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Numerical computations of Lyapunov exponents for a class of three- and four-dimensional billiar
whose boundary consists of flat and spherical components illustrate that such billiards are chaotic du
a defocusing mechanism similar to the one which produces chaos in two-dimensional billiards (e.g.
the stadium). These results demonstrate that recently established rigorous results or higher dimens
defocusing billiards are valid under substantially weaker assumptions. [S0031-9007(96)01233-1]
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In spite of their somewhat unphysical nature, billiar
occupy a central position in the physics of dynami
systems. They provide clean mathematical models for
identification of dynamical properties leading to classi
chaos; moreover, their quantization yields an ideal tes
ground for the semiclassical analysis of quantum syst
which have a chaotic classical limit. Their importance
this connection is further enhanced by the possibility
concrete experiments on microwave resonators [1] an
quantum dots [2].

Up to recent times, much attention has been devo
to two-dimensional billiards. In particular, the “stadium
billiard has been extensively used as a paradigm of c
sical chaos. Chaos arises in the stadium due to a me
nism of defocusing, which was discovered more than
years ago [3,4] and was later shown to work also
geodesic flows [5,6]. It is now known [7] that only tw
mechanisms can generate chaos in Hamiltonian syst
one is dispersion, which works in dispersing billiards
well as in geodesic flows on manifolds of negative c
vature, and the other is defocusing, which works in
cusing billiards as well as in some geodesic flows
surfaces of non-negative curvature. These two mec
nisms enforce local exponential divergence of trajector
which in turn generates a global chaotic behavior. T
dispersing mechanism ensures permanent divergenc
nearby trajectories; the mechanism of defocusing is ba
on strong focusing, which occurs upon a reflection. T
beam of rays becomes strongly focused, and, after a s
time, passes through a conjugate focusing point. If the
path is long enough, then such a beam becomes diver
and the time during which nearby rays diverge is, on
average, longer than the time during which they conve
This leads to local exponential instability, and to nonva
ishing Lyapunov exponents. If these two mechanisms
coexist in some dynamical system, then the global beh
ior can be completely chaotic (mixing [3]) but islands
stability can also exist [8]. Rather than enhancing e
other, the two mechanisms, when they coexist in the s
system, tend to inhibit each other [3,8], and this shows
0031-9007y96y77(14)y2941(4)$10.00
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they are intrinsically different. Whereas the mechanism
dispersion is known to work in dynamical systems of a
dimension [9–12], until recently the mechanism of de
cusing had only been proven to work in dimension tw
An important problem was therefore whether or not d
focusing can produce chaos also in a higher dimensio
system. In simple words, the question is whether a 3D a
log of the stadium billiard exists. In Ref. [13] a focusin
“barrel” billiard was studied, which was shown to posse
a mixed phase space, with stable and chaotic regions
Ref. [14] the construction of higher dimensional chao
focusing billiards was outlined; recently, these ideas w
turned into proofs for a class of three-dimensional billiar
The purpose of this paper is to demonstrate the comp
chaoticity of the corresponding class of nowhere dispe
ing billiards in dimensions higher than two, and to sho
that the geometrical conditions imposed in [15] are inde
too restrictive, as it was surmised in that paper.

We consider billiards in a regionQ, whose boundary≠Q
consists of flat and of spherical components. Each sph
cal component (spherical cap)S of the boundary is charac
terized by its (internal) anglevsSd and by the radiusRsSd,
wherevsSd is the maximum angle under which two poin
of the cap are seen from the center of the sphere con
ing the cap; the angle2p corresponds to the entire spher
Suppose that some billiard trajectory has a sequenc
consecutive reflections from a spherical capS, and let these
reflections occur at the pointsq1, q2, . . . , qn [ S. Then
all these points together with the center of the sphere c
tainingS belong to the same two-dimensional plane. T
dynamics in this plane is analogous to the one in a tw
dimensional chaotic focusing billiard. The new feature
the dynamics in the planes that are orthogonal to this o
The dynamics in these “transversal” planes is essenti
different: in particular, the focusing in transversal plan
is much weaker than in the plane that contains the po
of consecutive reflections from a spherical cap. Wher
in dispersing billiards trajectories diverge in all directio
after each reflection, in focusing billiards divergence o
curs only in a two-dimensional plane; this indicates th
© 1996 The American Physical Society 2941
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chaos in higher dimensional focusing billiards is weak
than in dispersing ones. In order to get nonzero Lyapun
exponents, infinitesimal surface elements normal to b
liard trajectories must expand as the trajectories appro
spherical caps; moreover, the curvatures of all their two
mensional sections must be sufficiently small. Exact co
ditions for this have been given in terms ofessential free
path [15]. Such a path is defined as any segment o
billiard trajectory, with reflection pointsP1, . . . Pn, such
that the following conditions are satisfied: (1) The poin
P1, Pn belong to spherical caps (not necessarily differen
(2) If n . 2, all the intermediate pointsP2, . . . , Pn21 be-
long to the flat components. (3) Ifn ­ 2, thenP1, P2 be-
long to different spherical caps.

Hence an essential free path contains either reflecti
from different spherical caps, or reflections from th
same spherical cap together with at least one intermed
reflection from some other components of≠Q. The
following theorem was proven in [15].

Theorem: Suppose that the internal angles of a
spherical caps do not exceedpy2. Then there exists
L ­ LsQd such that, if the length of every essential fre
path is larger thanL, the billiard in Q has nonvanishing
Lyapunov exponents in a subset of full measure
phase space.

It has been mentioned in [15] that this theorem shou
be true under milder conditions. However, it does n
seem that simple geometrical conditions can ensure n
vanishing Lyapunov exponents in regions with larg
spherical caps [16].

In this paper we numerically demonstrate the existen
of chaos in such regions. To this end we have conside
two continuous families of regions, with boundaries co
sisting of flat components and of spherical caps, which w
be described below. For billiards in each family we ha
numerically computed Lyapunov exponents, by means
the following standard technique. Letz denote a point in
six-dimensional phase space, and letFtszd be the image
of z under the billiard dynamics after the timet1. Let
zi si ­ 1, 2, . . .d be the phase-space point immediately a
ter theith collision with the boundary,ti the time of free
flight between theith and thesi 1 1dth collision, andTi ­Pi21

0 tk the time at which theith collision occurs. The
tangent mapDz1 FT1

i
can be factorized as

Qi
1 Tj , where

Tj ­ Dzj
Ft1

j
. The linear mapsTi can be explicitly writ-

ten in the form of Jacobian matrices as soon aszi , zi11, ti

are known. The form of the matrices depends on whet
thesi 1 1dth collision takes place on a flat or on a spheric
part of≠Q. In the former case, lettingxj , yj sj ­ 1, 2, 3d,
the position and velocity coordinates ofzi , andXj , Vj those
of zi11, the matrix elements ofTi are

≠Xj

≠xk
­ djk 2 2njnk ,

≠Xj

≠yk
­ ti

≠Xj

≠xk
,

≠Vj

≠xk
­ 0,

≠Vj

≠yk
­

≠Xj

≠xk
1 ti

≠Vj

≠xk
,
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where nj are components of the unit (inward) norm
vector to ≠Q at the si 1 1dth collision point. If the
collision occurs on a spherical component, of radiusr,
the3D equation must be changed to

≠Vj

≠xk
­

2
r

syndjk 1 njyk 2 nkyj 2 njnkd ,

whereyn is the normal component of velocity; the four
equation changes accordingly. By numerically comp
ing one billiard orbit, one can find the tangent map
all collision times by numerically computing a produ
of Jacobian matrices of rank 6. On applying the ta
gent map thus determined to a triple of orthonorm
tangent vectors, and using the well-known method of
termediate orthonormalizations [17], one is able to co
pute all three non-negative Lyapunov exponents in r
physical time. One of these, which correspond to infi
tesimal displacements along the trajectory, must van
its numerical value of,1023 after 10 000 collisions pro-
vides a lower bound for the numerical error involved
our computations.

The first family of billiards is defined in regionsQr ­
K > Sr , whereK is a fixed cube with edges of lengt
2 and centerO, andSr is a sphere of radiusr and with
the same centerO. The radiusr of the sphere is the
parameter of the family. For0 , r , 1, Qr ­ Sr , while,
for r .

p
3, Qr ­ K . These extreme cases correspond

integrable billiards. In between these extreme cases,
regionQr looks like a “fair die” and is depicted in Fig. 1
for the intermediate ranges of parameters1 , r ,

p
2

and
p

2 , r ,
p

3. In the case of Fig. 1(a) the billiard
has no “caps,” because the spherical part of the boun
consists of one connected component.

In both cases 1(a) and 1(b) typical 3D trajectorie
which get reflected from the flat as well as from t
spherical parts of the boundary, have two posit
Lyapunov exponentsl1, l2 sl1 . l2d, the dependence
of which on the radiusr is shown in Fig. 2. For every
different value of the radius, a single trajectory was us
in the computation, starting from the same point inQr ,
but with a different, randomly chosen velocity of modul
1. The exponents shown in Fig. 2 correspond to 10 0
collisions. At r ­ 1.2, exponentsl1, l2 computed after
40 collisions lie within 0.01, 0.03, respectively, of the
final values. At r ­ 1.5, stabilization within 0.015
of the final value is achieved after 250 collisions, f
both exponents.

On computing the Lyapunov exponents on a sam
of 102 randomly chosen trajectories, at fixedr, a rms
statistical dispersion was found, ranging from4 3 1023

to 8 3 1023; the latter value is attained close to th
integrable limits, where long integrable segments app
in a typical orbit.

Besides truly 3D orbits, also “planar” trajectories exi
which are bound to fixed planes and are therefore ident
to trajectories of some 2D billiard. Such orbits ha
a different type of stability than discussed above. F
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FIG. 1. The family of 3D “dice” billiards: (a)1 , r ,
p

2;
(b)

p
2 , r ,

p
3.

1 , r ,
p

3y2 planes exist through the centerO, which
do not intersect any of the flat components. Trajecto
which start in such a plane are bound to it forever, a
are, in fact, trajectories in a circular billiard. They a
linearly stable (all Lyapunov exponents vanish). Su
orbits occupy an invariant region of phase space, wh
has a positive (normalized) measure which decreases
1 at r ­ 1 to 0 at r ­

p
3y2. The existence of this

stable region makes the billiard a nonergodic one in
corresponding parameter range.

Other planar trajectories are bound to planes wh
contain one of the orthogonal symmetry axes of the cu
These planes can be of two types: (i) those which hav
normal intersection with two of the flat components, a
no intersection at all with the other flat components, a
(ii) those which actually contain two orthogonal symme
axes. Planar trajectories of type (i) only exist in 1(a)
case 1(b) they are singular, because they hit the e
of the cube], and are trajectories of a 2D billiard of t
stadium type. They make a set of measure 0, and h
only one positive exponent. Planar trajectories of ty
(ii) also have 0 measure; for1 , r ,

p
2 they have two
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e
h
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FIG. 2. Lyapunov exponentsl1, l2 for 3D orbits in 3D dice
billiards versus the radiusr of the sphere.

nonvanishing exponents that can be significantly lar
than the exponents of generic orbits; e.g., atr ­ 1.1 we
found l1 ø 0.3, to be compared with the valuel1 ø
0.2 for generic orbits. Atr .

p
2 type (ii) trajectories

become trajectories in a square 2D billiard, and
linearly stable.

Our results show that invariant hyperbolic subsets
pear in high dimensional focusing billiards under mu
milder conditions than were imposed in the above th
rem. The case of “fair dice” demonstrates that it mig
be sufficient that the essential free path should be not
than a corresponding chord of the sphere that cont
the spherical cap in the boundary. It is easy to see
this condition is always a necessary one; indeed, a pe
two trajectory that is perpendicular to two spherical ca
is linearly stable if its length is less than the diameter
these spheres.

The family of “dice” billiards has an analog in an
number of dimensions. Results for the Lyapunov ex
nentsl1, l2, l3 of a 4D die, versus the radiusr of the
sphere, show a behavior qualitatively similar to the
case (Fig. 3). The “cubic” limit is now attained atr ­ 2.
The points closest tor ­ 1 have apparently fallen into th
stable region.

The second series of our numerical experiments has
goal to check how big a spherical cap in a chaotic foc
ing billiard can be. Billiards are now defined in regio
Qz ­ K < Sz , whereK is the same cube as before, a
Sz is a sphere of constant radius 0.5, with center on
vertical line through the centerO, at a distancez , 1.5
from O. If 0 , z , 0.5 one gets the billiard in the cub
K . If 0.5 , z , 1.5 the billiard region is a “dome,” tha
2943
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FIG. 3. Lyapunov exponentsl1, l2, l3 for 4D orbits in 4D
dice billiards versus the radiusr of the sphere.

is, a cube with a spherical cap on the top. In the c
1y2 , z , 1 2 1y2

p
2 the internal angle of the spher

cal cap is less thanpy2; this case was considered in [15

FIG. 4. Lyapunov exponentsl1, l2 for the “dome” billiards
versus the coordinatez of the center of sphere.
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However, in the whole region1y2 , z , 3y2 we have
found two positive Lyapunov exponents,l1 . l2 . 0 as
shown in Fig. 4. The rms dispersion over an ensemb
of 100 different trajectories was in this case,2 3 1022.
Stabilization of numerical Lyapunov exponents for singl
trajectories within 0.03 of their final values typically re
quires,1000 collisions atz ­ 0.75.

“Planar” trajectories, which lie in fixed planes through
the center of the cube, parallel to two faces, also displ
two positive exponents, typically larger than the expo
nents of generic orbits; atz ­ 0.85 the maximal exponent
of such an orbit isl1 ø 0.25. It is worth mentioning that
the shortest unstable periodic orbit, bouncing along t
vertical axis between the cap and the opposite face of
cube, has still larger, practically coincident positive expo
nents (ø0.6 at z ­ 0.8).

Therefore our analysis revealed that the mechanism
defocusing may generate a chaotic behavior in billiar
under rather mild conditions. More precisely, spheric
regions of the boundary can be arbitrarily large (that i
≠Q can be arbitrarily close to a sphere), and essential fr
paths can be bounded from below just by the length of t
corresponding spherical cord.
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