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The concept of the conditional probability density is used to define a specific entropy for
dynamical systems exhibiting transient chaos. The production of entropy turns out to be propo
to the difference of the escape rate and the sum of all averaged Lyapunov exponents on the
governing the dynamics. The single-particle transport properties do not depend on the micro
details provided the dynamical systems produce the same entropy. The dimension of the u
foliation of the saddle is shown to be identical in all microscopic single-particle models of the
transport process. [S0031-9007(96)01271-9]
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Irreversible entropy production is a key concept
nonequilibrium thermodynamics [1]. Being the produ
of the generalized forces and the canonically conjuga
fluxes, it is a measure of the decay to thermal equilibriu
In the regime of small perturbations the fluxes are lin
functions of the forces, and the entropy production
weak. In the case of electric conductivity, for instan
the entropy production is proportional to the Joule he
i.e., to field strength times current intensity.

Recent investigations have shown that transport p
cesses can be understood in asingle-particlepicture by
means of low-dimensionalchaoticdynamics [2–9]. This
also raises the question of how to define entropy prod
tion for classical chaotic dynamical systems.

One type of approach to chaotic transport [2–5]
working with closed systemsin an external field con
strained by periodic boundary conditions. An increa
of the kinetic energy of the particle is compensated
introducing dissipation (a “Gaussian thermostat” [2]) t
ensure energy conservation. This velocity dependent
tion force simulates the interaction of the system with
heat bath, and leads to the appearance of a chaotic a
tor. No dissipation is needed in another approach [6
based onopen Hamiltonian systemsof finite size, which
allows for escape of the particles from the system. T
escape models the coupling of the system to a par
reservoir. The ratek describing the escape is directly r
lated to the diffusion and drift coefficients [6,8] and oth
transport properties [9].

In closed thermostated systems a microscopic me
nism of entropy change was identified [4,5] with the co
traction rate of the flow in the phase space, i.e., with
sum of all average Lyapunov exponents. The entropy
defined as the phase-space average of2 ln %tsxd, where,
for any timet, the density%tsxd is the microscopic prob
ability to find the system around the phase-space poinx.
We will show that this concept of entropy change can
extended to open dynamical systems in a natural way
such cases particles are allowed to escape to the env
0031-9007y96y77(14)y2945(4)$10.00
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ment, but can never return to the system. By phase sp
we understand in the following the phase space associ
with the motioninsidethe system; i.e., we do not consid
the dynamics of the environment. The support of any d
sity in phase space is thenshrinkingdue to escape. As a
consequence, the escape ratek plays the same role in ope
Hamiltonian systems as the rate of phase-space con
tion in closed dissipative systems. Closed thermosta
and open Hamiltonian systems are two extremes; we s
also deal with intermediate cases: open invertible syst
subject to an external force and a thermostat.

We shall see below that the systems allow for revers
entropy currents into the environment. The change of
total entropy has a contribution due to this effect. T
other contribution reflects the contraction of the pha
space volume. This latter term is related to irreversi
entropy production caused by a finite resolution of a
observation of a physical system. The fractal structure
the underlying invariant chaotic set is connected in b
open and closed systems with the entropy production
the fact that it contains an infinite amount of informatio
on arbitrary fine scales which cannot be extracted thro
any observation.

First we define an entropy and work out its time deriv
tive. Letctsxd denote a general phase-space density wh
will be explicitly specified below. It undergoes some tim
evolution, and we normalizect by keeping its integral ove
the phase-space unity. We define thespecific entropy(i.e.,
entropy per particle)sstd at timet with respect toc as

sstd ­ 2
Z

ctsxd ln ctsxd dx . (1)

As time goes on, the support ofct splits into an increasing
number of strips in the phase space. In the course of
a volume element around a pointx is assumed to shrink
exponentially like expf2ssxdtg, wheressxd is a smooth
function of the coordinates. The normalized density th
increases like ct1dtsxd ­ expfssxd dtg ctsxd xt1dtsxd,
wherext1dt is the characteristic function of the support
© 1996 The American Physical Society 2945
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time t 1 dt. The entropysst 1 dtd at time t 1 dt can
be determined by inserting this into Eq. (1),

sst 1 dtd ­ 2 dt
Z

ssxdctsxdessxd dtxt1dtsxd dx

2
Z

ctsxd ln ctsxdessxd dtxt1dtsxd dx .

(2)

In both integrals the decrease of the support ofc is
counterbalanced by the factor expfssxd dtg such that the
first integral tends to the phase-space averages̄ of ssxd
and the second one to the specific entropysstd at time t.
Hence, it follows that

Ùs ­ 2s̄ . (3)

After a sufficiently long time,Ùs approaches a constan
namely, the average rate2s̄ of the phase-space contra
tion taken with respect to the densityc .

In closed dissipative systems with cyclic boundary c
ditions the entropy is defined with respect to the na
ral density% [4,5], i.e., c ­ % . Under time evolution
the dissipation causes the density to concentrate more
more around a chaotic attractor. Because of the boun
condition the chaotic attractor forms a complicated ma
fold on a torus, and transport is due to the motion alo
the unstable manifold of the attractor. After a sufficien
long time the density will concentrate in narrow ban
along the attractor, and the contraction rate is given
the sum of the local expansion rates (local Lyapunov
ponents, cf. [10]),z sxd ; 2

P
i lisxd; thus,s ­ z . The

averages have to be taken with respect to the natural
sity, and we recoverÙs ­

P
i l̄i : after a sufficiently long

time, the time derivative of the specific entropy is the s
of the average Lyapunov exponents on theattractor [5].
This sum is negative due to dissipation.

Turning now to open systems, we consider a bro
class of systems, calledhyperbolic,for which the escaping
process is exponential [10]. When an ensemble ofN0
particles is distributed initially in the whole phase spa
the number Nstd of particles still staying inside the
system after a sufficiently long timet decays asNstd ­
N0 exps2ktd, where the constantk is the escape rat
of the system. Particles escape from the phase s
along theunstable foliationof an invariant chaotic saddl
governing transport and diffusion in the system [6,
One can define theconditional density %̃tsxd at time t
to be the probability that a particle is aroundx under
the condition that it has not yet escaped from the syst
Thus,

R
%̃tsxd dx is constant. As time goes on, the dens

%̃tsxd concentrates more and more around the unst
manifold. In the limitt ! ` the density%̃tsxd approaches
a stationary distribution stabilized along the unstab
manifold, namely, theconditionally invariant measure
[11] of the open system.

In the spirit of these arguments it is natural to consi
the specific entropy for those particles thathave not yet
2946
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escapedby time t. To that end we define the entropys
in (1) with respect to the conditional density, i.e., wi
c ­ %̃ .

In open Hamiltoniansystems there is no phase-spa
contraction due to dissipation. The support of the con
tional density, however, shrinks because of the escap
particles through the open boundaries. Under time e
lution a typical initial density%̃0sxd concentrates in nar
row bands along the unstable manifold inside the ph
space: its support shrinks after a long timet by a fac-
tor exps2ktd, and the conditional density increases
expsktd. Consequently, the rates in Eq. (2) tends to
the escape ratek, and from the general relation (3) w
obtain Ùs ­ 2k. No phase-space average appears in
case sincek is independent of the coordinates. For lo
times, Ùs approaches a constant, which is nothing but
negative escape rate.

In open dissipativesystems, both mechanisms me
tioned above are present: phase-space contraction
escape. Because of the latter, the natural density d
not remain normalized. Therefore, we have to consi
again the specific entropy taken with respect to the c
ditional density: c ­ %̃ . Thus, the phase-space co
traction consists of two terms: a contraction with ra
z sxd ; 2

P
i lisxd due to dissipation, and an addition

term with ratek due to normalizing%̃ in order to com-
pensate escape. The asymptotic mean contraction ra
thuss̄ ­ z̄ 1 k. Accordingly, Eq. (3) implies that

Ùs ­
X

i

l̄i 2 k . (4)

Here, the l̄i denote the average Lyapunov expone
on the chaotic saddle. They have to be computed b
means of the conditionally invariant measure [11,1
The equation can be shown to be valid for discre
time dynamical systems (i.e., mappings), too, with
quantities measured in the time units of the map.

Equation (4) is our central result. We find two mech
nisms changing the specific entropy: dissipation and
cape. In both closed and open dynamical systems
decrease of the specific entropy is due to the fact
during time evolution the particles staying inside the s
tem become more and more localized along the unst
manifold.

In order to connect the decrease of specific entropy w
more conventional concepts, let us consider the entr
Sstd of all the particles staying in the phase space:Sstd ­
Nstdsstd wheresstd is taken with respect to the condition
density, andNstd ­ N0 exps2ktd. For simplicity, we
assume that the rate of contraction of phase-space vol
is constant, and that the initial distributioñ%0 ; 1 in the
phase space. Then, the conditional density increase
time as %̃t ­ 1yGstd where Gstd ­ expsstd and s ­
k 2

P
i l̄i. Consequently,Sstd ­ Nstd ln Gstd, and we
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of
can write the time derivative of the total entropy as

ÙS ­
≠S
≠N

ÙN 1
≠S
≠G

ÙG ­ 2kS 2 sN . (5)

The first term,2kS, corresponds to the entropy flow o
of the system due to escape. The more interesting se
term is due to the contraction of phase-space volume.
time derivative of the specific entropydsSyNdydt ; Ùs ­
2s contains only this contribution.

We now discussirreversible entropy production tha
arises by taking into consideration the effect of coa
graining. There is always a smallest scale of resolu
e ø 1 for the observer. Let us define a coarse grain
specific entropyscgstd with the conditional density washe
out on a grid of resolutione. When starting with a smoot
initial distribution, this coarse grained entropy will initiall
coincide with s (up to an error of ordere). Sooner or
later, however, the fine filamentation of the support of
phase-space density reaches the resolution scale.
this time on,scgstd will be nearly constant; in the limi
t ! ` it tends to a stationary value which is determin
by the coarse grained conditionally invariant measu
On the other hand,sstd continues to decrease linearly
time [cf. Eq. (4)]. Thus,scgstd 2 sstd is a measure o
the lack of information caused by the unavoidable fin
resolution. Its change in time can be considered to
the irreversible specific entropy productionÙsirr . Since the
coarse grained entropyscg becomes stationary for larget,
Ùsirr tends towards2Ùs, and fort ! `

Ùsirr ­ 2Ùs ­ s̄ ­ 2
X

i

l̄i 1 k . 0 . (6)

The sources of irreversible entropy given in Eq. (6)
additive. They correspond to the contact with differe
types of surroundings: the term2

P
i l̄i is due to the inter-

action with a heat bath, whilek is due to the coupling
with a particle reservoir. In order to see the consiste
of Eq. (6) with classical results, we mention that f
one-particle open Hamiltonian systems of linear sizeL
compatible with a Fokker-Planck description, the esc
rate is [8] k ­ j2ys2Dd 1 OsL22d. Here, j is the
particle current andD the diffusion coefficient. Thus, fo
large systems,Ùsirr ­ j2ys2Dd in accordance with linea
irreversible thermodynamics [1].

An important consequence of the concepts expo
above is that different single-particle microscopic pictu
(closed and dissipative, open and Hamiltonian, or o
and dissipative) used to model relaxation mechanisms
a given physical situation might lead to identical transp
(e.g., diffusion) coefficients. The condition for this is th
at a fixed current, the irreversible entropy production
particle

k 2
X

i

l̄i ­ const (7)

is the same in the large system limit. We shall see be
that these models also share certain fractal properties
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The irreversible specific entropy productionÙs is also
related to the Kolmogorov-Sinai (KS) entropyhKS [10].
The latter can be expressed in invertible systems by m
of the chaotic saddle’s characteristics [12]

hKS ­
X

li.0

l̄iD
sid
1 ­ 2

X
li,0

l̄iD
sid
1

­
X

li.0

l̄i 2 k , (8)

where D
sid
1 stands for the partial information dimensio

of the saddle along directioni (note that the sum o
the partial information dimensions yields the informati
dimension of the saddle:

P
i D

sid
1 ­ D1). Inserting Eq. (8)

into Eq. (6) one obtains

Ùs ­
X

li,0

l̄i 1 hKS . (9)

This formula, too, is valid forboth Hamiltonian and
dissipative systems. The first term is the decrease
the entropy due to the convergence towards the invar
set, the second is the increase of the entropy due to
chaos of the dynamics. Because the negative Lyapu
exponents are typically of the order of unity in modulu
the formula also means that aweak entropy production
typically requires the dynamics of the subsystem to
stronglychaotic:hKS should be of the same order as t
sum of the negative Lyapunov exponents. The gen
expressions (8) imply that the irreversible specific entro
production2Ùs is the escape rate of the time reverse
dynamics.

We turn now to the question of how the fract
properties of the unstable manifold of the underlyi
invariant sets are connected with the specific entr
production. To this end, we consider a single parti
dynamics with a three-dimensional phase space. O
Poincaré map, i.e., on a plane transverse to the fl
the chaotic saddle is the direct product of two Can
sets with partial dimensions [10,12]D

sud
1 ­ 1 2 kyl̄1

and D
ssd
1 ­ 2D

sud
1 l̄1yl̄2, along the unstable and stab

directions, respectively;̄l1 . 0 and l̄2 , 0 are the two
average Lyapunov exponents of the map on the cha
saddle. The unstable manifold is the direct product
the Cantor set along the stable direction and a line [1
Given that in the flow the invariant manifolds have
additional smooth direction, the information dimension
the full unstable manifold can be expressed as

D1 ­ 2 1 D
ssd
1 ­ 3 2

k 2 sl̄1 1 l̄2d
jl̄2j

. (10)

Note that the numerator of the quantity subtracted from3
is just the irreversible entropy production, i.e.,

D1 ­ 3 2 jÙsjyjl̄2j ø 3 2 jÙsjyl̄1,0 , (11)
2947
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where l̄1,0 is the positive Lyapunov exponent in th
closed Hamiltonian system limit. The approximate equ
ity holds if the entropy production is small relative tojl̄2j,
i.e., if the system is sufficiently close to thermal equil
rium and thereforejl̄2j can be replaced byjl̄2,0j ­ l1,0.
Rearranging Eq. (11) we obtain

jÙsj ­ s1 2 D
ssd
1 d jl̄2j ø s1 2 D

ssd
1 d l̄1,0 . (12)

This states that the irreversible specific entropy produc
is proportional to the deviation from unity of the parti
information dimension of the stable manifold.

In conclusion, we have shown how the concept of
tropy production can be understood in the framework
open dynamical systems. Since the present approach
not make use of the concept of temperature, it avo
problems which might arise in a single-particle pictu
(cf. [5]). It unifies previous approaches based on
escape-rate formalism and on thermostated systems
an external thermostat. The essential effect leading to
tropy production is the contraction of the phase-space
ume in an ever refining fractal manner. We pointed
that the specific entropy defined with respect to the co
tional density in the phase space is an appropriate too
characterizing the increase of information connected w
this effect. Because of a finite resolution, the refinem
of the phase-space structure cannot be followed fore
Using the convergence of the coarse grained densit
a stationary one, we showed that in dynamical syste
the irreversible entropy production caused by the lack
information due to coarse graining is given by the diff
ence of two terms: the escape rate from the system, w
characterizes the contact with a particle reservoir, and
sum of all average Lyapunov exponents, which meas
the strength of dissipation.

We close with a remark concerning the relation w
stationary nonequilibrium ensembles recently propo
for thermostated systems [14–17]. They provide a b
for solving the so-called paradox of irreversibility. Th
present connection between the thermostated approac
closed systems and the Hamiltonian approach for o
systems based on the concept of conditional density
tributes to establish a class of stationary nonequilibri
ensembles for Hamiltonian systems. The latter can
considered as an ensemble with constant energy in co
with a particle reservoir, while the thermostated appro
[17] is the analog of the canonical ensemble.

Illuminating discussions with E. G. D. Cohen, J.
Dorfmann, P. Gaspard, W. G. Hoover, P. Grassber
G. P. Morriss, P. Reimann, L. Rondoni, K. G. Szabó, a
H. Thomas are gratefully acknowledged. Special tha
are due to H. van Beijeren for calling our attention
the importance of entropy production. This work w
supported by the Swiss National Science Foundat
the Deutsche Forschungsgemeinschaft, and the Hung
Science Foundation (under No. T17166 and No. T174
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Note added.—After submitting this paper, we becam
aware of independent work of Ruelle [18] who rigorous
proves that for axiom A systems the contraction of pha
space volume is given by the right-hand side of Eq. (
However, he does not discuss the role of coarse grain
to identify its relation to irreversible entropy production
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