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Is There a Hot Electroweak Phase Transition atmH * mW ?
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We provide nonperturbative evidence for the fact that there is no hot first or second order electr
phase transition at large Higgs masses,mH ­ 95, 120, and 180 GeV. This means that the line of fir
order phase transitions separating the symmetric and broken phases at smallmH has an end pointmH,c.
In the minimal standard electroweak theory70 , mH,c , 95 GeV and most likelymH,c ø 80 GeV. If
the electroweak theory is weakly coupled and the Higgs boson is found to be heavier than the
value (which depends on the theory in question), cosmological remnants from the electroweak
are improbable. [S0031-9007(96)01335-X]

PACS numbers: 11.30.Qc, 11.10.Wx, 11.15.Ha, 98.80.Cq
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The transition between the high temperature symme
(or confinement) phase and the lowT broken (or Higgs)
phase in the standard electroweak theory (MSM) or
extensions is known to be of first order for small valu
of the Higgs massmH . This follows from perturbative
studies of the effective potential [1] and nonperturba
lattice Monte Carlo simulations [2–4]. In the region
applicability of the perturbative expansion the strength
the electroweak phase transition decreases whenmH in-
creases. However, the nature of the electroweak p
transition at “large” Higgs massesmH * mW remains un-
clear, since the perturbative expansion for the descrip
of the phase transition is useless there. This Letter
tains the results of the first nonperturbative lattice anal
of the problem for “large” Higgs masses,mH ­ 95, 120,
180 GeV. We shall show that the system behaves
regularly there, much like water above the critical po
As there is no distinction between liquid water and vap
there is no distinction between the symmetric and bro
phases; there is no long-range order.

In Ref. [3] it has been shown that in a weakly coup
electroweak theory and in many of its extensions (su
symmetric or not) the hot electroweak (EW) phase tra
tion can be described by an SUs2d 3 Us1d 1 Higgs model
in three Euclidean dimensions. Dimensional reduction
its own limitations, described in detail in [3]. For examp
for the MSM the 3D approximation is accurate to within
few percent for30 & mH & 250 GeV. At the lower end
of this inequality the high temperature expansion bre
down because the phase transition is very strongly
order and particle masses in the broken phase are,T [5].
The upper end is the usual condition for the applicabi
of perturbation theory in the scalar sector of the MSM.
the minimal sypersymmetric standard model (MSSM)
latter condition is satisfied automatically. Hence, the
description is valid for a wide range of the phenomenolo
cally interesting part of the parameter space of the M
and MSSM.
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Since the effects of the U(1) subgroup are perturba
deep in the Higgs phase and high in the symmetric ph
the presence of the U(1) factor cannot change the qu
tative features of the phase diagram. Thus we shall t
sinuW ­ 0. The effective Lagrangian is

L ­
1
4 Ga

ijGa
ij 1 sDifdysDifd 1 m2

3fyf 1 l3sfyfd2,
(1)

where Ga
ij is the SU(2) field strength,f is the scalar

doublet, andDi is the covariant derivative. The thre
parameters of the 3D theory (gauge couplingg2

3, scalar
self-coupling l3, and the scalar massm2

3) depend on
temperature and on the underlying 4D parameters and
be computed perturbatively; the explicit relations for t
MSM are worked out in [3] and for the MSSM in [6].

The phase structure of the theory (1) depends on
dimensionless ratio,x ­ l3yg2

3. Indeed, the dimension
ful coupling g2

3 can be chosen to fix the scale, while th
change of the second dimensionless ratioy ­ m2

3sg2
3dyg4

3
corresponds to temperature variation. Fory ¿ 1 (large
T ) the system is in the strongly coupled symmetric pha
while at y ø 21 (low T ) the system is in the weakly
coupled Higgs phase. Instead ofx andy, we use a more
physical set of variablesmp

H and Tp in presenting our
results below. The parametermp

H is the tree-level Higgs
mass in the 4D SUs2d 1 Higgs theory, andTp is the tem-
perature there. The explicit relationship betweensx, yd and
smp

H , T pd is given byx ­ 20.005 50 1 0.126 22h2, y ­
0.398 18 1 0.155 45h2 2 0.001 90h4 2 2.580 88smp

HyTpd2,
whereh ; mp

Hy80.6 GeV. For large Higgs masses,mp
H

is close to the physical pole massmH in MSM [3].
An essential point in understanding the phase struc

of the theory is the fact that the 3D SUs2d 1 Higgs theory
(as well as the underlying electroweak theory) does
have a true gauge-invariant order parameter which
distinguish the high temperature symmetric phase and
low temperature Higgs phase [7]. There is no break
or restoration of the gauge symmetry across the ph
© 1996 The American Physical Society 2887
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transition, just because physical observables are alw
gauge invariant.

In non-Abelian gauge Higgs theories on lattice, wi
matter in the fundamental representation and a fixed len
of the scalar field, the Higgs (weakly coupled) and sym
metric (strongly coupled) phases are analytically connec
[7]; this was already seen in early lattice simulations [8
This suggests the phase diagram on the (x, y) (Higgs mass,
temperature) plane shown in Fig. 1. The knowledge
the phase diagram and the value ofxc is essential for cos-
mological applications. Ifxc ­ `, the electroweak phase
transition did occur in the early Universe at the electrowe
scale independent of the parameters of the electroweak
ory. This means that substantial deviations from therm
equilibrium took place at this scale, which might leav
some observable remnants such as the baryon asym
try of the Universe (for a review see [9] and referenc
therein). In the opposite case of a finitexc the EW phase
transition never took place for a region of parameters
the underlying theory; any remnants from the electrowe
epoch would then be unlikely.

There were up to now no solid results on the phase str
ture of the continuum 3D (and, therefore, high temperat
4D) SUs2d 1 Higgs theory. Various arguments in favo
of and against finitexc are listed below.

(1) xc ­ `? The limit x ! ` corresponds formally to
g2

3 ­ 0, i.e., to the pure scalar model with SU(2) glob
symmetry. The latter is known to have a second ord
phase transition, suggesting thatxc ­ ` in the SUs2d 1

Higgs theory.
Thee expansion also predicts a first order phase tran

tion for any finite value ofx, suggesting thatxc ­ ` [10].
However, it relies on the hope thate ­ 1 is small and,
therefore, is not conclusive.

(2) xc ­ finite? The absence of a true order parame
for the gauge Higgs system is certainly consistent w
a finite xc. Moreover, because there is no symmet
breaking, the existence of a line of second order ph
transitions starting atxc is very unlikely. However, the
proof that the Higgs and symmetric phases are analytic
connected [7] refers to a lattice system with a finite cuto
and is not applicable to the continuum system we a
interested in.

FIG. 1. A schematical phase diagram for the SUs2d 1 Higgs
theory. Solid line is the phase transition and dashed lin
indicate the metastability region.
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A study of 1-loop gap equations for the SUs2d 1 Higgs
theory argues in favor of a finite value ofxc [11]. How-
ever, the analysis relies on the applicability of perturbati
theory near the phase transition point. This is known
break down atmH , mW .

In this Letter we present strong nonperturbative e
dence for the fact that the line of first order phase tra
sitions has a critical end point at a finite value ofx,
0.09 , xc , 0.17, and most likelyxc ø 1

8 . In terms of
the physical Higgs mass in the MSM this means th
the phase transition ends betweenmH ­ 70 and95 GeV,
probably nearmH ­ 80 GeV.

When mp
H # 70 GeV, both 3D and 4D [2,3] simula-

tions have established the first order nature of the tran
tion. The transition becomes weaker with increasingmp

H ,
and atmHp , 80 GeV the simulations have not been ab
to fully resolve the order of the transition [3,4]. Distin
guishing a weak first order transition from a second ord
one is a very difficult task, often requiring prohibitivel
large lattice volumes.

To answer the question whether the transition ends n
80 GeV or continues as a weak transition we perfo
simulations atmp

H . 80 GeV. If the transition isabsent
in this region, the system behaves completely regula
which is relatively simple to resolve with lattice Mont
Carlo methods.

In the present analysis we use previously publish
results atmp

H ­ 35 80 GeV [3], and add new simula-
tions at mp

H ­ 95, 120, and 180 GeV. Formp
H ­ 120

and 180 GeV we use two lattice spacingsa correspond-
ing to gauge couplingsbG ; 4ysg2

3ad ­ 8 and 12. For
120 GeV we use 6 volumes123–643 and for 180 GeV
5 volumes123–403 for both values ofbG . For mp

H ­
95 GeV we have 6 volumes up to563 at bG ­ 8. The
Monte Carlo program uses an optimized combination
heat bath and special overrelaxation updates [3]. T
simulations were mainly performed on a 4 processor C
C90. The number of new “runs”—combinations of lattic
sizes and coupling constants—performed for this analy
is 251 (in addition to the 190 old runs atmp

H # 80 GeV),
with a total CPU time of,1100 Cray CPU hours.

Among the many widely used tests of the order
the transition we shall use here (I) the finite-size scali
analysis of the order parameterfyf susceptibility and
(II) the analysis of the correlation lengths. We define t
dimensionlessfyf susceptibility

x ­ g2
3V kkk sfyf 2 kfyfld2lll, V sg2

3d3 ­ s4NybGd3,
(2)

and measure it as a function ofT p. For each volumeV
we find the provisional “transition temperature”Tp

t where
x attains its maximum valuexmax. According to the
standard finite-size scaling analysis [12], there are now
distinct possibilities: (a) In a first order phase transition t
order parameterkfyfl has a discontinuous jumpDf, and
xmax ~ VD

2
f. (b) In a second order transitionx displays

critical behavior, andxmax ~ V g , where g is a critical
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exponent. It is not excluded thatg ­ 0 for some choices
of the order parameter. (c) If there is no transition,x is
regular and remains finite whenV ! ` (on a system with
periodic boundary conditions).

First we locatexmax approximately by investigating
a wide range of temperatures with small lattices, a
perform a series of simulations around the maxim
with progressively larger lattices. Figure 2 showsxsTpd
measured from a series of lattice sizes formp

H ­ 60 and
120 GeV,bG ­ 8. In themp

H ­ 60 GeV case we observ
[3] that the quantityxmaxyV approaches a constant wh
V ! ` and the width of the peak ofxsTpdyV decreases
This is a clear signal of a first order transition (asymme
lattices were used for interface tension calculations).

The situation is markedly different whenmp
H ­

120 GeV: now the value ofxmax grows very slowly when
V increases and, within the statistical accuracy, approa
a constant. ThexsTpd data still display an unambiguou
peak at T p

t , 213 GeV, signaling that the provisiona
transition has turned into a sharp—but regular—cro
over. WhenT p . Tp

t the order parameterkfyfl remains
small, and whenTp is decreased belowTp

t , kfyfl starts
to increase rapidly.

The continuous lines with the error bands in Fig
have been obtained with the Ferrenberg-Swendsen

FIG. 2. Thefyf susceptibilityx at mp
H ­ 60 and 120 GeV

plotted as a function ofT p around the maximum for lattice
of various sizes. Note that the 60 GeV plot showsx divided
by the volume. The continuous lines with error bands re
from multihistogram reweighting; the individual Monte Car
simulation points are shown for483 and 603 lattices. The
maximum valuesxmax are plotted in Fig. 3.
nd
m

n

ic

hes

s-

2
ul-

ult

tihistogram technique. This allows us to combine seve
runs around the peak together; as an example, F
shows the individual simulation points for483, 643. The
error analysis is done with the jackknife method.

Themp
H ­ 120 GeV,bG ­ 12 case behaves quite sim

larly to the bG ­ 8 data shown here, as do themp
H ­

95 and 180 GeV cases. The maximum valuesxmax for
different mp

H are shown as a function ofV in Fig. 3.
For mp

H ­ 35, 60, and 70 GeV we use 3 different lattic
spacings (bG ­ 8, 12, 20); no systematic finite lattic
spacing effect can be observed (the scatter inmp

H ­
60 GeV is due to the large variation in lattice geometri
some volumes are long cylinders, some cubes).

The pattern of Fig. 3 very clearly suggests that
behavior of the system changes aroundmp

H ­ 80 GeV
from a first order transition to no transition or a seco
order phase transition with small or zerog. At the critical
point, we cannot yet discern the true value ofg; as an
example we plot the mean field value 2y3 in Fig. 3. A
second order transition atmp

H . 80 GeV can be ruled
out by the study of the correlation lengths of the gau
invariant composite operators, describing scalar (p) and
vector (V ) excitations,p ­ fyf, Vj ­ ifyD

$
jf.

If the transition is of second order, the jump of t
order parameterkfyfl vanishes together with the ma
of the scalar excitation. At the same time, the vec
correlation length may remain finite at the transition po
making the resolution of the nature of the transition to
numerically very difficult because of the hierarchy of t
masses. A signature of this situation is a drastic incre
of the scalar correlation length at someysxd.

If, on the contrary, there is no transition atx . xc, then
all the correlation lengths of the system are finite, a

FIG. 3. The maximum valuesxmax for different mp
H as a

function of V . The dashed lines are,V , V 2y3, V 0.
2889
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expectation values of different gauge-invariant opera
are continuous functions ofy. After some minimum size
finite volume effects become negligible. In this ca
a reliable lattice Monte Carlo analysis, which is har
possible to carry out nearxc, becomes comparatively qui
simple.

In Ref. [3] we carried out the correlation length analy
for mp

H ­ 60 and 80 GeV. For mp
H ­ 60 GeV, a jump

of the scalar and vector correlation lengths, typical of fi
order transitions, was clearly seen. Formp

H ­ 80 GeV, a
powerlike decrease of the mass of the scalar excita
with no change of the vector mass across the crit
region has been observed within error bars [3,4].

In contrast, the scalar and vector masses beh
smoothly for mp

H ­ 120 and 180 GeV and are nonvan
ishing (Fig. 4). This signals the absence of first or sec
order phase transitions. Within the statistical accura
the masses and the susceptibilityx are independent o
the lattice spacing, showing that the observed behavi

FIG. 4. The scalar and vector mass dependence on the
perature for “large" Higgs masses,mp

H ­ 120 and180 GeV.
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not a lattice artifact and persists in the continuum lim
The absence of (nearly) massless modes guarantees
the qualitative conclusions cannot be changed by
inclusion of higher order corrections coming from th
procedure of dimensional reduction. The conclusions
hence valid for the 4D high temperature theory, as wel

A long distance effective field theory near the critic
point mp

H . 80 GeV is likely to be a single componen
scalar model. This suggests that the critical point is of
3D Ising type. The explicit mapping of the couplings
the 3D SUs2d 1 Higgs theory to the standard paramete
of the Ising model (external field and temperature) is
complicated nonperturbative problem not attempted he

To summarize, we demonstrated that the Higgs a
confinement phases of 3D SUs2d 1 Higgs theory can
be continuously connected. This means that the ph
transition in weakly coupled electroweak theories is abs
in a part of their parameter space. For the minim
standard model the critical value is nearmH ­ 80 GeV.

We are grateful to Peter Arnold for helpful comments
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