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How Anisotropic is Our Universe?
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Large-scale cosmic microwave background anisotropies in homogeneous, globally anisotropic
cosmologies are investigated. We perform a statistical analysis in which the 4-yr data from the Cosmic
Background Explorer satellite is searched for the specific anisotropy patterns predicted by these models
and thereby set definitive upper limits on the amount of sieatH ), and vorticity,(w /H )y, which are
orders of magnitude stronger than previous constraints. We find that primordial anisotropy should have
been fine tuned to be less thadi* of its natural value in the Planck era. [S0031-9007(96)01275-6]

PACS numbers: 98.70.Vc, 98.80.Cq, 98.80.Hw

Fluctuations in the cosmic microwave background radibetween all modes of the gravitational interaction at the
ation (CMBR) provide us with a clean and unique probePlanck time, then the present amplitude of CMBR fluc-
of the structure of our Universe on both small and largetuations should be compatible with current observational
scales [1]. Current experiments are allowing us to learrimits.
about processes in the early Universe with unparalleled In this Letter we improve on previous bounds on the
precision, and the prospect of future terrestrial and satetotal shear in the Universe. We use the most recent
lite missions gives us reason to hope for a clear and adata from the differential microwave radiometers (DMR)
curate picture of the Universe in the near future. Theaboard the Cosmic Background Explorer (COBE) [5] to
main working hypothesis in our attempts to understand theonstrain the allowed parameters of a Bianchi model of
Universe is that we live in what was originally a homoge-type VIl,; this model is asymptotically close to an open
neous and isotropic spacetime, the Friedmann-RobertsoRRW universe and has the richest anisotropy structure
Walker (FRW) cosmology. The current belief is that of the models we could consider (we do not consider
some physical mechanism generated perturbations (eithelosed anisotropic models as is the case of Bianchi 1X).
primordial, with inflation, or actively, with defects) that As pointed out by Barrow, it is also an example of a
evolved through gravitational collapse to form the struc-homogeneous cosmology where the decayoginfrom
tures we see now. The smoothness of the CMBR seenthe Planck time to the present is minimal. During the
to be consistent with such a picture. radiation era the anisotropic curvature of the geometry or

Inflation provides the primary motivation for believ- the anistropic pressure of the collisional fluids can lead
ing that, at least in an initially homogeneous spacetimeto a slow decay(o/H) = (—InH)~'; during theQ =
any primordial anisotropy has been suppressed to negli, matter dominated erdg/H) « o~ ! and, if Q < 1,
gible levels. However, inflation is by no means generic(o/H) « a°.
and in its absence one is likely to have commenced with One can describe Bianchi cosmologies in terms of the
global metric perturbations that may result in a universeametric
that is only asymptotically Friedmann-Robertson-Walker.

Bianchi models provide a generic description of homo- Suv = —Nhuny, T az[exp(ZB)]ABeﬁef, (1)
geneous anisotropic cosmologies. In the spirit of study- _ _

ing an alternative to inflation, we study below the exper-Wheren, is the normal to spatial hypersurfaces of homo-
imental constraints if our Universe is only asymptotically 9€neity,a is the conformal scale factofss is a3 X 3
FRW. There are distinct features depending on the overalhatrix only dependent on cosmic timgande;, are invari- -
geometry and homogeneity class of the model [2], and, i@t covector fields on the surfaces of homogeneity, which
a pioneering paper, Collins and Hawking used analyticaPbey the commutation relation§,, — e\, = Cpcele€.
arguments to find upper bounds on the amount of shedfhe structure constani§s. can be used to classify the
(0p) and vorticity o) in the Universe today, from the different models. We shall focus on type YMvhich has
absence of any detected CMBR anisotropy. A detailedtructure constanté%l = CSl = 1,C§1 = C§1 = JVh. It
numerical analysis of such models [3] used experimentak convenient to define the parameter= /#/(1 — Qy),
limits on the dipole and quadrupole to refine limits on uni-which determines the scale on which the principal axes of
versal rotation. More recently, Barrow has argued [4] thashear and rotation change orientation. By taking combi-
there is no “isotropy problem” in such cosmological mod-nations of limits of() andx one can obtain Bianchi I, V,
els which are maximally anisotropic (i.e., in which shearand VIl, cosmologies.

and vorticity have decayed only logarithmically since the We are interested in large-scale anisotropies, so it
Planck time): If one assumes an equipartition of energyuffices to evaluate the peculiar redshift a photon will feel
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from the epoch of last scatterings) until now (0), with zero mean and variances given by an angular power
R N N 0 i spectrumC;: {ap,apy) = Ci18118 -
ATx(#) = (Fui)o — (Fluiis — LT oidt, (2) One can naively assume that this set of Gaussian pertur-
N

) ) ) i . bations was generated through the amplification of quan-
wheref = (cosf sin¢, sinf sin¢, cos¢) is the direction  yym flyctuations, as in the case of inflation (however, see
vector of the incoming null geodesia is the spatial [7]) and it is quite conceivable that this initial set of per-
part of the'flwd four-velocity vector, and, to f|r§t order, tyrbations is strongly biased (or antibiased) due to the
the shear iso;; = 9,B;;. To evaluate expression (2), |arge anisotropy at early times. To change our results
one must first of all determine a parametrization Ofconsiderably, this would have to compensate (anticom-
geodesics on this spacetime given in Eq. A.2 of [3].pensate) late time evolution of the overall anisotropy on
Solving Einstein's equations (and assuming that mattefyany scales, i.e., there would have to be a strong cor-
is a pressureless fluid) one can determinando;. A rejation between the primordiajuantumgeneration of

general expression for (2) was determined in [3], perturbations and subsequetiissical evolution of the

) o\ 2J1T - Q, different temperature variables such that they would inter-

ATa(F) = <E>OT fere (destructively or constructively) for many modes of
the temperature autocorrelation function, something that

X {[sindm cosfy — sing; cost (1 + z;4)] we believe to be unlikely. Another possibility is that sub-

sequent evolution of perturbations will be locked in to

_ ]TO 3h(1 — Qo) the specific orientation of the large-scale anisotropy, but
- Qo if we assume that the dominant source of perturbations
] ) dr are scalar and therefore are only sensitive to the overall
X sin2¢[cog6) + sin(9)] m} volume change of the spacetime, then we can discard this

3) hypothesis. This reasoning does not hold if the dominant
source of perturbations comes from tensor modes, but we
As shown in [2,3], the “patterns” in such a model are easyshall not consider this possibility here.
to describe: For)y < 1 and a finitex one will obtain The anisotropic componet7, does not obey Gauss-
a spiral with approximatelfv = 2/7x complete twists, ian statistics. Rather, for fixed values of Q,, and
focused towards the axis of rotation with an angular sizer, we can compute the exact pattet(¢) of the CMB
of order()y. Takingx — oo will leave only a hotspot. anisotropy. Unfortunately, we do not know the orienta-
We will approach the problem of constraining thetion of this pattern on the sky. We can say thef, =
parameters of these Bianchi models in the followingA(R#t), whereA is the known pattern of anisotropy and
way. For fixed values of the parametersand 0y, we R € SQ(3) is a3 X 3 rotation matrix. The matrixR
will attempt to place upper limits on the amplitude of can be specified by three Euler angl@s, ¢), but we
the shearo/H), [or equivalently vorticity(w/H)o [6]]. have no knowledga priori of the values of these angles.
The statistics problem we face differs substantially from We will place constraints on the shear following stan-
the situation encountered in placing constraints on moreard frequentist statistical practice. (This is in contrast to
standard models. In standard cosmological models, thine Bayesian philosophy adopted in much cosmological
predicted CMB anisotropy is a realization of an isotropicdata analysis.) For any particular model, we define some
Gaussian random field, and its statistical properties argoodness-of-fit statistigy that depends on the data. (To
therefore entirely characterized by the power spectrungive a simple, familiar example, when one is trying to es-
C;. In contrast, in the Bianchi models at least part of thetimate the mean of a set of data, it is customary to choose
CMB fluctuation comes from the large-scale anisotropy ofn to be they? of the data.) Having chosen our goodness-
space; this contribution to the anisotropy takes the fornof-fit statistic, we compute its valug. using the actual
of a particular pattern on the sky, and is not described bgata. We then compute the probabiliBfn < 7.) that
the statistics of a Gaussian random field. We therefora random data set would have produced a value as good
require different statistical techniques from those used im value as the actual data or better. If this probability is
previous analyses. large, then we say that the model is inconsistent with the
Let AT(#) be the temperature fluctuation in the direc-data. It is customary to choose a significance |eRgl
tion of the unit vectof. We assume thakT is the sum say0.95, and say that a particular model is ruled out at
of two contributions:AT(f) = AT4(f) + AT;(f). Here that significance level iP(n < 7.) > Py.
AT, is defined in (3) and\7, represents the “isotropic” Our choice ofn is as follows. Each pixell; of our
residual fluctuation caused by variations in the density andata set contains contributions from both intrinsic CMB
gravitational potential. We callT; isotropic because we anisotropy and noise,
assume that it is described by the statistics of an isotropic _ .
Gaussian random field. That is, if we expand it in spher- di = (AT * B) (f) + N;. (4)
ical harmonics AT (f) = >, aimYim(£), then the coef- Here B represents the DMR beam pattern [8],is the
ficients a;,, are independent Gaussian random variableslirection on the sky of theth data point, and the star
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denotes a convolution. According to our modd7 Each calculation ofy involves a minimization in a
includes the two contributions ard is the noise in pixel four-dimensional parameter space. Since we need to
i. For the COBE data, it is an excellent approximation tocomputen repeatedly in our simulations, it is important
take N; to be Gaussian with zero mean. The correlationdo perform this calculation efficiently. We chose to
between the noise in different pixels are negligible [9], soreduce the numbers of pixels in the COBE data set by
(NiN;j) = a,-zéij. binning pixels together in groups of four (i.e., working
Before we give the actual definition of the statisticin “pixelization level 5" rather than level 6). Since the
7, let us consider a simpler case. Suppose that wanisotropy patterlA7, tends to have power on larger
knew the geometrical parameters )y, and o, and scales than either the noise or the isotropic signal, this
the rotation matrixR that defines the orientation of the binning does not reduce our sensitivity very much.
pattern A on the sky. Then the anisotropic paktl, The task of finding the minimum in Eg. (8) is not
of the CMB fluctuation would be completely specified, trivial, since the functionn,(o, 6, ¢, ¢) has numerous
but the isotropic portiom\7; and the nois&V; would be local minima. We use Powell's method for finding
completely unknown. In this situation, we could define aminima, but we have to try multiple starting points in
natural goodness-of-fit statistic in the following way. Letorder to be confident that we had found, if not the true
A} be the noise-weighted mean-square value of the dataminimum, at least a local minimum that was almost as low
5 d? as the true minimum. We chose to adopt the following
Ay = Z o2 (5) procedure. We choose random points in parameter
s Lot _ space and evaluatg, at each. Starting from the point
Now let A7 be the mean-square value of the residuals aftefhat gave the lowest value af;, we use Powell's method
we have subtracted off the known anisotropic portion,  to find a local minimum. We then repeat this entire
5 [d; — (AT4 * B) (&) procedureq times, and we take the lowest value found
Ay = Z 2 . ) to be our statisticny. After some experimentation, we
found that choosing = 10 andg = 4 gave reasonable
If our model is correct, then we expedt to be smaller results. Of course, it is essential to use precisely the same
than Aj: If we have correctly removed a portion of procedure for determining in both the real data and the
the signal, then the residuals should be smaller, oRimulations.
average. On the other hand, if our model is incorrect, We perform our analysis on the 4-yr DMR data set
then attempting to remove the anisotropic portion shoulds]. We use the ecliptic pixelization of the data. Before
increasethe residuals. The difference betwekfiandA?  performing any analysis, we average together the two 53
is therefore a natural choice of goodness-of-fit statistic. I'GHz maps and the two 90 GHz maps to make a single sky
practice, it is more convenient to divide Ay, in order to map. The averaging is performed with weights inversely
make the results more weakly dependent on the amplituderoportional to the squares of the noise levels, in order
of the isotropic cosmological signa@l7;. We therefore to minimize the noise in the average map. In order to
define our statistic to be reduce galactic contamination, we excise all pixels that
m = (A§ — AT/AP). (7)  lie within the “custom cut” described by the COBE group
In fact, of course, we cannot use the statistic (7)'[10]; this reduces the number of pixels i|_1 the map from
because we do not know the parameters necessary 8344 to 3890. We then remove a best-fit monopole and
determineAT,. In particular, we do not knowR or ~ dipole from the map. As mentioned above, we degrade
o. (We have chosen to set up the problem as one dhe map from pixelization level 6 to level 5, and compute
constrainingo for fixed x and Qo, so we can assume that the statisticy for a grid of points in the)p-x plane.

we know the latter two parameters.) But we can define !N orderto convert thesg values into constraints on the
a new statisticy whose value is the minimum af, over shear, we need to determine the probability distribution of
the unknown parameters, n via Monte Carlo simulations. We performed simula-

NS ®) tions on a sample of 10 models in thk)-x plane, using
K a.0.0.0 m- three or four values of for each model. For each choice
The statistical task we have set ourselves is simple iof the three paramete(€, x, o), we created between 200

principle, although it is somewhat cumbersome computaand 500 random DMR data sets according to Eq. (4). For
tionally. For fixed values of the parametarand()y, we  simplicity, we assumed that the isotropic compon&
must compute the valug.. of the statistic (8) for the real of the anisotropy was given by a scale-invariant power
data. We must then perform Monte Carlo simulations tospectrumC; ' « (I + 1), although our final results are
determine the theoretical probability distribution pfto  not very sensitive to this assumption. [Specifically, if we
see how consistent the actual value is with each theoreticateepen the power spectrum to an effectives 1.5 spec-
model. We must perform these simulations for a varietytrum (see, e.g., [1] for a definition), the limits in Fig. 1
of different values of the shear in order to see which change by~20%.] We processed each sky map in the
values ofo are consistent with the data. same way as the real data to determine a valug. of
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F / " —To0. ' ' ] son was not sensitive to the small-scale structure present
ogbo @ N in anisotropic models that is associated either with the spi-
F N </> 1 ral pattern (which introduces power on smaller scales as
0.6 1.0 h increases) or with geometrical focusing when< 1 [12].
S 057 Our tighter constraints rule out the Planck equiparti-
0.4l b tion principle for primordial global shear and vorticity
Y 1 in its most general form [4]. If we consider logarith-
0.2 ] mic decay of shear through the radiation era due to colli-
’ I,/—Qﬁ e sionless stresses, then a rough estimate diwg$l)p =
\ \ \ \7a’ﬁ (U/H)O(l .+ Zcurv)(l + Zeq)il{l + In(th/tPl)}il W_her?
0.8 C‘D ~85 R Zeurv (Zeq) 1S the redshift of curvature (matter) domination.
1o &% 1 For the “best” case of)y = 1 we obtain (o/H)p =
oeH| © ‘F’O h 1073-10"*. Our argument applies to the most general al-
S 1 lowed set of globally anisotropic models: generic open or
0.4 b flat homogeneous, anisotropic but asymptotically Fried-
’ d: mann models. We reiterate the two main limitations
0.9 ’ = of our analysis: first, we are not considering the case
T of closed anisotropic (Bianchi IX) models, and second,

0.5 1.0 15 20 25 3o we are modeling additional fluctuations as iaotropic,
N Gaussian field and therefore neglecting possible cross cor-

o relations with the background anisotropic geometry. We
FIG. 1. Upper bounds on shear and vorticity: contours ofb i that. i | including the latter t hould
equal(a/H)y X 10° and log,(w/H), are shown in the upper elieve that, In general, Including the lalter terms shou

and lower panels, respectively, for a class of Bianchi,VIl affect our results by less than an order of magnitude.
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