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The concept of the conditional probability density is used to define a specific entropy for open
dynamical systems exhibiting transient chaos. The production of entropy turns out to be proportional
to the difference of the escape rate and the sum of all averaged Lyapunov exponents on the saddle
governing the dynamics. The single-particle transport properties do not depend on the microscopic
details provided the dynamical systems produce the same entropy. The dimension of the unstable
foliation of the saddle is shown to be identical in all microscopic single-particle models of the same
transport process. [S0031-9007(96)01271-9]
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Irreversible entropy production is a key concept inment, but can never return to the system. By phase space
nonequilibrium thermodynamics [1]. Being the productwe understand in the following the phase space associated
of the generalized forces and the canonically conjugatedith the motioninsidethe system; i.e., we do not consider
fluxes, it is a measure of the decay to thermal equilibriumthe dynamics of the environment. The support of any den-
In the regime of small perturbations the fluxes are lineasity in phase space is thesirinkingdue to escape. As a
functions of the forces, and the entropy production isconsequence, the escape raglays the same role in open
weak. In the case of electric conductivity, for instance,Hamiltonian systems as the rate of phase-space contrac-
the entropy production is proportional to the Joule heattion in closed dissipative systems. Closed thermostated
i.e., to field strength times current intensity. and open Hamiltonian systems are two extremes; we shall

Recent investigations have shown that transport proalso deal with intermediate cases: open invertible systems
cesses can be understood irsiagle-particlepicture by  subject to an external force and a thermostat.
means of low-dimensionahaoticdynamics [2—9]. This We shall see below that the systems allow for reversible
also raises the question of how to define entropy producentropy currents into the environment. The change of the
tion for classical chaotic dynamical systems. total entropy has a contribution due to this effect. The

One type of approach to chaotic transport [2—5] isother contribution reflects the contraction of the phase-
working with closed system#n an external field con- space volume. This latter term is related to irreversible
strained by periodic boundary conditions. An increaseentropy production caused by a finite resolution of any
of the kinetic energy of the particle is compensated byobservation of a physical system. The fractal structure of
introducing dissipation (a “Gaussian thermostat” [2]) to the underlying invariant chaotic set is connected in both
ensure energy conservation. This velocity dependent fricopen and closed systems with the entropy production by
tion force simulates the interaction of the system with ahe fact that it contains an infinite amount of information
heat bath, and leads to the appearance of a chaotic attram arbitrary fine scales which cannot be extracted through
tor. No dissipation is needed in another approach [6—9&ny observation.
based ormopen Hamiltonian systentdf finite size, which First we define an entropy and work out its time deriva-
allows for escape of the particles from the system. Thdive. Lety,(x) denote a general phase-space density which
escape models the coupling of the system to a particlevill be explicitly specified below. It undergoes some time
reservoir. The rat& describing the escape is directly re- evolution, and we normaliz¢, by keeping its integral over
lated to the diffusion and drift coefficients [6,8] and otherthe phase-space unity. We define #pecific entropyi.e.,

transport properties [9]. entropy per particlej(r) at timer with respect tay as
In closed thermostated systems a microscopic mecha-
nism of entropy change was identified [4,5] with the con- s(t) = —f Yi(x)In, (x) dx . 1)

traction rate of the flow in the phase space, i.e., with the

sum of all average Lyapunov exponents. The entropy was time goes on, the support ¢f splits into an increasing
defined as the phase-space average of o;(x), where, number of strips in the phase space. In the course of this,
for any timer, the densityp,(x) is the microscopic prob- a volume element around a pointis assumed to shrink
ability to find the system around the phase-space paint exponentially like exp—o(x)t], whereo(x) is a smooth
We will show that this concept of entropy change can bdunction of the coordinates. The normalized density then
extended to open dynamical systems in a natural way. lincreases like ¢;14/(x) = exdo(x)dt] ¥, (x) xr+ar(x),
such cases particles are allowed to escape to the enviromherey, 4, is the characteristic function of the support at
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time ¢+ + dr. The entropys(r + dr) at timet + dt can  escapedby time¢. To that end we define the entropy

be determined by inserting this into Eq. (1), in (1) with respect to the conditional density, i.e., with
ol = 0.
st +dt) = — dt[ T () (0)e 7 x4y (x) dx In open Hamiltoniansystems there is no phase-space
contraction due to dissipation. The support of the condi-
- f G (0) I g ()T D () dx tional density, however, shrinks because of the escape of
particles through the open boundaries. Under time evo-

(2) lution a typical initial densityd,(x) concentrates in nar-

row bands along the unstable manifold inside the phase

space: its support shrinks after a long timédy a fac-

tor exg—«t), and the conditional density increases as

exp(kt). Consequently, the rate in Eq. (2) tends to

the escape rate, and from the general relation (3) we

. obtains = —«. No phase-space average appears in this

§=—0. (3)  case sincex is independent of the coordinates. For long

After a sufficiently long time,s approaches a constant, times, s approaches a constant, which is nothing but the

namely, the average rateg of the phase-space contrac- negative escape rate.

tion taken with respect to the densify In open dissipativesystems, both mechanisms men-
In closed dissipative systems with cyclic boundary contioned above are present: phase-space contraction and

ditions the entropy is defined with respect to the natuescape. Because of the latter, the natural density does

ral densityp [4,5], i.e., ¥y = ¢. Under time evolution not remain normalized. Therefore, we have to consider

the dissipation causes the density to concentrate more amgain the specific entropy taken with respect to the con-

more around a chaotic attractor. Because of the boundaditional density: ¢y = ¢. Thus, the phase-space con-

condition the chaotic attractor forms a complicated manitraction consists of two terms: a contraction with rate

fold on a torus, and transport is due to the motion along’(x) = —>; A;(x) due to dissipation, and an additional

the unstable manifold of the attractor. After a sufficientlyterm with ratex due to normalizingd in order to com-

long time the density will concentrate in narrow bandspensate escape. The asymptotic mean contraction rate is

along the attractor, and the contraction rate is given byhuséd = / + «. Accordingly, Eq. (3) implies that

the sum of the local expansion rates (local Lyapunov ex-

ponents, cf. [10]){(x) = — >, A;(x); thus,o = £. The B

averages have to be taken with respect to the natural den- 5= X — k. (4)

sity, and we recovef = Y ; A;: after a sufficiently long i

time, the time derivative of the specific entropy is the sum

of the average Lyapunov exponents on #tgactor [5]. Here, the A; denote the average Lyapunov exponents

This sum is negative due to dissipation. on the chaotic saddle. They have to be computed by
Turning now to open systems, we consider a broadneans of the conditionally invariant measure [11,12].

class of systems, calldd/perbolic,for which the escaping The equation can be shown to be valid for discrete-

process is exponential [10]. When an ensembleVpf time dynamical systems (i.e., mappings), too, with all

particles is distributed initially in the whole phase spaceguantities measured in the time units of the map.

the numberN(z) of particles still staying inside the Equation (4) is our central result. We find two mecha-

system after a sufficiently long timedecays asv(r) =  nisms changing the specific entropy: dissipation and es-

No exp(—«t), where the constank is the escape rate cape. In both closed and open dynamical systems the

of the system. Particles escape from the phase spadecrease of the specific entropy is due to the fact that

along theunstable foliationof an invariant chaotic saddle during time evolution the particles staying inside the sys-

governing transport and diffusion in the system [6,8].tem become more and more localized along the unstable

One can define theonditional density ¢,(x) at time ¢ manifold.

to be the probability that a particle is aroundunder In order to connect the decrease of specific entropy with

the condition that it has not yet escaped from the systenmore conventional concepts, let us consider the entropy

Thus, [ 8,(x) dx is constant. As time goes on, the density S(z) of all the particles staying in the phase spage) =

0,(x) concentrates more and more around the unstabl¥ (r)s(r) wheres(z) is taken with respect to the conditional

manifold. In the limitzr — o the densityd,(x) approaches density, andN(r) = Noexp(—«t). For simplicity, we

a stationary distribution stabilized along the unstable assume that the rate of contraction of phase-space volume

manifold, namely, theconditionally invariant measure is constant, and that the initial distributi@gn = 1 in the

[11] of the open system. phase space. Then, the conditional density increases in
In the spirit of these arguments it is natural to considetime as 9, = 1/I'(r) where I'(r) = explot) and o =

the specific entropy for those particles thtve not yet « — > ; A;. ConsequentlyS(r) = N(t)InT'(¢), and we

In both integrals the decrease of the supportyofis
counterbalanced by the factor ¢xfix) d¢] such that the
first integral tends to the phase-space averagef o (x)
and the second one to the specific entrefy at time:.
Hence, it follows that
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can write the time derivative of the total entropy as The irreversible specific entropy productignis also
. S - aS - related to the Kolmogorov-Sinai (KS) entroixks [10].
S = mN + ol I'=—-k§ —oN. (®)  The latter can be expressed in invertible systems by means

The first term,— xS, corresponds to the entropy flow out Of the chaotic saddle’s characteristics [12]
of the system due to escape. The more interesting second

term is due to the contraction of phase-space volume. The hgs = Z X,-DE’) = — Z /_\,DY)

time derivative of the specific entropy(S/N)/dt = s = Ai>0 Ai<0

—o contains only this contribution. _ Z % — ®)
We now discussdrreversible entropy production that =0 ! ’

arises by taking into consideration the effect of coarse
graining. There is always a smallest scale of resolution
€ < 1 for the observer. Let us define a coarse graine
specific entropy.. (1) with the conditional density washed
out on a grid of resolutioa. When starting with a smooth
initial distribution, this coarse grained entropy will initially
coincide withs (up to an error of ordeg). Sooner or
later, however, the fine filamentation of the support of the _

phase-space density reaches the resolution scale. From 5= Z Ai + hs. 9)

this time on, s, (r) will be nearly constant; in the limit Ai<0

t — o it tends to a stationary value which is determinedrys formula, too, is valid forboth Hamiltonian and

by the coarse grained conditionally invariant measuregjssipative systems. The first term is the decrease of
On the other hands(s) continues to decrease linearly in {he entropy due to the convergence towards the invariant
time [cf. Eq. (4)]. Thus,se.(1) — s(z) is a measure of get the second is the increase of the entropy due to the
the Iac_k of information qauged by the unavo_ldable finittchaos of the dynamics. Because the negative Lyapunov
resolution. Its change in time can be considered to bgyponents are typically of the order of unity in modulus,
the |rrever§|ble specific entropy producltlolt;}. Sincethe  ihe formula also means thatveeak entropy production
coarse grained entropy, becomes stationary for large  ypically requires the dynamics of the subsystem to be
sir tends towards-s, and fors — o strongly chaotic: ixs should be of the same order as the
sum of the negative Lyapunov exponents. The general
expressions (8) imply that the irreversible specific entropy
roduction —s is the escape rate of the time reversed
ynamics.

We turn now to the question of how the fractal
properties of the unstable manifold of the underlying
invariant sets are connected with the specific entropy
)broduction. To this end, we consider a single particle
dynamics with a three-dimensional phase space. On a
Poincaré map, i.e., on a plane transverse to the flow,
fhe chaotic saddle is the direct product of two Cantor

hereDY) stands for the partial information dimension
f the saddle along direction (note that the sum of
the partial information dimensions yields the information
dimension of the saddIg:; Df') = D;). Inserting Eqg. (8)
into Eqg. (6) one obtains

Sim=—§=a=- A +x>0. (6)

The sources of irreversible entropy given in Eq. (6) areg
additive. They correspond to the contact with different
types of surroundings: the term)_; A; is due to the inter-
action with a heat bath, while is due to the coupling
with a particle reservoir. In order to see the consistenc
of Eq. (6) with classical results, we mention that for
one-particle open Hamiltonian systems of linear size
compatible with azFokker-PIanckzdescription, the escap
rate is [8] k = j*/(2D) + O(L™*). Here, j is the . . . . () -
particle current and the diffusion coefficient. Thus, for sets V\(’Sh parU%tI)_dlm_ensmns [10.12p," =1 = /M
large systems§i, = j2/(2D) in accordance with linear and Di” = —Dji A1/), along the unstable and stable
irreversible thermodynamics [1]. directions, respectivelyA; > 0 and A, < 0 are the two _

An important consequence of the concepts exposedverage Lyapunov exponents of the map on the chaotic
above is that different single-particle microscopic picturessaddle. The unstable manifold is the direct product of
(closed and dissipative, open and Hamiltonian, or ope#he Cantor set along the stable direction and a line [13].
and dissipative) used to model relaxation mechanisms fdeiven that in the flow the invariant manifolds have an
a given physical situation might lead to identical transponaddltlonal smooth dlr_ectlon, the information dimension of
(e.g., diffusion) coefficients. The condition for this is that, the full unstable manifold can be expressed as

at a fixed current, the irreversible entropy production per — (X b
: (s) kK — (A + X))
particle D=2+ D{ =3~ Tl (10)
K = z Ai = const (7)  Note that the numerator of the quantity subtracted ffom

_ _ o is just the irreversible entropy production, i.e.,
is the same in the large system limit. We shall see below

that these models also share certain fractal properties. Dy =3 — [s]/Ix] = 3 = [sl/Aw0, (11)
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where A is the positive Lyapunov exponent in the Note added—After submitting this paper, we became
closed Hamiltonian system limit. The approximate equal-aware of independent work of Ruelle [18] who rigorously
ity holds if the entropy production is small relative|ty|,  proves that for axiom A systems the contraction of phase-
i.e., if the system is sufficiently close to thermal equilib- space volume is given by the right-hand side of Eq. (4).
rium and thereforé),| can be replaced bjA,o| = A19.  However, he does not discuss the role of coarse graining
Rearranging Eg. (11) we obtain to identify its relation to irreversible entropy production.

il =1 - D)Xl = (1 = D) Ay,  (12)
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