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Nontrivial Exponent for Simple Diffusion
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The diffusion equationd,¢ = V?¢ is considered, with initial conditiong(x,0), a Gaussian
random variable with zero mean. Using a simple approximate theory we show that the probability
pa(t, 1) that ¢(x,1) (for a given space poink) changes sigm times betweery; and ¢, has the
asymptotic formp,(t;, ) ~ c,[In(t2/t,)]"(t;/t,)"?. The exponentd has predicted value8.1203,
0.1862, 0.2358 in dimensionsd = 1,2,3, in remarkably good agreement with simulation results.
[S0031-9007(96)01324-5]

PACS numbers: 05.40.+j, 82.20.—w

The diffusion equationd,¢» = V?>¢ is one of the with # = 3/8, though the proof of this is surprisingly
fundamental equations of classical physics. The exsubtle [6]. Thisd = 1 method is difficult to extend
act solution of this simple equation, for an arbitraryto higher dimensions, although values férhave been
initial condition ¢(x,0), can be written down ex- obtained numerically [1,3,4,7]. An approximate method
plicitly: ¢ (x,1) = [d?xG(x — x',1)¢(x’,0), where for general dimensions has recently been developed [7],
G(x,1) = (471)" 92 exp(—x2/41) is the Green’s function whose predictions are consistent with simulation results.
(or “heat kernel”) ind dimensions. The solution is char- In general, the nontriviality ofpo(¢) is a consequence
acterized by a single growing length scale, the “diffusionof the fact that it probes the entire history of a non-
length” L(z) ~ /2. It may come as a surprise, therefore, Markovian process.
to discover that there is a nontrivial exponent associated We begin by presenting the theoretical approach and
with this simple process. the numerical simulation results. Experimental ramifica-

It is the purpose of this Letter to point out that the so-tions will be discussed briefly at the end of the Letter.
lutions of the diffusion equation exhibit some remarkableOther contexts in which a nontrivial exponehimight be
and unexpected properties associated with their time eva@xpected will also be discussed.
lution, and to present a simple theory which accounts for The starting point for the discussion of the diffusion
this behavior. We consider specifically a class of initialequation is the expression for the autocorrelation function
conditions whereg (x,0) is a Gaussian random variable of the variableX(r) = ¢(x,1)/{¢(x,1)]*)!/? for some
with zero mean. Our basic question is the following.fixed point x. For “white noise” initial conditions,
What is the probability,(z) that the fields at a particular  {¢(x,0)¢(x,0)) = §%(x — x'), this takes the form
pointx has not changed sign up to tim® Precise numeri- _ _ 21d /4
cal simulations ind = 1 and 2, discussed below, demon- alt, ) = (X)X () = [4nn/(0 + )17 (1)
strate a power-law decay of the forpy(r) ~ +~?, with  More generally, this form is asymptotically correct pro-

6 = 0.1207 = 0.0005 for d = 1 and 0.1875 = 0.0010  vided the initial condition correlator is sufficiently short
for d = 2. We will present a simple analytic treatment ranged (it must decrease faster than— x’|~9).

which gives results in extraordinarily good agreement Introducing the new time variableT = Int,
with the simulations. Furthermore, the analysis gives the@ne sees that the autocorrelation function becomes
more general resulp,(r1,t) ~ c,[In(r2/t)] (11/t) "% a(Ty,T2) = f(T) — T»), where f(T) = [sech(T /2)]%/2.

for the probability that the field changes signtimes Thus the procesX(T) is stationary(the Gaussian nature
between:; and r,, for 1, > t;. The key idea underly- of the process ensures that all higher-order correlators
ing these results is that the Gaussian proegés ) is a  are also time-translation invariant). This is an important
Gaussiarstationaryprocess in terms of a new time vari- simplification. Note that the anticipated form of the
ableT = Int. The central assumption in the analysis isprobability of X(z) having no zeros between and 1,,

that the intervals between successive zerog ©f, 7) can  po(t1,t2) ~ (t1/t2)? for t, > t;, becomes an exponential
be treated as independent. decaypy ~ exd—6(T, — Ty)] in the new time variable.

Exponentsd analogous to that introduced above haveThis reduces the calculation of an exponent to the calcu-
recently excited much interest in other contexts [1—10]lation of a decay rate [7]. The only approximation we
The simplest such system is the= 1 Ising model shall make is that the intervals between successive zeros
at temperatureT = 0. For evolution under Glauber of X(T) are statistically independent. This “independent
dynamics from a random initial state, the probability thatinterval approximation” (I1A) was introduced in another
a given spin has not flipped up to timedecays as ¢,  context some forty years ago [11]. We shall find that it
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is an extraordinarily good approximation for the diffusion relation functionA(7), and contains all the information
equation. needed to compute the probabilities(7). We have in
As a preliminary step, we introduce the “clipped” mind, of course, to apply this approach to the diffusion
variable o = sgn(X), which changes sign at the zeros equation, whereA(T) is given by (2). For this case the
of X(z). Clearly, the correlatod(T) = (o (0)o(T)) is

determined solely by the distributid(T’) of the intervals
between zeros. The strategy is to determi{@) from
A(T), and po(T) from P(T). To this end we note first
that

A@p:%gmqany=%gw%5mhqmwmy

()

where the first equality holds for any Gaussian process.

Next, one expresse4$(T) in terms of the interval-size
distributionP(T). Clearly,

AT) = D (=1)"pu(T), 3
n=0

wherep, (T) is the probability that the interval contains
n zeros ofX(T). We defineQ(T) to be the probability
that an interval of sizel" to the right or left of a zero
contains no further zeros. The®(T) = —Q/(T). For

n = 1 one obtains immediately

T T T
2(T) =(T)7! T T,
pulT) = (T fodl an, fT
X dTn Q(TI)P(TZ - TI)P(Tn - Tn—l)

X O(T — T,), (4)

where (T) is the mean interval size.
the A by writing the joint distribution ofn succes-

mean interval siz€T'), required in (8), can be simply evalu-
ated. FoiT — 0, the probability to find a zero in the inter-
val T is justT /(T), soA(T) — 1 — 2T /{T). This gives
(T) = —2/A'(0) = 7+/8/d, using (2) in the final step.

We note a very important point at this stage. The
fact thatA’(0) is finite [i.e., f/(0) = 0 and f"(0) # 0] is
special to the diffusion equation, which allows us to use
the IIA. Physically, this means that the density of zeros is
a finite number. However, for many Gaussian stationary
processes, such as the one that arises in an approximate
treatment of the Ising model [7}/(0) # 0, implying that
A'(0) diverges. In this case, the IIA cannot be used. For
such processes, the variational and perturbative methods
developed in Ref. [7] give reasonably accurate results.

The asymptotics opo(T) are controlled by the singu-
larity of po(s) with the largest real part, i.e. [from (6)],
by the corresponding singularity #(s). The expectation
that po(T) ~ exp(—6T) suggests that this singularity is a
simple pole, i.e., thafF'(s) has a simple zero at= —6.
Using (2) in (8), and insertingl’y = 7+/8/d, gives

2 1/2 2 oo '
F(s) =1+ 7r<—> s|1 - —Sf dT exp(—sT)sin™!
d T Jo

x [sechdﬂ@ﬂ.

(9)

One has madeClearly, F(0) = 1, while F(s) diverges to—« for s —

—d/4. Between these two point&(s) is monotonic,

sive zero-crossing intervals as the product of the distribulmplying a single zero in the interval-d/4,0). Solving
tion of single intervals. Taking Laplace transforms gives(9) numerically for this zero, and identifying the result

pa(s) = [O()PLP(s)7" " /(T). BUtP(T) = —Q/(T) im-
plies P(s) = 1 — sQ(s), where we have use@(0) = 1.
Using this to eliminate) (s) gives the final result

- 1
Pn(S) _<T>S2

[t = POP[PG]" n=1, (5)

iﬂﬂww—1+mm,n=m (6)

where the result fop,(s) follows from the normalization
condition > _, p,(#) = 1, which gives > _; p.(s) =
1/s.

Finally the Laplace transform of (3) gived(s) =

with —6, gives the values ob shown in Table I. For
future reference, we note from (7) that the residuef the
corresponding pole d?(s) isR = 2/F'(—6). The values

of R, which control the amplitude of the asymptotic
decay of p,(T), are also given in Table I. Recall that
the behaviorpy(T) ~ exp(—67T) translates in “real” time

to a decay lawpo(r) ~ t~? for the probability thatp at

a given point has not changed sign. It is also easy to
extract the larget behavior ofd from Eq. (9): We find,

to leading order ini, § =~ 0.145486~/d.

TABLE I. Exponentsé from theory @) and simulations

> —o(=1)"pn(s). Performing the sum employing (5) and (g,,,), and the value of the residug (see text), for various

(6), and using the result to expreBss) in terms ofA(s),
gives the desired result

P(s) =[2 = F(5)/F(s), (7)

where

F(s) =1+ (T)/2)s[1 — sA()]. (8)

Equations (5)—(8) are a general consequence of the

independent interval approximation. The functiBs),

spatial dimensiong.

d ch Hsim R

1 0.1203 0.1207 = 0.0005 0.1277

2 0.1862 0.1875 = 0.0010 0.2226

3 0.2358 0.2380 = 0.00152 0.2940

4 0.2769 0.3527
0.3128 0.4033

aThe “d = 3" simulation result refers to @ = 1 simulation

defined by (8), is completely determined by the autocorwith correlated initial conditions (see text).
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The predicted values of were tested ind = 1 and The case of correlated initial conditions is also
2 by numerical simulations. The diffusion equation wasof interest. If the Fourier-space correlations are
discretized in space and time in the form (P (0)p_x(0)) ~ k7 for k — 0 (o > —d), the autocor-

A _ P relation function ofX(z) still has the form (1), but with
¢ilt + 1) = dit) + ag[d’f(t) ¢i(0], (10) d replaced byd + o. Since any Gaussian process is
completely specified by its autocorrelation function, it

where j runs over the nearest neighborsiobn a linear follows that@ depends only on the combinatieh+ or.

(d = 1) or square { = 2) lattice. A stability analysis 14 gptain results ford = 3 with uncorrelated initial
shows that the solution is unstable for= a. = 1/(2d). conditions, therefore, we can simulate the case 1
Preliminary studies showed that the asymptotic exponenj. _ no’ting thato = 2 corresponds in real spacé to
is independent ok for a < a,, but that a valuea = differentiating uncorrelated initial conditions (or taking

ac/2 seems to give the quickest onset O.f the "’.‘Symp.mti(finite differences on a lattice). The result from 12 runs
behavior. This value was therefore used in all S|mulat|on?|:ig 1) is & = 0.2380 + 0.0015, close to the predicted

reported here. Systems 2¥ (2*) sites were studied in . /1t0 2358
d = 1(d = 2), for times up ta2'7 (2'2). Data for longer ; '
t'?:es. |_n_d| = |2 suff?r from no'ﬂceablg gmte-s:jze Tﬁ?CtS' n zeros between times and, are also readily calculable
The initial values of¢; were chosen independently from \inin the j|A. From (5) and (6), the singularity in
a Gaussian distribution of zero mean. Using a rectangula% (s) ass = —0 is an(n + 1)th-order pole of strength

The asymptotics of the probability, (7, ) for having

distribution gave the same asymptotic exponent within th n+1/(TY92, whereR is the strength of the simple pole in

errors. Several random number generators were tried: Ajg(s). Inverting the Laplace transform, and retaining only

gave consistent results (within the errors)._ . the leading larg&- behavior, gives (for alk)
The simulation results are presented in Fig. 1. The R (RT)

data are an average of 1% & 1) and 22 ¢ = 2) pn(T) —

runs with independent initial conditions. An effective (TY6? n!
exponentd(z) is extracted from a least-squares fit of With T = In(z,/#,), one obtains
log, po against log: over fiv_e cons_ecutive values_of palt1, 1) = (R™ LT n!) [In(t2/t)] (11 /1)0 . (12)
log, 7. Th.e error bars shown in the flgu_re were Obtame%hen the timer; corresponds to the initial condition, one
from the fits. The resulting expone#tr) is then plotted has to set; equal to a constant of order unity, as was

ﬁ]galr;stl/lolgzt, wt_}ehre Serf[e IO%.t 'St the@mu::]pomt .Of implicit in the earlier treatment opy(z). Settingr, = ¢
e five values. e best estimates @f shown in one then getw, (1) ~ c,(Int)" +~%. This rather strange-

Table I, were obtained by pIottind’pp(f)_ against. log ¢ looking result does not have the scaling form found in the
and choosingd such that, after an initial transient, the | .. 1odel and in Ising systems ih= 1 and 2, where
data show no systematic upward or downward trencigne finds [5,12]p, (1) ~ ()~ f(n/{n)), with <n>'~ NG

with ncreasing’. Th(_e agreement with the theqretlcal [The exponend in those systems emerges from a singular
predictions (Table 1) is quite remarkable, showing thatbehavior of the scaling functiofi(x) asx — 0. Note that

the IIA is an extraordinarily good approximation in this in the present workn) ~ T ~ Int.]

exp(—6T). (11)

context. We turn to a brief discussion of the experimental rele-
vance of our results. The ubiquity of the diffusion equa-
tion in physics implies that applications will be many and
02T weeee e 0w ] varied. As a concrete example, however, consider the
022 - 13 reaction-diffusion procesd + B — C, where C is in-
5 ert and immobile. The corresponding rate equations for
g 0z r . : the concentrations arén,/dt = V?n, — R, dng/dt =
& ol rror T ] V2ng — R, anddnc/dt = R, whereR is the reaction rate
2 per unit volume R « nang for d > 2 [13]). The con-
8 o 1D correlated o= 1 centration differenceAn = ny — np, obeys the simple
| 1D e diffusion equation. If thed and B species are randomly
mixed at: = 0 the system evolves, fat < d. = 4,10 a
012 r m=ssse e 8 8 s ® 1 coarsening state in which the two species segregate into
04 e domains [14], separated by domain walls whose locations
0 005 01 0-11/35092%)2 025 03 035 are defined byAn = 0. Subsequent production of the in-

_ _ ert specieq is slaved to the motion of the domain walls,
FIG. 1. Effective exponents(r) plotted againstl/log, ¢ for  which are zeros of the diffusion fielln. The fraction of

the diffusion equation i = 1 (lower data set)d = 2 (middle ; ; ;
set), andd = 1 with correlated initial conditions (upper set). ;gsr%ept%?;c;}s;tsggby thé species will therefore decay

The downturn in the upper set at late times is not statisticall . .
significant (note the larger errors on the last two points). The We conclude with other examples of nontrivial expo-
best estimates of are given in Table I. nentséd which have not been addressed in the literature.
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The firstis associated with the dynamics of ¢heébalorder  (or “heat equation”) plays a role, ranging from physical
parametenM (¢) (e.g., the total magnetization of an Ising and chemical systems to fluctuations in financial markets,
ferromagnet) at a critical poirf., following a quench to and can be extended to other Gaussian processes.

T. from the high-temperature phase. The quench prepares We thank the Parallel Computing Center of the Uni-
the system in a state with random initial conditions. Inversity of Geneva for time on the Connection Machine
the subsequent evolution (now stochastic, rather than d&M200. A.B. and S.C.’s research was supported by EP-
terministic), the probability tha¥(¢) has not changed sign SRC (UK), S.M.’s by NSF Grant No. DMR-92-24290.
sincet = 0 decays ag %, whered,. is a new critical We thank I. Gruzberg, T. Newman, and S. Sachdev for
exponent[15]. For reasons similar to those given for useful discussions.

the diffusion problem, we exped, to be an indepen- Note added— After the manuscript was completed, we
dent exponent, i.e., not related by any scaling law to théearned of similar work by Derrida, Hakim, and Zei-
usual static and dynamic exponents. As a second exantak [18].
ple, one can considev/(¢) for a quench tol' = 0 from

high temperature. In this caspy(t) ~ ¢t~ %, where6,

differs from the corresponding exponent for single spins.

For thed = 1 Glauber model, for example, the probabil-

ity that M (r) has not changed sign decays with an exponent[1] B. Derrida, A.J. Bray, and C. Godréche, J. Phys.2A

0o = 1/4 [15], which differs from the exponent/8 ob- L357 (1994). _ .

tained for the zero-flip probability of a given spin [6]. [2] A.J. Bray, B. Derrida, and C. Godréche, Europhys. Lett.

As a final example, consider the generalized one- 21, 175 (1994).
ple, 9 [3] D. Stauffer, J. Phys. /27, 5029 (1994).

dimensiqnal ran_dom-V\{aIk Qquatiord”x/dt” = &), [4] B. Derrida, P. M. C. de Oliveira, and D. Stauffer, Physics
where¢ is Gaussian white noise. The cases- 1,2, ... A 224, 604 (1996).

correspond to a random velocity (the usual random 5] E. Ben-Naim, L. Frachebourg, and P. L. Krapivsky, Phys.
walk), random acceleration, etc. The first twg are Rev. E53, 3078 (1996).

#, = 1/2 and 6, = 1/4 [16], but largern have not [6] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. Lett.
been considered before to our knowledge. Application 75, 751 (1995).

of the independent interval approximation [17] gives [7] S.N. Majumdar and C. Sire, Report No. cond-
equations of the same structure as for the diffusion  Mat/9604151 (1996).

process, but witlsech?(T/2) in (2) and (9) replaced by [8] S.J. Cornell and A.J. Bray, Report No. cond-
(2 — 1/n)exp(—=T/2)2Fi[1,1 — n;1 + n;exp(=T)], 9 T%/Q?josﬁ%éélg%ﬁg 110 (1995

where, F; is the hypergeometric function. This approach [3] J. Cardy, J. Phys. ' ( )-

. . . 10] E. Ben-Naim, P.L. Krapivsky, and S. Redner, Phys. Rev.
gives 6, = 0.2647 (instead of1/4) while, for largern, [10] E50?247?1IT1994)- fapivsiy. an eaner, Fhys. Rev

0, approaches a limiting valué. = 0.1862..., i.e, the  [17] j A McFadden, IRE Trans. Inf. Theoty 14 (1957).
same exponent as the= 2 diffusion equation. In fact, [12] S.J. Comell and A.J. Bray (unpublished).

the equality of the exponents for the= <« process and [13] S.J. Cornell and M. Droz, Phys. Rev. Lef0, 3824
d = 2 diffusion can be proved exactly [17], implying a (1993); B.P. Lee and J. Cardy, J. Stat. Phg6, 971

limiting exponent0.1875 = 0.0010 (from Table 1) for (1995).
the former. [14] D. Toussaint and F. Wilczek, J. Chem. Phy8, 2642
To summarize, we have calculated the probabilityrfor (1978).

[15] S.N. Majumdar, A.J. Bray, S.J. Cornell, and C. Sire

zero crossings, between timgsandr,, of a diffusion field .
(unpublished).

at a given point in space, by assuming that the intervalfm] T.W. Burkhardt, J. Phys. 426, L1157 (1993): V.G
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predicted values of which are in excellent agreement with ~ (unpublished).
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