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Numerical computations of Lyapunov exponents for a class of three- and four-dimensional billiards
whose boundary consists of flat and spherical components illustrate that such billiards are chaotic due to
a defocusing mechanism similar to the one which produces chaos in two-dimensional billiards (e.g., in
the stadium). These results demonstrate that recently established rigorous results or higher dimensional
defocusing billiards are valid under substantially weaker assumptions. [S0031-9007(96)01233-1]

PACS numbers: 05.45.+b, 05.20.-y

In spite of their somewhat unphysical nature, billiardsthey are intrinsically different. Whereas the mechanism of
occupy a central position in the physics of dynamicaldispersion is known to work in dynamical systems of any
systems. They provide clean mathematical models for thdimension [9—12], until recently the mechanism of defo-
identification of dynamical properties leading to classicalcusing had only been proven to work in dimension two.
chaos; moreover, their quantization yields an ideal testing\n important problem was therefore whether or not de-
ground for the semiclassical analysis of quantum systemf®cusing can produce chaos also in a higher dimensional
which have a chaotic classical limit. Their importance insystem. In simple words, the question is whether a 3D ana-
this connection is further enhanced by the possibility oflog of the stadium billiard exists. In Ref. [13] a focusing
concrete experiments on microwave resonators [1] and ofbarrel” billiard was studied, which was shown to possess
quantum dots [2]. a mixed phase space, with stable and chaotic regions. In

Up to recent times, much attention has been devoteRef. [14] the construction of higher dimensional chaotic
to two-dimensional billiards. In particular, the “stadium” focusing billiards was outlined; recently, these ideas were
billiard has been extensively used as a paradigm of clagurned into proofs for a class of three-dimensional billiards.
sical chaos. Chaos arises in the stadium due to a mechahe purpose of this paper is to demonstrate the complete
nism of defocusing, which was discovered more than 2@haoticity of the corresponding class of nowhere dispers-
years ago [3,4] and was later shown to work also ining billiards in dimensions higher than two, and to show
geodesic flows [5,6]. It is now known [7] that only two that the geometrical conditions imposed in [15] are indeed
mechanisms can generate chaos in Hamiltonian systemijo restrictive, as it was surmised in that paper.
one is dispersion, which works in dispersing billiards as We consider billiards in a regiof2, whose boundaryQ
well as in geodesic flows on manifolds of negative cur-consists of flat and of spherical components. Each spheri-
vature, and the other is defocusing, which works in fo-cal component (spherical cap)of the boundary is charac-
cusing billiards as well as in some geodesic flows orterized by its (internal) angle (S) and by the radiug(S),
surfaces of non-negative curvature. These two mechawherew(S) is the maximum angle under which two points
nisms enforce local exponential divergence of trajectorief the cap are seen from the center of the sphere contain-
which in turn generates a global chaotic behavior. Theng the cap; the anglgw corresponds to the entire sphere.
dispersing mechanism ensures permanent divergence 8lippose that some billiard trajectory has a sequence of
nearby trajectories; the mechanism of defocusing is basetbnsecutive reflections from a spherical Saand let these
on strong focusing, which occurs upon a reflection. Theeflections occur at the pointg, ¢2,...,¢, € S. Then
beam of rays becomes strongly focused, and, after a shaatl these points together with the center of the sphere con-
time, passes through a conjugate focusing point. If the fre&ining S belong to the same two-dimensional plane. The
path is long enough, then such a beam becomes divergeigtynamics in this plane is analogous to the one in a two-
and the time during which nearby rays diverge is, on thelimensional chaotic focusing billiard. The new feature is
average, longer than the time during which they convergethe dynamics in the planes that are orthogonal to this one.
This leads to local exponential instability, and to nonvan-The dynamics in these “transversal” planes is essentially
ishing Lyapunov exponents. If these two mechanisms ddifferent: in particular, the focusing in transversal planes
coexist in some dynamical system, then the global behavs much weaker than in the plane that contains the points
ior can be completely chaotic (mixing [3]) but islands of of consecutive reflections from a spherical cap. Whereas
stability can also exist [8]. Rather than enhancing eacln dispersing billiards trajectories diverge in all directions
other, the two mechanisms, when they coexist in the samafter each reflection, in focusing billiards divergence oc-
system, tend to inhibit each other [3,8], and this shows thaturs only in a two-dimensional plane; this indicates that
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chaos in higher dimensional focusing billiards is weakemwhere n; are components of the unit (inward) normal
than in dispersing ones. In order to get nonzero Lyapunovector to 6Q at the (i + 1)th collision point. If the
exponents, infinitesimal surface elements normal to bilcollision occurs on a spherical component, of radiys
liard trajectories must expand as the trajectories approadhe 3D equation must be changed to

spherical caps; moreover, the curvatures of all their two di- V. 5
mensional sections must be sufficiently small. Exact con- —L = — (Unbjx + njux — mgv; — njng),
ditions for this have been given in terms egsential free 0 r

path [15]. Such a path is defined as any segment of avherev, is the normal component of velocity; the fourth
billiard trajectory, with reflection point#,,...P,, such equation changes accordingly. By numerically comput-
that the following conditions are satisfied: (1) The pointsing one billiard orbit, one can find the tangent map at
P4, P, belong to spherical caps (not necessarily different)all collision times by numerically computing a product
(2) If n > 2, all the intermediate pointB,,...,P,—; be- of Jacobian matrices of rank 6. On applying the tan-
long to the flat components. (3)4f = 2, thenP,, P, be- gent map thus determined to a triple of orthonormal
long to different spherical caps. tangent vectors, and using the well-known method of in-

Hence an essential free path contains either reflectiongrmediate orthonormalizations [17], one is able to com-
from different spherical caps, or reflections from thepute all three non-negative Lyapunov exponents in real
same spherical cap together with at least one intermediagghysical time. One of these, which correspond to infini-
reflection from some other components 8. The tesimal displacements along the trajectory, must vanish;
following theorem was proven in [15]. its numerical value of~10~3 after 10000 collisions pro-

Theorem: Suppose that the internal angles of all vides a lower bound for the numerical error involved in
spherical caps do not exceed/2. Then there exists our computations.
L = L(Q) such that, if the length of every essential free The first family of billiards is defined in region8, =
path is larger thanL, the billiard in Q has nonvanishing K N S,, whereK is a fixed cube with edges of length
Lyapunov exponents in a subset of full measure of and centeiO, andS, is a sphere of radiug and with
phase space. the same cente®. The radiusr of the sphere is the

It has been mentioned in [15] that this theorem shoulcgarameter of the family. Fdr < r < 1, Q, = §,, while,
be true under milder conditions. However, it does notfor r > /3,0, = K. These extreme cases correspond to
seem that simple geometrical conditions can ensure nomnategrable billiards. In between these extreme cases, the
vanishing Lyapunov exponents in regions with largeregionQ, looks like a “fair die” and is depicted in Fig. 1,
spherical caps [16]. for the intermediate ranges of parametérs< r < /2

In this paper we numerically demonstrate the existencandv2 < r < +/3. In the case of Fig. 1(a) the billiard
of chaos in such regions. To this end we have considereldas no “caps,” because the spherical part of the boundary
two continuous families of regions, with boundaries con-consists of one connected component.
sisting of flat components and of spherical caps, which will In both cases 1(a) and 1(b) typical 3D trajectories,
be described below. For billiards in each family we havewhich get reflected from the flat as well as from the
numerically computed Lyapunov exponents, by means o$pherical parts of the boundary, have two positive
the following standard technique. Letdenote a pointin Lyapunov exponents\;, A, (A; > A,), the dependence
six-dimensional phase space, and #(z) be the image of which on the radius is shown in Fig. 2. For every
of z under the billiard dynamics after the timé. Let different value of the radius, a single trajectory was used
zi (i = 1,2,...) be the phase-space point immediately af-in the computation, starting from the same pointQn,
ter theith collision with the boundary; the time of free  but with a different, randomly chosen velocity of modulus
flight between théth and thgi + 1)th collision,andl’; = 1. The exponents shown in Fig. 2 correspond to 10 000
zg‘l tr the time at which theath collision occurs. The collisions. Atr = 1.2, exponentsi;, A, computed after
tangent mapD,, Fr+ can be factorized af]| T;, where 40 collisions lie within 0.01, 0.03, respectively, of their
T = D_F,;. The linear mapg; can be explicitly writ-  final values. At r = 1.5, stabilization within 0.015
ten in the form of Jacobian matrices as soon;as;;,#;  Of the final value is achieved after 250 collisions, for
are known. The form of the matrices depends on whethdpoth exponents.
the(i + 1)th collision takes place on aflat or on a spherical On computing the Lyapunov exponents on a sample
part ofdQ. Inthe former case, letting;, v; (j = 1,2,3), of 10? randomly chosen trajectories, at fixed a rms
the position and velocity coordinatesgfandx;, V; those ~ statistical dispersion was found, ranging freimx 1073

of z;+1, the matrix elements of ; are to 8 X 1073; the latter value is attained close to the
integrable limits, where long integrable segments appear
9X; 9X; 0X; in a typical orbit. _ _ _ -
F Ojk — 2njny, Tor U ar Besides truly 3D orbits, also “planar” trajectories exist,
e Vk e which are bound to fixed planes and are therefore identical
v _ 0 v, _ 9X; N av; to trajectories of some 2D billiard. Such orbits have
oxy vy oxx Fox a different type of stability than discussed above. For
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FIG. 2. Lyapunov exponents;, A, for 3D orbits in 3D dice
billiards versus the radius of the sphere.

nonvanishing exponents that can be significantly larger
than the exponents of generic orbits; e.g.rat 1.1 we

< P found A; = 0.3, to be compared with the valug, =

0.2 for generic orbits. Atr > /2 type (ii) trajectories
become trajectories in a square 2D billiard, and are
linearly stable.

Our results show that invariant hyperbolic subsets ap-
FIG. 1. The family of 3D “dice” billiards: ()l < r < v/2; pear in high dimensional focusing billiards under much
(b) V2 < r <+3. milder conditions than were imposed in the above theo-

rem. The case of “fair dice” demonstrates that it might
1 < r < 4/3/2 planes exist through the centér, which  be sufficient that the essential free path should be not less
do not intersect any of the flat components. Trajectoriethan a corresponding chord of the sphere that contains
which start in such a plane are bound to it forever, andhe spherical cap in the boundary. It is easy to see that
are, in fact, trajectories in a circular billiard. They are this condition is always a necessary one; indeed, a period
linearly stable (all Lyapunov exponents vanish). Suchwo trajectory that is perpendicular to two spherical caps
orbits occupy an invariant region of phase space, whiclis linearly stable if its length is less than the diameter of
has a positive (normalized) measure which decreases frothese spheres.
latr=11t 0 atr =+/3/2. The existence of this The family of “dice” billiards has an analog in any
stable region makes the billiard a nonergodic one in thevumber of dimensions. Results for the Lyapunov expo-
corresponding parameter range. nents Ay, A2, A3 of a 4D die, versus the radius of the

Other planar trajectories are bound to planes whiclsphere, show a behavior qualitatively similar to the 3D
contain one of the orthogonal symmetry axes of the cubecase (Fig. 3). The “cubic” limit is now attained at= 2.
These planes can be of two types: (i) those which have @he points closest te = 1 have apparently fallen into the
normal intersection with two of the flat components, andstable region.
no intersection at all with the other flat components, and The second series of our numerical experiments has the
(ii) those which actually contain two orthogonal symmetrygoal to check how big a spherical cap in a chaotic focus-
axes. Planar trajectories of type (i) only exist in 1(a) [ining billiard can be. Billiards are now defined in regions
case 1(b) they are singular, because they hit the edge3, = K U S,, whereK is the same cube as before, and
of the cube], and are trajectories of a 2D billiard of the S, is a sphere of constant radius 0.5, with center on the
stadium type. They make a set of measure 0, and haweertical line through the centap, at a distance < 1.5
only one positive exponent. Planar trajectories of typegrom 0. If 0 < z < 0.5 one gets the billiard in the cube
(i) also have 0 measure; fdr< r < /2 they have two K. If 0.5 < z < 1.5 the billiard region is a “dome,” that
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FIG. 3. Lyapunov exponenta;, A,, A; for 4D orbits in 4D

dice billiards versus the radiusof the sphere.

is, a cube with a spherical cap on the top.
1/2 < z <1 — 1/2+/2 the internal angle of the spheri-
cal cap is less thair/2; this case was considered in [15].
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FIG. 4. Lyapunov exponenta;, A, for the “dome” billiards
versus the coordinate of the center of sphere.
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However, in the whole region/2 < z < 3/2 we have
found two positive Lyapunov exponents, > A, > 0 as
shown in Fig. 4. The rms dispersion over an ensemble
of 100 different trajectories was in this cas@ X 102,
Stabilization of numerical Lyapunov exponents for single
trajectories within 0.03 of their final values typically re-
quires~1000 collisions atz = 0.75.

“Planar” trajectories, which lie in fixed planes through
the center of the cube, parallel to two faces, also display
two positive exponents, typically larger than the expo-
nents of generic orbits; at= 0.85 the maximal exponent
of such an orbitis\; = 0.25. It is worth mentioning that
the shortest unstable periodic orbit, bouncing along the
vertical axis between the cap and the opposite face of the
cube, has still larger, practically coincident positive expo-
nents 0.6 atz = 0.8).

Therefore our analysis revealed that the mechanism of
defocusing may generate a chaotic behavior in billiards
under rather mild conditions. More precisely, spherical
regions of the boundary can be arbitrarily large (that is,
dQ can be arbitrarily close to a sphere), and essential free
paths can be bounded from below just by the length of the
corresponding spherical cord.
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