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We put forward a theory of excitation decay in two-level atoms that tunnel through a square pot
barrier while spontaneously emitting photons into an effectively one-dimensional mode continuum.
resulting decoherence can exponentially enhance the total tunneling probability. This enhancem
due to atoms whose final kinetic energy is raised above the barrier by the emission of photons d
below resonance. [S0031-9007(96)01301-4]

PACS numbers: 03.75.Be, 32.80.Lg, 42.50.–p, 73.40.Gk
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The vigorous development of the field of atom opt
is centered on the interplay between the quantum dyn
ics of internal and translational atomic degrees of fr
dom [1]. A fundamental issue regarding this interplay
the loss of atomic wave-packet coherence via spontan
photon emission, which has been extensively investiga
in the context of atomic interferometry and diffraction [2
By contrast, spontaneous emission in atomic tunneling
been virtually unexplored [3]. Yet, since tunneling is
distinct manifestation of wavelike properties, it is impo
tant to raise the basic questions: Can spontaneous d
of internal excitations in tunneling atoms be viewed a
decoherence process that is analogous to its counterp
diffracted atoms? And if so, how would such decoh
ence manifest itself?

In this Letter we put forward a theory of spontaneo
emission from a two-level atom as it tunnels through
square potential barrier. Our theory demonstrates
the emission process is describable asloss of coherence
between interfering classical trajectories in space-tim
which constitute the atom tunneling motion. The emit
photon at each frequency is correlated to particular ato
classical trajectories, in a way which makes them mea
ably distinguishable. This distinguishability destroys th
interference [4], as does “which-way” (“Welcher-Weg
information, which is obtainable from spontaneous em
sion in diffracted atoms [2,5]. Several major findings f
low from the present theory: (a) This loss of coheren
can causeexponentially large enhancementof the barrier
transmission by spontaneously emitting atoms. This
sult stands in contrast to WKB predictions of tunneli
probability suppressionby zero-temperature dissipatio
effects on structureless particles in double-well structu
[6]. On the other hand, it bears a certain similarity
predictions of tunneling enhancement due to dissipa
mixing among many potential-well levels of such par
cles [7], or to atomic reflection suppression by damp
single-mode resonators [3]. The fundamental link
tween wave-packet coherence and transmission prob
ity revealed here is akin to our findings for optical wa
tunneling through dielectric structures: we have descri
such tunneling asdestructiveinterference of propagatin
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waves, so that decoherence should enhance the tran
sion [8]. (b) The barrier “filters through” almost entirel
ground-state (decayed) atoms, which have emitted p
tons detuned below resonance.

Our model, which is in essence exactly solvable a
experimentally feasible, involves an atom that is incid
in the excited statejel on a square potential barrier, whic
is the only region where spontaneous emission occ
from jel to the ground statejgl into an effectively one-
dimensional mode continuum. This model is realiza
using excited cold atoms incident on an open hig
Q cavity which is intersected by a nonresonant la
beam [Fig. 1(a)]. The laser beam creates a nearly sq
potential barrier by ac Stark shifts [1] ofjel and jgl
relative to an upper (unpopulated) statejul, such that
V ø 1

8 fV2
gydg 1 V2

eydeg, Vgsed anddgsed being the laser
Rabi frequency and detuning for thejgl ! jul (jel !
jul) transition. The barrier widthL (which is comparable
to the resonance wavelengthcyveg) should exceed the
de Broglie wavelength of the incident atomsldB 
hy

p
2mEk , hy

p
2mV , if tunneling effects are to be

appreciable. The cavity serves to strongly enhance
spontaneous emission at the transition fromjel to jgl [9],
to the extent that the corresponding spontaneous emis
outside the cavity (which coincides with the barrier)
insignificant.

FIG. 1. (a) Two-level atoms tunneling through a lase
induced potential barrier while spontaneously decaying to
ground state by emission of cavity-mode photons. (b) Diagr
of a Feynman pathxstd, nonclassically criss-crossing the brrie
boundaries (within regionL  ldB).
© 1996 The American Physical Society 2909
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The ensuing analysis rests on two observations: (i) T
overall duration of the decay process is much longer th
the inverse transition frequencyv21

eg (see below). This
allows us to resort to the rotating wave approximatio
(RWA), which is used in the Wigner-Weisskopf (WW
treatment of spontaneous emission [10]. (ii) Nearly
of the cavity-enhanced spontaneous emission is funne
into the continuum of nearly resonant modes with wa
vectors q ø svycdẑ, which are aligned with the cav-
ity axis z, perpendicular to the atomic incidence ax
x. This allows us to use the dipole approximatio
since q ? x ø 0, and neglect off-axis photon recoil ef
fects on the atomic wave packet. Hence, the RWA
teraction Hamiltonian of the atom with the cavity-mod
continuum becomes effectively one dimensional,Hint 
2z sxd

R
dv rsvd fgvavjel kgj 1 H.c.g. Herez sxd  1

for 0 # x # L and 0 elsewhere; i.e., the interaction i
confined to the cavity, whosex-axis extent coincides with
that of the barrier;rsvd is a Lorentzian mode-density
distribution associated with the cavity-mode linewidthh

[9]; gv is the coupling of the atom to the cavity mod
at v; and av is the corresponding annihilation operato
The transition frequencyveg is shifted (renormalized) by
the difference between the ac Stark shifts ofjel and jgl,
Dac 

1
4 sV2

eyde 2 V2
gydgd.

In order to analyze the entanglement of emitted pho
states with the translational degrees of freedom of
tunneling atom, we have developed a theoretical appro
which combines the WW treatment [10], resulting
exponential decay of the excited state, with the Feynma
path-integral method, which yields a coherent sum ov
the atomic classical trajectories contributing to tunneli
[11]. This approach is necessitated by the inadequacy
the plane-wave expansion for the translational degree
freedom of tunneling atoms, which are often described
“imaginary wave vectors.” The highly involved analys
of our model, implementing the outlined approach,
tractable using Refs. [12]. Its essential steps are
follows:

(1) Decomposition of each path inton 1 1 intervals,
t0, t1, t2, . . . , tn, separated by events of crossing the barr
boundaries atx  0 or L, so that at odd-numbered tim
intervals the atom is inside the barrier [Fig. 1(b)].

(2) Calculation of the Feynmann propagatorKesxt ,
x0, td which represents the probability amplitude that a
incident atom initially excited atx  x0 , 0 will remain
excited atxt . L after a timet. This propagator is given
by the integral

R
DfxstdgK̃efxstdg exphiSfxstdgj over all

paths xstd connectingxt with x0, where Sfxstdg is the
action along the path and̃Kefxstdg is the amplitude for
the atom to remain excited along the pathxstd. By our
generalized WW ansatz this amplitude has the form

K̃efxstdg  exps2Gtbd, (1)

whereG  g 1 iDL is the sum of cavity-enhanced deca
rateg and Lamb shiftDL, while tbfxstdg 

Pny221
j0 t2j11
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is the total time spent in the barrier (interaction region)
an atom following the pathxstd.

(3) Calculation of the probability amplitudeKvsxt ,
x0, td to decay to the ground state and emit a photon
modev betweenx0 and xt . This calculation involves a
sum over path amplitudes similar to that of step 2 exc
that K̃vfxstdg, the amplitude to decay to the ground sta
and emit a photon of frequencyv along the pathxstd,
is used instead of̃Ke. This amplitude is given in our
generalized WW approach by

K̃vfxstdg 
gp

v

D 1 iG

ny221X
j0

eiDtj e2Gtb,j fesiD2Gdt2j11 2 1g,

(2)

whereD  v 2 veg is the detuning (which accounts fo

Dac), tj 
P2j

i0 ti is the total time spent by the atom
before entering the barrier for the (j 1 1)th passage and
tb,j 

Pj21
i0 t2i11 is the time spent in the barrier durin

the firstj passages. The sum in Eq. (2) is a result of t
integration over the atom probability amplitudes to dec
to the ground level during the odd-numbered interv
t2j11, when the atom is inside the barrier. The tw
terms with opposite signs in square brackets corresp
to the upper and lower limits of integration over one su
interval.

(4) Integration ofKesxt , x0, td (introduced in step 2)
over all paths. This integration is performedexactly,
using Eq. (1) and the path decomposition method [1
It is followed by the calculation of the Green functio
GesEkd, which is the Laplace transform of the propagat
Kestd, yielding

Gesxt , x0, Ekd  G0sxt , x0, Ekde2ikLssEk , V 2 ih̄Gd .

(3)

Here G0sEkd is the Green function for free propagatio
and ssEk , V d is the transmission amplitude for a stru
tureless particle of kinetic energyEk through a square po
tential barrier of heightV and lengthL,

ssEk , V d 

∑
cospL 2 i

k2 1 p2

2kp
sinpL

∏21

, (4)

k 
p

2mEkyh̄ andp 
p

2msEk 2 V dyh̄ being the cor-
responding wave vectors outside and inside the barrier
spectively. The effect of spontaneous emission is to s
the effective potentialV by 2ih̄G (see below).

(5) Calculation of the Laplace transform o
Kvsxt, x0, td, which is somewhat more complicate
than the former, but can also be performed exactly. T
yields the following Green’s function for an atom incide
on the barrier with momentum̄hk 

p
2mEk and exiting

the barrier after having emitted a photon of frequen
v  veg 1 D, with momentumh̄kv 

p
2msEk 2 h̄Dd

GvsEk 2 h̄Dd 
gp

v

D 1 iG
m
ik

eif2kx01kvsxt2LdgsvsEk , V d.

(5)
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This Green’s function is proportional to the atomic tran
mission function associated withv-frequency emission,
which is found to have the cumbersome form

svsEk , V d 
k

kv

mskvyk, Ek , V 2 ih̄GdssEk 2 h̄D, V d

2 mskykv , Ek 2 h̄D, V dssEk , V 2 ih̄Gd, (6)

where

msl, E, V d  1 2
1
2

s1 2 ld

3

∑
1 2

mV
h̄k

sinpL
h̄p

ssE, V d
∏

,

with l standing forkykv or kvyk.
The above analysis allows us to write the comple

solution for theentangledstatejcltr
AF associated with the

transmitted atom atx . L and the cavity field, taking the
state of the excited incident plane-wave atom with kine
energyEk to be seikxy

p
2kdjel and the cavity field to be

initially in the vacuum statej0l

jcltr
AF  ssEk , V 2 ih̄Gd seiksx2Ldy

p
2kd je, 0l

1
Z dv

p
2v

gp
v

D 1 iG

r
kv

k
svsEk , V d

3
eikvsx2Ld
p

2kv

jg, vl, (7)

where the statesjg, vl, corresponding to an atom in
state jgl and an emitted photon with frequencyv, are
normalized such thatkg, vjg, v0l  2vrsvddsv 2 v0d.

This solution yields the probability for an atom incide
as a nearly monochromatic wave packet to be transmi
in the excited state

Ptr
e  jssEk , V 2 ih̄Gdj2. (8)

Plots of Eq. (8) (Fig. 3) reveal the overall diminishing o
Ptr

e with g in both the tunneling (below-barrier) and a
lowed (above-barrier) regimes ofEk. Also seen in Fig. 3
is the progressive suppression withg of interference be-
tween multiply reflected excited-atom waves, resulting
smoothing out ofPtr

e oscillations as a function ofEk .
The corresponding probabilityPtr

g of the transmitted
ground-state wave packet is an incoherent sum (integ
of partial wave-packet transmission probabilitiesPv asso-
ciated with photon emission atv

Ptr
g 

Z Ek

0
dv Pv ,

Pv  F svd

s
1 2

h̄D

Ek
jsvsEk , V dj2, (9)

whereF svd  rsvdjgv j2ysD2 1 g2d. The most salient
effect of spontaneous emission is seen to be (Fig
and 3) the huge enhancement ofPtr

g as a function ofg
for atoms initially in the deep tunneling regimepL p

2msV 2 Ekd Lyh̄ . 1.
-

te

ic

t
ed

f
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. 2

FIG. 2. The energy spectrum of transmitted ground-st
atoms: Solid curve: transmission probabilityPv [Eq. (9)] (in
units of h̄yV ) for EkyV  0.8, L  2.5ldBsEkyV  1d, g 
0.05Vyh̄, veg  100Vyh̄ as a function of kinetic energy
following emission. Dashed curve: spontaneous line sha
Inset: Idem, on a small scale. Dotted curve: cavity line sha

In order to gain more insight into the above general
sults, we shall henceforth assume that the cavity linewi
h andEk satisfy the following inequalities:

jEk 2 V j ø h̄h , Ek , h̄veg, g ø h . (10)

The spectrum of spontaneous emission is then limited
jDj ø Ek and becomes Lorentzian in this range,F svd ø
LgsDd, since the spectral variation ofrsvd and jgvj2

is slow, rsvdjgv j2 ø 2pg, in accordance with the WW
approximation. Equation (6) can now be simplified, sin
Eq. (10) implies thatkvyk ø 1 andm ø 1, yielding

svsEk , V d ø ssEk 2 h̄D, V d 2 ssEk , V 2 ih̄Gd.

(11)

It is seen from Eqs. (9) and (11) that the drama
enhancement effects in the tunneling regime are d
to the first term in (11), corresponding to atoms th
have decayed to the ground state shortly after ente
the barrier and are subsequently transmitted through
barrier as unexcited atoms with kinetic energyEk 2

h̄D, which can be above the barrierif D , 0. By

FIG. 3. Transmission probabilities forg  0.025Vyh̄, veg 
100Vyh̄, and L  2.5ldBsEk  V d as a function of initial ki-
netic energy: [Eqs. (8)–(12)]. Dashed curve:Ptr

e . Thin solid
curve: Ptr

g . Thick solid curve:Ptr
tot. Dash-dotted curve: cor-

responding transmission probability of a structureless parti
Inset: The last probability andPtr

tot on a logarithmic scale in the
tunneling regime.
2911
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contrast, the second term in (11) corresponds to ato
that have decayed shortly before exiting the barrier a
having effectively been transmitted as excited ato
with the initial kinetic energyEk, whence this term is
exponentially small in the tunneling regime. The use
Eq. (11) in Eq. (9) therefore leads to the enhancemen
Pv (Fig. 2) andPtr

g (Fig. 3) due to the possibility to gain
kinetic energy from the broad vacuum field reservoir
emitting a photon detuned below the resonanceh̄veg. In
the deep tunneling regime, assuming thatg ø sV 2 Ekd,
Eqs. (9)–(11) allow us to roughly estimate that the ato
have probability of order

Ptr
g ,

Z Ek1 h̄veg

V
dE LgfsE 2 Ekdyh̄g ø

g

V 2 Ek

(12)

to jump over the barrier into the allowed energy regim
by emitting a photon withD , Ek 2 V , 0 (Fig. 2).

Under the assumptions leading to Eq. (11), along w
the approximation

p
1 2 h̄DyEk ø 1, we can obtain a

simplified expression for the total transmission probabil
Ptr

tot  Ptr
g 1 Ptr

e by extending the integration overPv in
Eq. (9) toEk  `. This yields

Ptr
totsEk , V d ø

Z `

2`

dDLgsDdjssEk 2 h̄D, V dj2


Z `

0
dt

Z `

0
dt0 e2gjt2t 0j

3 ŝpst, V dŝst0, V d, (13)

where ŝst, V d, the Fourier transform ofssE, V d, is
the impulse response (to a temporald function) for
transmission of a structureless particle, and the sim
relation e2gjtj 

R
dDe2iDtLgsDd has been used. We

thus obtain the following important result: the tot
transmission probabilityPtr

tot coincides, in the limit of
narrow spontaneous linewidthg [Eq. (10)], with the
transmission probability of a partially incoherent wav
packet of a structureless particle with coherence timeg21

(see Ref. [8]).
The following conclusions can be inferred from th

above analysis: (a) The probability distribution of th
transmitted atoms is approximately Lorentzian for final k
netic energiesEk 2 h̄D above the barrier, whereas the
counterparts below the barrier only contribute an exp
nentially small tail to this distribution. (b) The fact tha
fast atoms emerging from the barrier are almost alwa
unexcited means that the barrier acts as a “filter” th
transmits almost only atoms that have already decayed

The results of this paper open a new vista into t
transition from quantum dynamics to classicality v
decoherence by focusing on the effects of excitation de
on atomic tunneling. In the limit of negligible decayg !

0, which is realizable by detuning the cavity off resonan
with veg, the excited atomic wave packet withEk ,
2912
ms
er
s

f
of

y

s

e

th

y

le

l

e

e
i-
r
o-
t
ys
at
.
e

a
ay

e

V exhibits tunneling, which is a result of interferenc
between many classical trajectories, and is characteri
by exponentially low transmissionPtr

e [Eq. (8)]. When
g is appreciable, the wave packet is dominated by
portion that has decohered by decay into the field-mo
continuum and has thereby lost its tunneling properties:
energy spread becomes classical (statistical), giving
to a Lorentzian tail into the above-barrier energy rang
thereby allowing for enhancement of the transmissi
[Eqs. (9) and (13)]. The effects of this decoherence
barrier traversal times will be discussed elsewhere.

The results predicted here can be experimentally re
ized by a variety of cold atoms. In accord with Eq. (10
the lifetime of thejel ! jgl transition should preferably
be long, above1026 sec. A confocal cavity whose fi-
nesse is,105 and subtends a solid angle of,0.1 sr can
enhance spontaneous emission rateg by a factor of,30.
The cavity linewidthh should be much larger thang, i.e.,
preferably above 10 MHz. Correspondingly, the pote
tial energyV and the kinetic energyEk must be above
0.1 GHz, which requires the laser Rabi frequencyVesgd
and detuningde,sgd to be well within the GHz range. This
implies that the transition frequencyveg can lie anywhere
between the GHz and the optical ranges.
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