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Equivalence of Synchronization and Control of Chaotic Systems
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It is shown that “perfect” control of a system along a desired trajectory is the control analog o
different techniques of synchronization of chaos. Analysis of this control problem leads to a ge
framework for synchronization of chaotic systems. Numerical examples are presented to illu
the connection between synchronization and perfect control. Modifications of the control schem
carried out to make the control technique useful in practical situations. [S0031-9007(96)01174-X
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Since 1990 synchronization of chaos has been a t
of great attention and puzzlement. Though commo
observed, synchronization between two identical cha
systems has been thought to be an unlikely goal bec
chaos is characterized by a sensitive dependence on
tial conditions. Beginning with the work of Pecora a
Carroll (PC) [1,2] several investigations have been car
out on different aspects of synchronization and on de
oping its applications [3,4]. Kocarev and Parlitz [3] ha
investigated a general approach for constructing cha
synchronized dynamical systems which they refer to
the method of active-passive decomposition (APD).
cently Rulkovet al. [5] and Kocarev and Parlitz [4] hav
investigated another generalized approach to synchro
tion. This is referred to as generalized synchroniza
(GS). Here two systems are said to synchronize if a fu
tional relationship exists between the states of both
tems. It is known that synchronization based on APD
GS are generalizations of PC synchronization (PCS).

In this Letter, we present a general framework for
analysis of different types of synchronization of cha
We show that synchronization is another interpreta
of the use of feedback to achieve “perfect” control o
process along a desired trajectory. By perfect control
mean that the controlled output tracks the desired ou
exactly for all timet $ 0. We show that the three type
of synchronization mentioned above are different case
perfect control. The connection between synchroniza
and perfect control is illustrated on a modified form
the Rossler system. In the second part of this Le
we reconsider the perfect control problem and deriv
practical control scheme.

Figure 1 shows a schematic of the problem un
consideration. System 1 is a model representing
desired behavior of the process (reference system)
system 2 represents the process. It is desired to m
(synchronize) the evolution of the controlled proce
output along its desired trajectory for timet $ 0 using
feedback. Our objective is different from the conventio
control goal where it is desired that synchronizat
occurs ast ! `. In general perfect control is not
desirable objective because we require arbitrarily la
0031-9007y96y77(14)y2937(4)$10.00
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parametric perturbations to achieve the goal and we n
to fix the initial states of some of the system states.

Next we outline the formulation and solution of th
control problem.

Recent developments in nonlinear control theory [6–
enable us to formulate and solve the control problem i
systematic way. We consider the desired output and
process to be represented by the followingn-dimensional
single input–single output (SISO) models

Ùxm ­ fsxmd 1 gsxmdu0 , (1)

yd ­ hsxmd , (2)

Ùxp ­ fsxpd 1 gsxpdu , (3)

y ­ hsxpd . (4)

xm, xp [ Rn are the reference and process states,u0

and u represent the nominal and the manipulated inp
respectively. We further assume the inputs to occur
only one equation.y is the scalar measured output a
yd denotes the scalar desired output to be tracked.
objective is to apply suitable parametric perturbatio
such that the process output tracks the desired ou
exactly, i.e.,

yd 2 y ­ 0 for t $ 0 .

The relation between the manipulated inputu and the
process outputy can be expressed as

u ­
yr 2 Lr

fhsxpd
LgLr21

f hsxpd
, (5)

FIG. 1. Schematic illustration of the feedback contr
strategy.
© 1996 The American Physical Society 2937
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whereyr is therth order derivative of the process outpu
r is a measure of how directly the input affects the outp
It is known as the relative order of the system and
defined as the smallest integer such that

LgLr21
f hsxpd fi 0 .

Lfhsxpd is the Lie derivative of a functionhsxpd with
respect tofsxpd and is defined as

Lfhsxpd ­
nX

k­1

fksxpd
≠hsxpd

≠xk
.

Higher order Lie derivatives with the same vector arg
ment are defined recursively as

Lm
f ­ LfLm21

f .

For the problem under consideration, the measured
the desired outputs are specified by the designer.
control law which achieves the objective of perfect cont
is given by replacingyr in (5) by yr

d . It is obvious that
requesting perfect control constrains the process ou
to track its desired trajectory exactly. The question
determining whether the system states also approach
desired trajectories will be addressed a little later.

We digress to mention how the three types of synch
nization result from consideration of the control proble
Later we present examples to show that synchronizatio
another interpretation of perfect control whenr ­ 1. The
case considered by PC [1] results from the case when
the desired and measured outputs are states (yd ­ xmi and
y ­ xpi, 1 # i # n). GS [4,5] results from considerin
the desired output as a function of statesyd ­ hsxmd and
y ­ hsxpd ­ xpi , 1 # i # n. For the case of synchro
nization using APD we rewrite the system (after negle
ing the subscripts) as

Ùx ­ fsxd 1 gsxdu 1 esxd 2 esxd ,

where esxd is some function of the statesx. We can
define a new variablexn11 as the complete (or part of
functionfsxd 1 gsxdu 1 esxd. Further, we can represe
the evolution of this new variable by an arbitrary equat
with a new inputunew . The model and process are no
given by equations of the form

Ùx ­ fsxd 1 gsxdxn11 2 esxd ,

Ùxn11 ­ dsxd 1 unew .

Now consider the case where the desired and pro
output are given byyd ­ xm,n11 and y ­ xp,n11 and
the manipulated input isunew . Perfect control for this
case is the control analog of synchronization using AP
Examples of this case can be found in Table I of Par
et al. [10].

Returning to the control problem, information abo
internal stability of the process (i.e., whether the proc
states also approach their desired trajectories) can
obtained from a stability analysis of the zero dynamics
the process. Next we outline the method for obtaining
zero dynamics of a system. Systems with asymptotic
stable zero dynamics are said to be minimum phase.
2938
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Further analysis is simplified by working in tran
formed coordinates. Noting thatLk

f hsxpd, k ­ 0, . . . , r 2

1 are linearly independent functions ofxp , we can choose
these to be the firstr elements in defining a transforme
cooordinate systemz, i.e.,

zk ­ Lk21
f hsxpd, k ­ 1, 2, . . . , r .

Moreover, it is possible to choosesn 2 rd additional
coordinateszk ­ fksxpd, k ­ sr 1 1d, . . . , n, such that
their time derivatives are independent ofu [8,9]. In thez
coordinates, the SISO nonlinear system can be represe
in its normal form

Ùz1 ­ z2 Ùzr11 ­ qr11szd
...

...

Ùzr ­ bszd 1 aszdu Ùzn ­ qnszd

y ­ z1 ,

where

aszd ­ LgLr21
f hff21szdg, bszd ­ Lr

fhff21szdg ,

and

qkszd ­ Lffk1rff21szdg, k ­ 1, . . . , n 2 r .

A minimal-order realization of the inverse (MORI) o
the system is obtained by replacingu in the normal form
above by (5), after a suitable change of coordinates.
advantage of using the normal form representation
nonlinear SISO system is that its inverse is effectively
dimensionsn 2 rd. The zero dynamics are the dynami
of a MORI, and they represent the system dynamics w
the system output is constrained to be the desired outp

We now illustrate the connection between perf
control and synchronization with the help of an examp
We consider a modified form of the Rossler system.
represent the reference system (system 1) and the pro
(system 2) as

ÙX1 ­ 2Y1 2 Z1 , (6)
ÙY1 ­ X1 1 aY1 , (7)
ÙZ1 ­ b 1 Z1sX1 2 cd , (8)
ÙX2 ­ 2Y2 2 Z2 1 p1 , (9)
ÙY2 ­ X2 1 aY2 1 p2 , (10)
ÙZ2 ­ b 1 Z2sX2 2 cd 1 p3 , (11)

with a ­ b ­ 0.20 andc ­ 9. In what follows, we also
assume that all the auxiliary inputs (p1, p2, p3) excluding
the manipulated input are set to zero.

We consider the case wherey ­ X2, u ­ p1 (with
p2 ­ p3 ­ 0), andyd ­ X1. Note that the manipulate
input occurs only in the governing differential equati
of the controlled output and hencer ­ 1. For perfect
control, we require thaty ­ yd . This means that att ­ 0,
we requireX2 ­ X1. The control law for tracking the
desired trajectoryyd is
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u ­ p1 ­ Ùyd 2 s2Y2 2 Z2d . (12)

Substituting this back in the equations of the proc
(8)–(11), we get

ÙX2 ­ Ùyd , (13)

ÙY2 ­ yd 1 aY2 , (14)

ÙZ2 ­ b 1 Z2syd 2 cd . (15)

It is evident that by applying the above control law, t
desired output can be tracked exactly. We now add
the issue of internal stability of the process. Since
desired trajectory is chaotic, the necessary condition
asymptotic stability of the zero dynamics [Eqs. (14) a
(15)] is that its Lyapunov exponents [1] must be negat
These were calculated to be10.20 and 28.87. This
indicates that the zero dynamics is unstable (the sys
is nonminimum phase) and hence the process is
internally stable, i.e., the variablesY2 and Z2 do not
approach their respective desired trajectories. An exam
of GS for this case results from takingyd ­ X1 1 Y1 1

Z1. An example of synchronization using APD wou
be to define a new variablexn11 ­ s ­ 1.2Y1 and then
rewrite the equation forY as ÙY1 ­ X1 1 aY1 and ÙY2 ­
X2 2 Y2 1 s. The control objective for this case
y ­ s. More examples can be found in [10].

The set of equations (6)–(8), (14), and (15) is ident
to the case of theX drive in the PC approach. Th
is because the control parameterp1 occurs only in the
equation of the controlled outputX2. Also the subsystem
defined by them is identical to the notion of MORI (a
the zero dynamics) in the control literature. Simila
PCS usingY drive and Z drive can be shown to b
identical to requesting perfect control ofY2 using p2 as
the manipulated input and perfect control ofZ2 usingp3
as the manipulated input, respectively. This example
brings out the limitations of the PCS and GS schem
In these two approaches the natural zero dynamic
the system are not altered. This is not the case
synchronization using APD. In this case the additio
variablexn11 can be selected such that the zero dynam
are always asymptotically stable [10].

To summarize, we have shown synchronization
chaos to be a specific case of perfect control of a pro
of relative order one. In the physics literature perfect c
trol is interpreted as injecting the desired signal into a s
system of the original system. The condition which m
be satisfied in order for synchronization to occur is t
the system must be minimum phase. This is a gene
ization of the stability conditions currently employed, i.
computing the conditional Lyapunov exponents of the
sponse subsystem.

We return to the problem of perfect control of t
process when the manipulated input does not occur in
governing equation of the controlled output. We illustr
the method by consideringX2 to be the controlled outpu
(y ­ X2 and yd ­ X1) and p2 to be the manipulate
s
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input. For this case, we haver ­ 2. Proceeding as
before, the control law can be obtained as

u ­ p2 ­ 2ÿd 2 ÙZ2 2 yd 2 aY2 . (16)

Substituting the control law back in the equations descr
ing the process (8)–(11), we get

ÙX2 ­ Ùyd ­ ÙX1 , (17)

ÙY2 ­ 2ÿd 2 ÙZ2 ­ ÙY1 1 ÙZ1 2 ÙZ2 , (18)

ÙZ2 ­ b 1 Z2syd 2 cd . (19)

Requiring perfect control on initiating the process settin
X2 ­ X1 (y ­ yd) implies ÙX2 ­ ÙX1. On rearranging, this
results inY2 ­ 2Ùyd 2 Z2. This implies that manipulat-
ing p2 in order to makeX2 track X1 constrainsY2 to
evolve such that the above relation is satisfied. The
ternal stability of the process is now dependent on t
asymptotic stability of the remaining equation (19), whic
represents the zero dynamics for this case.

Lyapunov exponents of the zero dynamics for ea
combination of the input-output (output­ state) are given
in Table I(a). These are analogous to the condition
Lyapunov exponents of [1,2]. Nondiagonal cases f
which we have only one Lyapunov exponent can b
considered to be similar to synchronization with a tw
variable drive in the approach of PC. The absence of ze
dynamics for theY2 2 p3 and Z2 2 p2 configurations
means that the Lyapunov exponents are equal to zero
these cases [7].

Similar results were obtained with a similarly modifie
form of the Lorenz system. The reason we chose to wo
with modified forms and not with the original equation
becomes evident when we consider the case of track
Y2 usingp1 (yd ­ Y1). The control law is

u ­ p1 ­
ÿd 1 Ùyd 1 X2

ÙZ2

r 2 Z2
2 ssyd 2 X2d. (20)

The control law is not applicable when the denomin
tor is zero. Using the modified Lorenz equations e
ables us to obtain proper forms for the control law fo
four combinations of the input-output (output­ state).
Table I(b) gives the Lyapunov exponents for the zero d
namics for each case. The diagonal cases correspon

TABLE I. Lyapunov exponents of the zero dynamics fo
the process system for different control configurations of th
(a) Rossler system and (b) Lorenz system fors ­ 10, r ­ 60,
andb ­ 8y3.

p1 p2 p3 p1 p2 p3

(a) (b)
X2 0.20 0.20 X2 21.78 · · ·

28.87 28.87 21.88 22.667 · · ·
Y2 20.024 Y2 · · · 210.0 · · ·

28.87 28.8 · · · 22.667 · · ·
Z2 0.20 0.10 Z2 · · · · · · 0.014

0.10 · · · · · · 211.02
2939
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synchronization usingX, Y, andZ drives, respectively, in
the approach of PC. The only nondiagonal case for wh
a proper control scheme can be derived (X2 2 p2) is iden-
tical to synchronization using two variable (X-Y) driving
signals in the approach of PC.

The feedback scheme discussed above suffers from
major drawbacks, the necessity to fix the initial valu
for some of the process variables and the inability
impose bounds on the manipulated input. We can imp
bounds on the input provided we forego our desire
perfect control. The necessity of fixing the initial value
of the process variables can be overcome by reques
the controlled output to approach the desired trajectory
a predetermined fashion. For example, by appropriat
selecting two new constantsa andb such that

yd 2 y ­ ae2bst2t0d. (21)

The values of these constants can be evaluated fro
knowledge of the initial states of the process variabl
Control can be initiated whenb takes on positive values
This scheme was modified to achieve (i) perfect cont
when the manipulated input is within the allowed boun
and (ii) leaving the system to freely evolve when the m
nipulated input exceeds its maximum permitted boun
The modified scheme involved resetting the values ofa,
b, andt0 when the manipulated input crossed its boun
The results on the modified Rossler system for differe
combinations of the input-output are shown in Figs. 2 a
3. The effect of measurement noise on the tracking
the desired trajectory is also represented in the figu
The strong dependence of noise on the relative orde
readily seen.

FIG. 2. (a) Variation of the errore ­ yd 2 y with time when
y ­ X2, and (b) variation of the manipulated inputp2 with
time for the Rossler system.p2 is allowed to vary between
20.30 and0.30.
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FIG. 3. (a) Variation of the errore ­ X1 2 X2 with time
when y ­ Y2, and (b) variation of the manipulated inputp2
with time for the Rossler system.p2 is allowed to vary between
20.30 and0.30 andb ­ 5 in (21).

In conclusion, we have presented a nonlinear con
technique to achieve perfect control of a system alon
desired trajectory. An important result of this work is th
this method is the control analog of the synchronizat
phenomenon discussed in the literature. In this conn
tion we have presented results from the control literat
for the analysis of synchronization in a unified framewo
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