
VOLUME 77, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER1996

rnia,

tropic
osmic
models

have
]

How Anisotropic is Our Universe?
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Large-scale cosmic microwave background anisotropies in homogeneous, globally aniso
cosmologies are investigated. We perform a statistical analysis in which the 4-yr data from the C
Background Explorer satellite is searched for the specific anisotropy patterns predicted by these
and thereby set definitive upper limits on the amount of shear,ssyHd0, and vorticity,svyHd0, which are
orders of magnitude stronger than previous constraints. We find that primordial anisotropy should
been fine tuned to be less than1023 of its natural value in the Planck era. [S0031-9007(96)01275-6

PACS numbers: 98.70.Vc, 98.80.Cq, 98.80.Hw
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Fluctuations in the cosmic microwave background ra
ation (CMBR) provide us with a clean and unique pro
of the structure of our Universe on both small and la
scales [1]. Current experiments are allowing us to le
about processes in the early Universe with unparalle
precision, and the prospect of future terrestrial and sa
lite missions gives us reason to hope for a clear and
curate picture of the Universe in the near future. T
main working hypothesis in our attempts to understand
Universe is that we live in what was originally a homog
neous and isotropic spacetime, the Friedmann-Robert
Walker (FRW) cosmology. The current belief is th
some physical mechanism generated perturbations (e
primordial, with inflation, or actively, with defects) tha
evolved through gravitational collapse to form the str
tures we see now. The smoothness of the CMBR se
to be consistent with such a picture.

Inflation provides the primary motivation for believ
ing that, at least in an initially homogeneous spaceti
any primordial anisotropy has been suppressed to n
gible levels. However, inflation is by no means gene
and in its absence one is likely to have commenced w
global metric perturbations that may result in a unive
that is only asymptotically Friedmann-Robertson-Walk
Bianchi models provide a generic description of hom
geneous anisotropic cosmologies. In the spirit of stu
ing an alternative to inflation, we study below the exp
imental constraints if our Universe is only asymptotica
FRW. There are distinct features depending on the ove
geometry and homogeneity class of the model [2], and
a pioneering paper, Collins and Hawking used analyt
arguments to find upper bounds on the amount of sh
(s0) and vorticity (v0) in the Universe today, from th
absence of any detected CMBR anisotropy. A deta
numerical analysis of such models [3] used experime
limits on the dipole and quadrupole to refine limits on u
versal rotation. More recently, Barrow has argued [4] t
there is no “isotropy problem” in such cosmological mo
els which are maximally anisotropic (i.e., in which she
and vorticity have decayed only logarithmically since t
Planck time): If one assumes an equipartition of ene
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between all modes of the gravitational interaction at
Planck time, then the present amplitude of CMBR flu
tuations should be compatible with current observatio
limits.

In this Letter we improve on previous bounds on t
total shear in the Universe. We use the most rec
data from the differential microwave radiometers (DM
aboard the Cosmic Background Explorer (COBE) [5]
constrain the allowed parameters of a Bianchi mode
type VIIh; this model is asymptotically close to an op
FRW universe and has the richest anisotropy struc
of the models we could consider (we do not consi
closed anisotropic models as is the case of Bianchi
As pointed out by Barrow, it is also an example of
homogeneous cosmology where the decay ins from
the Planck time to the present is minimal. During t
radiation era the anisotropic curvature of the geometry
the anistropic pressure of the collisional fluids can le
to a slow decay,ssyHd ~ s2 ln Hd21; during theV ­
1, matter dominated era,ssyHd ~ a21 and, if V ø 1,
ssyHd ~ a0.

One can describe Bianchi cosmologies in terms of
metric

gmn ­ 2nmnn 1 a2fexps2bdgABeA
meB

n , (1)

wherena is the normal to spatial hypersurfaces of hom
geneity,a is the conformal scale factor,bAB is a 3 3 3
matrix only dependent on cosmic timet, andeA

m are invari-
ant covector fields on the surfaces of homogeneity, wh
obey the commutation relationseA

m;n 2 eA
n;m ­ CA

BCeB
meC

n .
The structure constantsCA

BC can be used to classify th
different models. We shall focus on type VIIh which has
structure constantsC2

31 ­ C3
21 ­ 1, C2

21 ­ C3
31 ­

p
h. It

is convenient to define the parameterx ­
p

hys1 2 V0d,
which determines the scale on which the principal axe
shear and rotation change orientation. By taking com
nations of limits ofV andx one can obtain Bianchi I, V
and VII0 cosmologies.

We are interested in large-scale anisotropies, s
suffices to evaluate the peculiar redshift a photon will f
© 1996 The American Physical Society 2883
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from the epoch of last scattering (ls) until now (0),

DTAsr̂d ­ sr̂ iuid0 2 sr̂ iuidls 2
Z 0

ls
r̂ jr̂ksjkdt , (2)

wherer̂ ­ scosu sinf, sinu sinf, cosfd is the direction
vector of the incoming null geodesic,u is the spatial
part of the fluid four-velocity vector, and, to first orde
the shear issij ­ ≠tbij . To evaluate expression (2
one must first of all determine a parametrization
geodesics on this spacetime given in Eq. A.2 of [
Solving Einstein’s equations (and assuming that ma
is a pressureless fluid) one can determineu and sij. A
general expression for (2) was determined in [3],

DTAsr̂d ­

µ
s

H

∂
0

2
p

1 2 Vo

V0

3

Ω
fsinf0 cosu0 2 sinfls cosulss1 1 zlsdg

2
Z t0

tls

3hs1 2 V0d
V0

3 sin2ffcossud 1 sinsudg
dt

sinh4s
p

h ty2d

æ
.

(3)

As shown in [2,3], the “patterns” in such a model are e
to describe: ForV0 , 1 and a finitex one will obtain
a spiral with approximatelyN ­ 2ypx complete twists,
focused towards the axis of rotation with an angular s
of orderV0. Takingx ! ` will leave only a hotspot.

We will approach the problem of constraining t
parameters of these Bianchi models in the follow
way. For fixed values of the parametersx and V0, we
will attempt to place upper limits on the amplitude
the shearssyHd0 [or equivalently vorticitysvyHd0 [6]].
The statistics problem we face differs substantially fr
the situation encountered in placing constraints on m
standard models. In standard cosmological models,
predicted CMB anisotropy is a realization of an isotro
Gaussian random field, and its statistical properties
therefore entirely characterized by the power spect
Cl. In contrast, in the Bianchi models at least part of
CMB fluctuation comes from the large-scale anisotropy
space; this contribution to the anisotropy takes the fo
of a particular pattern on the sky, and is not described
the statistics of a Gaussian random field. We there
require different statistical techniques from those use
previous analyses.

Let DTsr̂d be the temperature fluctuation in the dire
tion of the unit vector̂r. We assume thatDT is the sum
of two contributions:DTsr̂d ­ DTAsr̂d 1 DTI sr̂d. Here
DTA is defined in (3) andDTI represents the “isotropic
residual fluctuation caused by variations in the density
gravitational potential. We callDTI isotropic because w
assume that it is described by the statistics of an isotr
Gaussian random field. That is, if we expand it in sph
ical harmonics,DTI sr̂d ­

P
l,m almYlmsr̂d, then the coef-

ficients alm are independent Gaussian random variab
2884
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with zero mean and variances given by an angular po
spectrumCl: kalmap

l0m0 l ­ Cldll0dmm0.
One can naively assume that this set of Gaussian pe

bations was generated through the amplification of qu
tum fluctuations, as in the case of inflation (however,
[7]), and it is quite conceivable that this initial set of pe
turbations is strongly biased (or antibiased) due to
large anisotropy at early times. To change our res
considerably, this would have to compensate (antico
pensate) late time evolution of the overall anisotropy
many scales, i.e., there would have to be a strong
relation between the primordialquantumgeneration of
perturbations and subsequentclassical evolution of the
different temperature variables such that they would in
fere (destructively or constructively) for many modes
the temperature autocorrelation function, something
we believe to be unlikely. Another possibility is that su
sequent evolution of perturbations will be locked in
the specific orientation of the large-scale anisotropy,
if we assume that the dominant source of perturbati
are scalar and therefore are only sensitive to the ove
volume change of the spacetime, then we can discard
hypothesis. This reasoning does not hold if the domin
source of perturbations comes from tensor modes, bu
shall not consider this possibility here.

The anisotropic componentDTA does not obey Gauss
ian statistics. Rather, for fixed values ofx, V0, and
s, we can compute the exact patternAsr̂d of the CMB
anisotropy. Unfortunately, we do not know the orien
tion of this pattern on the sky. We can say thatDTA ­
AsRr̂d, whereA is the known pattern of anisotropy an
R [ SOs3d is a 3 3 3 rotation matrix. The matrixR
can be specified by three Euler anglessu, c , wd, but we
have no knowledgea priori of the values of these angles

We will place constraints on the shear following sta
dard frequentist statistical practice. (This is in contras
the Bayesian philosophy adopted in much cosmolog
data analysis.) For any particular model, we define so
goodness-of-fit statistich that depends on the data. (T
give a simple, familiar example, when one is trying to e
timate the mean of a set of data, it is customary to cho
h to be thex2 of the data.) Having chosen our goodnes
of-fit statistic, we compute its valuehp using the actual
data. We then compute the probabilityPsh , hpd that
a random data set would have produced a value as g
a value as the actual data or better. If this probability
large, then we say that the model is inconsistent with
data. It is customary to choose a significance levelP0,
say 0.95, and say that a particular model is ruled out
that significance level ifPsh , hpd . P0.

Our choice ofh is as follows. Each pixeldi of our
data set contains contributions from both intrinsic CM
anisotropy and noise,

di ­ sDT ? Bd sr̂id 1 Ni . (4)

Here B represents the DMR beam pattern [8],r̂i is the
direction on the sky of theith data point, and the sta
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denotes a convolution. According to our model,DT
includes the two contributions andNi is the noise in pixel
i. For the COBE data, it is an excellent approximation
takeNi to be Gaussian with zero mean. The correlatio
between the noise in different pixels are negligible [9],
kNiNjl ­ s

2
i dij.

Before we give the actual definition of the statis
h, let us consider a simpler case. Suppose that
knew the geometrical parametersx, V0, and s, and
the rotation matrixR that defines the orientation of th
pattern A on the sky. Then the anisotropic partDTA

of the CMB fluctuation would be completely specifie
but the isotropic portionDTI and the noiseNi would be
completely unknown. In this situation, we could define
natural goodness-of-fit statistic in the following way. L
D

2
0 be the noise-weighted mean-square value of the da

D2
0 ­

X
i

d2
i

s
2
i

. (5)

Now let D
2
1 be the mean-square value of the residuals a

we have subtracted off the known anisotropic portion,

D2
1 ­

X
i

fdi 2 sDTA ? Bd sr̂idg2

s
2
i

. (6)

If our model is correct, then we expectD
2
1 to be smaller

than D
2
0: If we have correctly removed a portion o

the signal, then the residuals should be smaller,
average. On the other hand, if our model is incorre
then attempting to remove the anisotropic portion sho
increasethe residuals. The difference betweenD

2
0 andD

2
1

is therefore a natural choice of goodness-of-fit statistic.
practice, it is more convenient to divide byD

2
0, in order to

make the results more weakly dependent on the ampli
of the isotropic cosmological signalDTI . We therefore
define our statistic to be

h1 ­ sD2
0 2 D2

1yD2
0d. (7)

In fact, of course, we cannot use the statistic (
because we do not know the parameters necessa
determineDTA. In particular, we do not knowR or
s. (We have chosen to set up the problem as one
constrainings for fixed x andV0, so we can assume th
we know the latter two parameters.) But we can defi
a new statistich whose value is the minimum ofh1 over
the unknown parameters,

h ­ min
s,u,c ,w

h1 . (8)

The statistical task we have set ourselves is simpl
principle, although it is somewhat cumbersome compu
tionally. For fixed values of the parametersx andV0, we
must compute the valuehp of the statistic (8) for the rea
data. We must then perform Monte Carlo simulations
determine the theoretical probability distribution ofh to
see how consistent the actual value is with each theore
model. We must perform these simulations for a vari
of different values of the shears in order to see which
values ofs are consistent with the data.
o
s
o

c
e

,

a
t
a,

er

on
t,
ld

In

de

),
to

of
t
e

in
a-

to

cal
ty

Each calculation ofh involves a minimization in a
four-dimensional parameter space. Since we need
computeh repeatedly in our simulations, it is importan
to perform this calculation efficiently. We chose
reduce the numbers of pixels in the COBE data set
binning pixels together in groups of four (i.e., workin
in “pixelization level 5” rather than level 6). Since th
anisotropy patternDTA tends to have power on large
scales than either the noise or the isotropic signal,
binning does not reduce our sensitivity very much.

The task of finding the minimum in Eq. (8) is no
trivial, since the functionh1ss, u, c , wd has numerous
local minima. We use Powell’s method for findin
minima, but we have to try multiple starting points
order to be confident that we had found, if not the tr
minimum, at least a local minimum that was almost as l
as the true minimum. We chose to adopt the followi
procedure. We choosep random points in paramete
space and evaluateh1 at each. Starting from the poin
that gave the lowest value ofh1, we use Powell’s method
to find a local minimum. We then repeat this enti
procedureq times, and we take the lowest value foun
to be our statistich. After some experimentation, w
found that choosingp ­ 10 and q ­ 4 gave reasonable
results. Of course, it is essential to use precisely the s
procedure for determiningh in both the real data and th
simulations.

We perform our analysis on the 4-yr DMR data s
[5]. We use the ecliptic pixelization of the data. Befo
performing any analysis, we average together the two
GHz maps and the two 90 GHz maps to make a single
map. The averaging is performed with weights invers
proportional to the squares of the noise levels, in or
to minimize the noise in the average map. In order
reduce galactic contamination, we excise all pixels t
lie within the “custom cut” described by the COBE grou
[10]; this reduces the number of pixels in the map fro
6144 to 3890. We then remove a best-fit monopole
dipole from the map. As mentioned above, we degra
the map from pixelization level 6 to level 5, and compu
the statistich for a grid of points in theV0-x plane.

In order to convert theseh values into constraints on th
shear, we need to determine the probability distribution
h via Monte Carlo simulations. We performed simul
tions on a sample of 10 models in theV0-x plane, using
three or four values ofs for each model. For each choic
of the three parameterssV0, x, sd, we created between 20
and 500 random DMR data sets according to Eq. (4).
simplicity, we assumed that the isotropic componentDTI

of the anisotropy was given by a scale-invariant pow
spectrumC21

l ~ lsl 1 1d, although our final results ar
not very sensitive to this assumption. [Specifically, if w
steepen the power spectrum to an effectiven ­ 1.5 spec-
trum (see, e.g., [1] for a definition), the limits in Fig.
change by,20%.] We processed each sky map in th
same way as the real data to determine a value ofh.
2885
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FIG. 1. Upper bounds on shear and vorticity: contours
equalssyHd0 3 109 and log10svyHd0 are shown in the uppe
and lower panels, respectively, for a class of Bianchi Vh
models.

We found that in every case the probability distrib
tion of h was slightly skew positive and had tails th
were consistent with exponential distributions. We
termined the first three moments of each probability d
tribution, and found that each distribution was very w
approximated by a stretched, offsetx2 distribution, where
the three parameters of the distribution (stretch, off
and number of degrees of freedom) were chosen t
the three moments [11]. For points in parameter sp
where we have not performed simulations, we assume
the probability distribution is also well approximated by
stretchedx2 distribution, and we determine the three p
rameters of the distribution by smoothly interpolating b
tween the points where we have performed simulation

Having estimated the probability distribution ofh for
the various theoretical models in this way, we are abl
set limits on the shear. For each point in our grid in
V0-x plane, we determine the range of values ofs such
that Psh , hpd , 0.95. We find thats ­ 0 is always
allowed at the 95% confidence level; i.e., we do not de
shear at this level. Figure 1 shows the upper limits we
set onssyHd0 andsvyHd0 as a function ofV0 andx: for
V0 ­ 1 universes we find thatssyHd0 , 3 3 1029 [or
svyHd0 , 1026] for any x . 0.05, while for V0 , 1 the
upper bounds are even tighter.

These values are to be compared with the constra
from [3] which are typically 1 to 2 orders of magn
tude higher and relied entirely on the quadrupole:
that time Q . 7 3 1025K compared toQ . 1 2 2 3

1025K from the COBE DMR data [5]. Moreover, in dis
carding information from higher moments, their compa
2886
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son was not sensitive to the small-scale structure pre
in anisotropic models that is associated either with the s
ral pattern (which introduces power on smaller scales ax
increases) or with geometrical focusing whenV , 1 [12].

Our tighter constraints rule out the Planck equipar
tion principle for primordial global shear and vorticit
in its most general form [4]. If we consider logarith
mic decay of shear through the radiation era due to co
sionless stresses, then a rough estimate givesssyHdPl .
ssyHd0s1 1 zcurv d s1 1 zeqd21h1 1 lnsteqytPldj21 where
zcurv (zeq) is the redshift of curvature (matter) dominatio
For the “best” case ofV0 ­ 1 we obtain ssyHdPl .
1023 1024. Our argument applies to the most general
lowed set of globally anisotropic models: generic open
flat homogeneous, anisotropic but asymptotically Frie
mann models. We reiterate the two main limitatio
of our analysis: first, we are not considering the ca
of closed anisotropic (Bianchi IX) models, and secon
we are modeling additional fluctuations as anisotropic,
Gaussian field and therefore neglecting possible cross
relations with the background anisotropic geometry. W
believe that, in general, including the latter terms sho
affect our results by less than an order of magnitude.
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