckEl , ckMl , 0.5d, the rate of change of̂E and M̂ are
zero at all locations along the group and hencebEsx, td 
bM sx, td  0 for all sx, td. For nonlinear modulating
wave trains, we carefully examined the local behav
of Ê, M̂, Ê1y2, and M̂1y2 together with their rates o
change following the velocity of their envelopes. Sin
the envelopes ofÊ and M̂1y2 and their correspondin
relative growth rates had a more compact distributi
these densities provided the most visual insight into
underlying dynamics and energetics. However, altho
less spatially compact, the other densities provided sim
quantitative results for the growth rates.

This phase of the investigation led to fundamen
new insights on the underlying instability process.
revealed the following for each of the densities: (a) T
corresponding relative growth rate distributionbEsx, td or
bM sx, td moves relative to the peak of the envelope
the quantity with a speed in excess of the envelope sp
This means that following the developing envelope,
envelope grows or decays on a slow time scale ofOs300d
carrier wave periods on which is superimposed a sm
oscillatory component with a periodicity ofOs10d carrier
wave periods. This complex behavior characterizes
evolution process of this very nonlinear system, b
prior to the onset of breaking and during recurren
if breaking does not occur. Just prior to the onset
breaking, the growth becomes explosive. (b) The on
of breaking occurs if and only if themaximumvalue of
the local oscillatory relative growth rate,b

max
kEl or b

max
kMl ,
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exceeds a certain threshold. This threshold appear
be universal. For this stage in the evolution, the loc
oscillatory character of the growth rate of the envelo
maximum reduces markedly, the growth rate becom
more “phase locked” to the envelope maximum and
very rapid irreversible onset of breaking withinOs10 Td
ensues. Figure 2 shows the temporal evolution ofb

max
kEl

and b
max
kMl for the five-wave group shown in Fig. 1 fo

M̂1y2, Ê1y2, and M̂. This evolution is typical of the
many cases we examined in detail and for the wh
parameter space3 # N # 10, the samethreshold level
of 0.2 was found for both half wavelength densitiesM̂1y2

and Ê1y2. The one wavelength average densityM̂ had
a corresponding threshold value of 0.4 over the sa
parameter space.

We also investigated other initial modulating wav
group configurations that might have a different evoluti
to breaking. For this we analyzed an initial wave gro
configuration with N  5 but with a different initial
condition comprising two equal spectral components
slope 0.07 and slightly different frequencies. For th
case sakdbreaking was 0.358, which is very similar to
sakdbreaking found for the case of the initial wave grou
with two small sidebands shown in Fig. 1. Also, previo
studies (e.g., Refs. [8,9]) suggest a potentially stro
influence of a linear surface shear on the evolution
wave groups. We extended our study to include surf
shear currents typical of open ocean situations, usin
constant linear shear profile of the formUs yd  Vy,
with y  0 at the mean water level. The effect of th
surface shear layer was investigated forN  5 and the
initial wave group with two small spectral sideband
The influence of shear reduced the slope at break

FIG. 2. Time evolution of themaximumgrowth ratesbmax
kE or Ml

for the initial wave group configurations in Fig. 1 for (a)M̂1y2 ,
(b) Ê1y2, and (c)M̂. The symbol “o” shows the recurrent cas
while “p” is the breaking case.
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from 0.365 for the corresponding shear-free case
0.306, a reduction of almost 20%. However, despite
significant change in the limiting carrier wave geomet
the maximum growth ratesbmax

kE or Ml for both of these
different configurations coincided with the original gro
configuration result of 0.2 and 0.4, respectively, for
half and full wavelength-averaged densities.

In summary, we have elucidated the prediction of wa
breaking in an unforced, inviscid, two-dimensional, no
linear, modulating wave group. This has been formula
in terms of the behavior of the relative growth rates of
local mean energy and momentum, following the pro
gation speed of their envelopes. We have investiga
different initial modulational configurations that lead to
significant range of local wave slopes at breaking, a
have studied both irrotational and uniform backgrou
vorticity situations with vertical shear typical of ocea
surface layer levels. The most significant findings
that within the constraints of the model the local grow
rates of the envelope of the mean momentum and
ergy density have a fast oscillatory component super
posed on the longer term mean growth or decay. Whe
breaking occurs during the longer-term evolution of
either of these quantities depends on auniversal thresh-
old based on themaximumvalue of these growth rat
parameters: Breaking will occur if and only if at an
stage of the evolution eitherbmax

kEl sx, td or b
max
kMl sx, td ex-

ceeds the value 0.2 for botĥE1y2 and M̂1y2, or equiva-
lently 0.4 for the comparable full wavelength-averag
densities.
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We note finally that applying the growth rate thresho
criteria proposed here requires a detailed knowledge
the complete space-time structure of the subsurface fl
field following the evolving wave group. We were unab
to find an equivalent expression solely in terms offree
surfacevariables.
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