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Equivalence of Synchronization and Control of Chaotic Systems
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It is shown that “perfect” control of a system along a desired trajectory is the control analog of the
different techniques of synchronization of chaos. Analysis of this control problem leads to a general
framework for synchronization of chaotic systems. Numerical examples are presented to illustrate
the connection between synchronization and perfect control. Maodifications of the control scheme are
carried out to make the control technique useful in practical situations. [S0031-9007(96)01174-X]

PACS numbers: 05.45.+b

Since 1990 synchronization of chaos has been a topiparametric perturbations to achieve the goal and we need
of great attention and puzzlement. Though commonlyto fix the initial states of some of the system states.
observed, synchronization between two identical chaotic Next we outline the formulation and solution of the
systems has been thought to be an unlikely goal becausentrol problem.
chaos is characterized by a sensitive dependence on ini- Recent developments in nonlinear control theory [6—9]
tial conditions. Beginning with the work of Pecora and enable us to formulate and solve the control problem in a
Carroll (PC) [1,2] several investigations have been carriedystematic way. We consider the desired output and the
out on different aspects of synchronization and on develprocess to be represented by the followingimensional
oping its applications [3,4]. Kocarev and Parlitz [3] have single input—single output (SISO) models

investigated a general approach for constructing chaotic Xm = £(Xm) + g(Xm)io, (1)
synchronized dynamical systems which they refer to as
the method of active-passive decomposition (APD). Re- Ya = h(Xm), 2)
pently_Rquovet al. [5] and K(_)carev and Parlitz [4] have_ xp = F(xp) + g(xp)u, 3)
investigated another generalized approach to synchroniza-
tion. This is referred to as generalized synchronization y = h(xp). (4)

(GS). Here two systems are said to synchronize if a funcx,,,x, € R" are the reference and process states,

tional relationship exists between the states of both sysand u represent the nominal and the manipulated input,
tems. Itis known that synchronization based on APD andespectively. We further assume the inputs to occur in
GS are generalizations of PC synchronization (PCS).  only one equation.y is the scalar measured output and

In this Letter, we present a general framework for they, denotes the scalar desired output to be tracked. Our
analysis of different types of synchronization of chaos.objective is to apply suitable parametric perturbations
We show that synchronization is another interpretatiorsuch that the process output tracks the desired output
of the use of feedback to achieve “perfect” control of aexactly, i.e.,
process along a desired trajectory. By perfect control we
mean that the controlled output tracks the desired output ] ] ]
exactly for all imer = 0. We show that the three types  1he relation between the manipulated inpuand the
of synchronization mentioned above are different cases difOCeSs output can be expressed as
perfect control. The connection between synchronization y" — Lgh(xp)
and perfect control is illustrated on a modified form of W T e ) (5)

. LgLy¢ h(xp)
the Rossler system. In the second part of this Letter &
we reconsider the perfect control problem and derive a
practical control scheme.

Figure 1 shows a schematic of the problem under System 1
consideration. System 1 is a model representing the
desired behavior of the process (reference system) and
system 2 represents the process. It is desired to match
(synchronize) the evolution of the controlled process
output along its desired trajectory for time= 0 using .
feedback. Our objective is different from the conventional
control goal where it is desired that synchronization

occurs ast — ». In general perfect control is not a FiG. 1. Schematic illustration of the feedback control
desirable objective because we require arbitrarily largetrategy.

ya —y=0 fort=0.

System 2

Controller "o
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wherey” is therth order derivative of the process output, Further analysis is simplified by working in trans-
r is a measure of how directly the input affects the outputformed coordinates. Noting thaﬁfh(xp), k=0,....,r —
It is known as the relative order of the system and isl are linearly independent functions ©f, we can choose

defined as the smallest integer such that these to be the first elements in defining a transformed
LgL§_1h(xp) £0. cooordinate system, i.e.,
Lyh(xp) is the Lie derivative of a functiork(xp) with k= L’f"lh(xp), k=1,2,...,r.

tt and is defined
respect of (xp) and is defined as Moreover, it is possible to choose: — r) additional

Leh(xp) = i fr(xp) ah(xl’). coordinatesz; = ¢k(xp), k= (r + 1),...,n, such that
= dxg their time derivatives are independent0f8,9]. In thez
Higher order Lie derivatives with the same vector argu-Coordinates, the SISO nonlinear system can be represented
ment are defined recursively as in its normal form
LY = LeLy ™" =22 Zri1 = qr+1(2)

For the problem under consideration, the measured and
the desired outputs are specified by the designer. The .
control law which achieves the objective of perfect control Zr
is given by replacing” in (5) by y;. It is obvious that
requesting perfect control constrains the process output
to track its desired trajectory exactly. The question ofwhere
determining whether the system states also approach their . —1 —1 o 1
desired trajectories will be addressed a little later. a(z) = LeLi hl¢ ™ (2)], b(z) = Lihl¢ (2],

We digress to mention how the three types of synchro- and
nization result from consideration of the control problem. . —1 .
Later we present examples to show that synchronization is q(2) = LedisrLd ™ (2)], k=1...n-r.
another interpretation of perfect control wher= 1. The A minimal-order realization of the inverse (MORI) of
case considered by PC [1] results from the case when bothe system is obtained by replacingn the normal form
the desired and measured outputs are states<x,,, and  above by (5), after a suitable change of coordinates. The
y = xpi, | =i =n). GS [4,5] results from considering advantage of using the normal form representation of
the desired output as a function of statgs= h(xm) and  nonlinear SISO system is that its inverse is effectively of
y = h(xp) = xp;, 1 =i = n. For the case of synchro- dimension(n — r). The zero dynamics are the dynamics
nization using APD we rewrite the system (after neglectof a MORI, and they represent the system dynamics when
ing the subscripts) as the system output is constrained to be the desired output.

x =f(x) + gx)u + e(x) — e(x), We now illustrate the connection between perfect
control and synchronization with the help of an example.
We consider a modified form of the Rossler system. We
represent the reference system (system 1) and the process
(system 2) as

b(z) + a(z)u Zn = qn(2)

y =1z,

where e(x) is some function of the states. We can

define a new variable, ., as the complete (or part of)
functionf(x) + g(x)u + e(x). Further, we can represent
the evolution of this new variable by an arbitrary equation

with a new inputu,.,. The model and process are now X, = -Y, — Z;, (6)
given by equations of the form Y, =X, + aY, @
X = f(X) + g(x)x, 41 — e(x), 21 =b+ Zi(X: — o), (8)

Xp+1 = d(X) + Upew. X, =Y, - Z + p1, 9)

Now consider the case where the desired and process Yo = X, + a¥, + D2, (20)
output are given byy; = x,,,+1 andy = x,,+1 and Zo=b + Zs(Xy — ¢) + p3, (11)

the manipulated input is,.,. Perfect control for this

case is the control analog of synchronization using APDwith « = b = 0.20 andc = 9. In what follows, we also
Examples of this case can be found in Table | of Parlitzassume that all the auxiliary inputg{, p,, p3) excluding
et al. [10]. the manipulated input are set to zero.

Returning to the control problem, information about We consider the case whese= X,, u = p; (with
internal stability of the process (i.e., whether the procesg, = p; = 0), andy, = X;. Note that the manipulated
states also approach their desired trajectories) can hbeput occurs only in the governing differential equation
obtained from a stability analysis of the zero dynamics ofof the controlled output and henge= 1. For perfect
the process. Next we outline the method for obtaining theontrol, we require that = y,. This means that at= 0,
zero dynamics of a system. Systems with asymptoticallyve requireX, = X;. The control law for tracking the
stable zero dynamics are said to be minimum phase.  desired trajectory, is
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u=p=yqs— (=Y — Z,). (12) input. For this case, we have = 2. Proceeding as
Substituting this back in the equations of the proces?efore’ the control law can b,e obtained as
(8)—(11), we get u=py=—yas—2Zp — ys — als. (16)
X2 = 4, (13)  Substituting the control law back in the equations describ-
) ing the process (8)—(11), we get
Yy =y4 + aYs, (14) X = ya = X1, (17)
Zy=b + Zo(ya — ©). (15) Yo=—Va—Zo =Y\ +Z — Zs, (18)
It is evident that by applying the above control law, the 22 =b + Zy(ys — ¢). (19)

desired output can be tracked exactly. We now addre
the issue of internal stability of the process. Since the, " - S e . ;
desired trajectory is chaotic, the necessary condition forezsn]té(;n(; — Y d)y'mpl';SX#ﬁgﬁ%pﬁg;iﬁ;ﬁ%ﬂg%ﬁ&s
. its . 2 = —Ya — L. -
asymptotic stability of the zero dynamics [Egs. (14) anding 1y in order 1o makeX, track X, constrainsY, to

(Tlhsgl: w:f;ti;ﬁﬁ’;f;%v E)x%(;noe;(t)s g%]]dmfgtgge nTeﬁithe'evolve such that the above relation is satisfied. The in-

indicates that the zero dynamics is unstable (the systetlr?mal St‘?b'"ty Qf the process IS now dependent on'the
is nonminimum phase) and hence the process is n(ﬁsymptotlc stability of the remaining equation (19), which

internally stable, i.e., the variableB, and Z, do not represents the zero dynamics for this case. .

approach their respective desired trajectories. An example Lya_pur!ov exponents of the zero dynamics for each
of GS for this case results from taking = X, + ¥, + g:omblnatlon of the input-output (outpst state) are given
Z;. An example of synchronization using APD would Il_n Table I(a). These afre 1aga|oglg\lousd.to thel condltlo?al
be to define a new variable,;; = s = 1.2Y; and_then ﬁ‘pﬁno" ixponentls of [1,2]. ondiagonal cases for
rewrite the equation fo¥ asY, = X; + aY; andY, = which we have only one Lyapunov_exponen_t can be
X, — Y» + 5. The control objective for this case is considered to be similar to synchronization with a two

y = 5. More examples can be found in [10]. variable drive in the approach of PC. The absence of zero

The set of equations (6)—(8), (14), and (15) is identicaffynamics for the¥; = ps and Z, — p, configurations
to the case of theX drive in the PC approach. This means that the Lyapunov exponents are equal to zero for
is because the control parameter occurs only in the these cases [7].

equation of the controlled outpxt. Also the subsystem fo%rg']!%éefgrlfn;vzritg?éa'nTehdeV;'ggs?)ﬁ'wéliﬂ)égig'wgrk
defined by them is identical to the notion of MORI (and y :

the zero dynamics) in the control literature. Similarly \évggomgg'fg’/? dfe?]rth\S/haerr]]dV\?eOtc\cl)vrI]tgidtgre tﬁggér;asleegfuz-g?;ﬂisn
PCS usingY drive and Z drive can be shown to be 9

identical to requesting perfect control & using p, as Y2 usingpy (va = Yl_)' The c.ontrol law is
the manipulated input and perfect control f using ps U= pi = Va + ya + XoZ
as the manipulated input, respectively. This example also p1 r— 7

brings out the limitations of the PCS and GS SCh(?mes’i'he control law is not applicable when the denomina-
In these two approaches the natural zero dynamics Qbr is zero. Using the modified Lorenz equations en-

the system are not altered. This' is not the case Witl?:\bles us to obtain proper forms for the control law for
syn_chronlzatlon using APD. In this case the addltlon.alfour combinations of the input-output (outpet state).
variablex, +; can be selected such that the zero dynamics, o I(b) gives the Lyapunov exponents for the zero dy-

are always asymptotlcally stable [10]. o Tnamics for each case. The diagonal cases correspond to
To summarize, we have shown synchronization o

chaos to be a specific case of perfect control of a process

of relative order one. In the physics literature perfect con- .

trol is interpreted as injecting the desired signal into a subﬂ"éB'p-Eééss'-yS?/F;lt’Qr%V foﬁxg%réergﬁﬁ ggnzpj gggﬁgﬁé@i&(‘m?% ff'?hre
SySte”? O.f th? original system. Th.e and'tlon Whlch mus a) Rossler system and (b) Lorenz systemdo# 10, r = 60,

be satisfied in order for synchronization to occur is thatyng, — /3,

the system must be minimum phase. This is a generat

SIﬁequiring perfect control on initiating the process setting

—o(ys — X2).  (20)

ization of the stability conditions currently employed, i.e., P1 P2 L& P1 P2 P3
computing the conditional Lyapunov exponents of the re- (@) (b)
sponse subsystem. X, 0.20 0.20 X, —1.78

We return to the problem of perfect control of the —8.87 —8.87 —188  —2.667
process when the manipulated input does not occur in th¥& . _3224 Y oo —1(2)-267

governing equation of the controlled output. We illustrate
the method by considering, to be the controlled output Z 020 (?'11(()) Z _1?'8214
(y = X, and y;, = X;) and p, to be the manipulated - -
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synchronization using, Y, andZ drives, respectively, in 15 . ——
the approach of PC. The only nondiagonal case for which e moie o
a proper control scheme can be deriv&d  p,) is iden- 5L 4

tical to synchronization using two variablX<Y) driving
signals in the approach of PC.

The feedback scheme discussed above suffers from two
major drawbacks, the necessity to fix the initial values (@)
for some of the process variables and the inability to 5 20 0 60 5 100
impose bounds on the manipulated input. We can impose

5+ i

. . : Ti
bounds on the input provided we forego our desire for e

perfect control. The necessity of fixing the initial values 1.25 . . . —

of the process variables can be overcome by requesting os L withont noise —— |

the controlled output to approach the desired trajectory in
a predetermined fashion. For example, by appropriately n 0 MMHJ ]

selecting two new constanis and 8 such that 0.25 .
Ya —y = aeflg(l*lo)‘ (21) -0.75 | ®)
The values of these constants can be evaluated from a 1B % o e s 10

knowledge of the initial states of the process variables.
Control can be initiated wheg takes on positive values.
This scheme was modified to achieve (i) perfect controFIG. 3. (a) Variation of the error = X; — X, with time
when the manipulated input is within the allowed bounds¥heny = Y», and (b) variation of the manipulated inppb
and (i) leaving the system to freely evolve when the ma—V_V'(t)h3grgﬁ£%r;geasgzsfr;ﬁt&”fiz is allowed to vary between
nipulated input exceeds its maximum permitted bounds. ' '
The modified scheme involved resetting the values of ) )
B, andz, when the manipulated input crossed its bounds, In <_:onc|u5|on, we have presented a nonlinear control
The results on the modified Rossler system for differenf€chnique to achieve perfect control of a system along a
combinations of the input-output are shown in Figs. 2 andﬂgswed trajectory. An important result of this work is that
3. The effect of measurement noise on the tracking ofhis method is the control analog of the synchronization

the desired trajectory is also represented in the figure@hénomenon discussed in the literature. In this connec-
-%on we have presented results from the control literature

The strong dependence of noise on the relative order i ) us Y o
readily seen. or t.he an'aIyS|s of synchror_uzatlon in a unified framework.
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