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The diffusion equation≠tf ­ =2f is considered, with initial conditionfsx, 0d, a Gaussian
random variable with zero mean. Using a simple approximate theory we show that the probability
pnst1, t2d that fsx, td (for a given space pointx) changes signn times betweent1 and t2 has the
asymptotic formpnst1, t2d , cnflnst2yt1dgnst1yt2d2u. The exponentu has predicted values0.1203,
0.1862, 0.2358 in dimensionsd ­ 1, 2, 3, in remarkably good agreement with simulation results.
[S0031-9007(96)01324-5]
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The diffusion equation≠tf ­ =2f is one of the
fundamental equations of classical physics. The
act solution of this simple equation, for an arbitra
initial condition fsx, 0d, can be written down ex
plicitly: fsx, td ­

R
ddx Gsx 2 x0, tdfsx0, 0d, where

Gsx, td ­ s4ptd2dy2 exps2x2y4td is the Green’s function
(or “heat kernel”) ind dimensions. The solution is cha
acterized by a single growing length scale, the “diffus
length” Lstd , t1y2. It may come as a surprise, therefo
to discover that there is a nontrivial exponent associa
with this simple process.

It is the purpose of this Letter to point out that the s
lutions of the diffusion equation exhibit some remarka
and unexpected properties associated with their time
lution, and to present a simple theory which accounts
this behavior. We consider specifically a class of ini
conditions wherefsx, 0d is a Gaussian random variab
with zero mean. Our basic question is the followin
What is the probabilityp0std that the fieldf at a particular
point x has not changed sign up to timet? Precise numeri
cal simulations ind ­ 1 and 2, discussed below, demo
strate a power-law decay of the formp0std , t2u , with
u ­ 0.1207 6 0.0005 for d ­ 1 and 0.1875 6 0.0010
for d ­ 2. We will present a simple analytic treatme
which gives results in extraordinarily good agreem
with the simulations. Furthermore, the analysis gives
more general resultpnst1, t2d , cnflnst2yt1dgn st1yt2d2u

for the probability that the field changes signn times
betweent1 and t2, for t2 ¿ t1. The key idea underly
ing these results is that the Gaussian processfsx, td is a
Gaussianstationaryprocess in terms of a new time va
able T ­ ln t. The central assumption in the analysis
that the intervals between successive zeros offsx, Td can
be treated as independent.

Exponentsu analogous to that introduced above ha
recently excited much interest in other contexts [1–1
The simplest such system is thed ­ 1 Ising model
at temperatureT ­ 0. For evolution under Glaube
dynamics from a random initial state, the probability t
a given spin has not flipped up to timet decays ast2u ,
0031-9007y96y77(14)y2867(4)$10.00
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with u ­ 3y8, though the proof of this is surprisingl
subtle [6]. This d ­ 1 method is difficult to extend
to higher dimensions, although values foru have been
obtained numerically [1,3,4,7]. An approximate meth
for general dimensions has recently been developed
whose predictions are consistent with simulation resu
In general, the nontriviality ofp0std is a consequence
of the fact that it probes the entire history of a no
Markovian process.

We begin by presenting the theoretical approach
the numerical simulation results. Experimental ramific
tions will be discussed briefly at the end of the Lett
Other contexts in which a nontrivial exponentu might be
expected will also be discussed.

The starting point for the discussion of the diffusio
equation is the expression for the autocorrelation funct
of the variableXstd ­ fsx, tdykffsx, tdg2l1y2 for some
fixed point x. For “white noise” initial conditions,
kfsx, 0dfsx0, 0dl ­ ddsx 2 x0d, this takes the form

ast1, t2d ; kXst1dXst2dl ­ f4t1t2yst1 1 t2d2gdy4. (1)

More generally, this form is asymptotically correct pr
vided the initial condition correlator is sufficiently sho
ranged (it must decrease faster thanjx 2 x0j2d).

Introducing the new time variable T ­ ln t,
one sees that the autocorrelation function becom
asT1, T2d ­ fsT1 2 T2d, where fsT d ­ fsechsTy2dgdy2.
Thus the processXsT d is stationary(the Gaussian natur
of the process ensures that all higher-order correla
are also time-translation invariant). This is an importa
simplification. Note that the anticipated form of th
probability of Xstd having no zeros betweent1 and t2,
p0st1, t2d , st1yt2du for t2 ¿ t1, becomes an exponentia
decayp0 , expf2usT2 2 T1dg in the new time variable.
This reduces the calculation of an exponent to the ca
lation of a decay rate [7]. The only approximation w
shall make is that the intervals between successive z
of XsT d are statistically independent. This “independe
interval approximation” (IIA) was introduced in anothe
context some forty years ago [11]. We shall find tha
© 1996 The American Physical Society 2867
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is an extraordinarily good approximation for the diffusi
equation.

As a preliminary step, we introduce the “clippe
variable s ­ sgnsXd, which changes sign at the zer
of Xstd. Clearly, the correlatorAsT d ­ kss0dssT dl is
determined solely by the distributionPsTd of the intervals
between zeros. The strategy is to determinePsT d from
AsT d, and p0sT d from PsTd. To this end we note firs
that

AsT d ­
2
p

sin21fasTdg ­
2
p

sin21
≥
fsech sTy2dgdy2

¥
,

(2)

where the first equality holds for any Gaussian proces
Next, one expressesAsT d in terms of the interval-size

distributionPsT d. Clearly,

AsT d ­
X̀
n­0

s21dnpnsT d , (3)

wherepnsT d is the probability that the intervalT contains
n zeros ofXsT d. We defineQsT d to be the probability
that an interval of sizeT to the right or left of a zero
contains no further zeros. ThenPsT d ­ 2Q0sT d. For
n $ 1 one obtains immediately

pnsT d ­ kT l21
Z T

0
dT1

Z T

T1

dT2 · · ·
Z T

Tn21

3 dTn QsT1dPsT2 2 T1d · · · PsTn 2 Tn21d

3 QsT 2 Tnd , (4)

where kTl is the mean interval size. One has ma
the IIA by writing the joint distribution ofn succes-
sive zero-crossing intervals as the product of the distr
tion of single intervals. Taking Laplace transforms giv
p̃nssd ­ fQ̃ssdg2fP̃ssdgn21ykTl. But PsT d ­ 2Q0sT d im-
plies P̃ssd ­ 1 2 sQ̃ssd, where we have usedQs0d ­ 1.
Using this to eliminateQ̃ssd gives the final result

p̃nssd ­
1

kTls2

£
1 2 P̃ssd

§
2
£
P̃ssd

§
n21, n $ 1 , (5)

­
1

kTls2

£
kT ls 2 1 1 P̃ssd

§
, n ­ 0 , (6)

where the result for̃p0ssd follows from the normalization
condition

P`
n­0 pnstd ­ 1, which gives

P`
n­0 p̃nssd ­

1ys.
Finally the Laplace transform of (3) gives̃Assd ­P`
n­0s21dnp̃nssd. Performing the sum employing (5) an

(6), and using the result to expressP̃ssd in terms ofÃssd,
gives the desired result

P̃ssd ­ f2 2 FssdgyFssd , (7)

where

Fssd ­ 1 1 skT ly2d sf1 2 sÃssdg . (8)

Equations (5)–(8) are a general consequence of
independent interval approximation. The functionFssd,
defined by (8), is completely determined by the autoc
2868
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relation functionAsT d, and contains all the information
needed to compute the probabilitiespnsTd. We have in
mind, of course, to apply this approach to the diffusio
equation, whereAsT d is given by (2). For this case the
mean interval sizekT l, required in (8), can be simply evalu
ated. ForT ! 0, the probability to find a zero in the inter
val T is just TykT l, so AsT d ! 1 2 2TykT l. This gives
kT l ­ 22yA0s0d ­ p

p
8yd, using (2) in the final step.

We note a very important point at this stage. Th
fact thatA0s0d is finite [i.e., f 0s0d ­ 0 andf 00s0d fi 0] is
special to the diffusion equation, which allows us to u
the IIA. Physically, this means that the density of zeros
a finite number. However, for many Gaussian stationa
processes, such as the one that arises in an approxim
treatment of the Ising model [7],f 0s0d fi 0, implying that
A0s0d diverges. In this case, the IIA cannot be used. F
such processes, the variational and perturbative meth
developed in Ref. [7] give reasonably accurate results.

The asymptotics ofp0sT d are controlled by the singu-
larity of p̃0ssd with the largest real part, i.e. [from (6)]
by the corresponding singularity ofP̃ssd. The expectation
that p0sT d , exps2uT d suggests that this singularity is
simple pole, i.e., thatFssd has a simple zero ats ­ 2u.
Using (2) in (8), and insertingkTl ­ p

p
8yd, gives

Fssd ­ 1 1 p

µ
2
d

∂1y2

s

(
1 2

2s
p

Z `

0
dT exps2sTd sin21

3

∑
sechdy2

µ
T
2

∂∏)
. (9)

Clearly, Fs0d ­ 1, while Fssd diverges to2` for s !
2dy4. Between these two pointsFssd is monotonic,
implying a single zero in the intervals2dy4, 0d. Solving
(9) numerically for this zero, and identifying the resu
with 2u, gives the values ofu shown in Table I. For
future reference, we note from (7) that the residueR of the
corresponding pole of̃Pssd is R ­ 2yF0s2ud. The values
of R, which control the amplitude of the asymptoti
decay of pnsTd, are also given in Table I. Recall tha
the behaviorp0sT d , exps2uT d translates in “real” time
to a decay lawp0std , t2u for the probability thatf at
a given point has not changed sign. It is also easy
extract the large-d behavior ofu from Eq. (9): We find,
to leading order ind, u ø 0.145 486

p
d.

TABLE I. Exponentsu from theory (uth) and simulations
(usim), and the value of the residueR (see text), for various
spatial dimensionsd.

d uth usim R

1 0.1203 0.1207 6 0.0005 0.1277
2 0.1862 0.1875 6 0.0010 0.2226
3 0.2358 0.2380 6 0.0015a 0.2940
4 0.2769 · · · 0.3527
5 0.3128 · · · 0.4033
aThe “d ­ 3” simulation result refers to ad ­ 1 simulation
with correlated initial conditions (see text).
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The predicted values ofu were tested ind ­ 1 and
2 by numerical simulations. The diffusion equation w
discretized in space and time in the form

fist 1 1d ­ fistd 1 a
X

j

ffjstd 2 fistdg , (10)

wherej runs over the nearest neighbors ofi on a linear
(d ­ 1) or square (d ­ 2) lattice. A stability analysis
shows that the solution is unstable fora $ ac ­ 1ys2dd.
Preliminary studies showed that the asymptotic expon
is independent ofa for a , ac, but that a valuea ­
acy2 seems to give the quickest onset of the asympto
behavior. This value was therefore used in all simulatio
reported here. Systems of220 (222) sites were studied in
d ­ 1 (d ­ 2), for times up to217 (212). Data for longer
times in d ­ 2 suffer from noticeable finite-size effects
The initial values offi were chosen independently from
a Gaussian distribution of zero mean. Using a rectang
distribution gave the same asymptotic exponent within
errors. Several random number generators were tried:
gave consistent results (within the errors).

The simulation results are presented in Fig. 1. T
data are an average of 17 (d ­ 1) and 22 (d ­ 2)
runs with independent initial conditions. An effectiv
exponentustd is extracted from a least-squares fit
log2 p0 against log2 t over five consecutive values o
log2 t. The error bars shown in the figure were obtain
from the fits. The resulting exponentustd is then plotted
against 1y log2 t, where here log2 t is the midpoint of
the five values. The best estimates ofu, shown in
Table I, were obtained by plottingtup0std against log2 t
and choosingu such that, after an initial transient, th
data show no systematic upward or downward tre
with increasingt. The agreement with the theoretic
predictions (Table I) is quite remarkable, showing th
the IIA is an extraordinarily good approximation in th
context.

FIG. 1. Effective exponentsustd plotted against1y log2 t for
the diffusion equation ind ­ 1 (lower data set),d ­ 2 (middle
set), andd ­ 1 with correlated initial conditions (upper set
The downturn in the upper set at late times is not statistica
significant (note the larger errors on the last two points). T
best estimates ofu are given in Table I.
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The case of correlated initial conditions is al
of interest. If the Fourier-space correlations a
kfks0df2ks0dl , ks for k ! 0 (s . 2d), the autocor-
relation function ofXstd still has the form (1), but with
d replaced byd 1 s. Since any Gaussian process
completely specified by its autocorrelation function,
follows that u depends only on the combinationd 1 s.
To obtain results ford ­ 3 with uncorrelated initial
conditions, therefore, we can simulate the cased ­ 1,
s ­ 2, noting thats ­ 2 corresponds in real space
differentiating uncorrelated initial conditions (or takin
finite differences on a lattice). The result from 12 ru
(Fig. 1) is u ­ 0.2380 6 0.0015, close to the predicted
result0.2358.

The asymptotics of the probabilitypnst1, t2d for having
n zeros between timest1 andt2 are also readily calculable
within the IIA. From (5) and (6), the singularity in
p̃nssd as s ­ 2u is an sn 1 1dth-order pole of strength
Rn11ykT lu2, whereR is the strength of the simple pole i
P̃ssd. Inverting the Laplace transform, and retaining on
the leading large-T behavior, gives (for alln)

pnsTd !
R

kTlu2

sRT dn

n!
exps2uT d . (11)

With T ­ lnst2yt1d, one obtains

pnst1, t2d ! sRn11ykTlu2n!d flnst2yt1dgn st1yt2du . (12)

When the timet1 corresponds to the initial condition, on
has to sett1 equal to a constant of order unity, as w
implicit in the earlier treatment ofp0std. Settingt2 ­ t
one then getspnstd , cnsln tdn t2u . This rather strange
looking result does not have the scaling form found in
voter model and in Ising systems ind ­ 1 and 2, where
one finds [5,12]pnstd , knl21fsnyknld, with knl ,

p
t.

[The exponentu in those systems emerges from a singu
behavior of the scaling functionfsxd asx ! 0. Note that
in the present workknl , T , ln t.]

We turn to a brief discussion of the experimental re
vance of our results. The ubiquity of the diffusion equ
tion in physics implies that applications will be many a
varied. As a concrete example, however, consider
reaction-diffusion processA 1 B ! C, where C is in-
ert and immobile. The corresponding rate equations
the concentrations arednAydt ­ =2nA 2 R, dnBydt ­
=2nB 2 R, anddnCydt ­ R, whereR is the reaction rate
per unit volume (R ~ nAnB for d . 2 [13]). The con-
centration difference,Dn ; nA 2 nB, obeys the simple
diffusion equation. If theA andB species are randoml
mixed att ­ 0 the system evolves, ford , dc ­ 4, to a
coarsening state in which the two species segregate
domains [14], separated by domain walls whose locati
are defined byDn ­ 0. Subsequent production of the in
ert speciesC is slaved to the motion of the domain wall
which are zeros of the diffusion fieldDn. The fraction of
space not infected by theC species will therefore deca
asymptotically ast2u .

We conclude with other examples of nontrivial exp
nentsu which have not been addressed in the literatu
2869
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The first is associated with the dynamics of theglobalorder
parameterMstd (e.g., the total magnetization of an Isin
ferromagnet) at a critical pointTc, following a quench to
Tc from the high-temperature phase. The quench prep
the system in a state with random initial conditions.
the subsequent evolution (now stochastic, rather than
terministic), the probability thatMstd has not changed sign
since t ­ 0 decays ast2uc , whereuc is a new critical
exponent[15]. For reasons similar to those given fo
the diffusion problem, we expectuc to be an indepen-
dent exponent, i.e., not related by any scaling law to
usual static and dynamic exponents. As a second ex
ple, one can considerMstd for a quench toT ­ 0 from
high temperature. In this case,p0std , t2u0 , whereu0

differs from the corresponding exponent for single spi
For thed ­ 1 Glauber model, for example, the probab
ity thatMstd has not changed sign decays with an expon
u0 ­ 1y4 [15], which differs from the exponent 3y8 ob-
tained for the zero-flip probability of a given spin [6].

As a final example, consider the generalized on
dimensional random-walk equationdnxydtn ­ jstd,
wherej is Gaussian white noise. The casesn ­ 1, 2, . . .
correspond to a random velocity (the usual rando
walk), random acceleration, etc. The first twoun are
u1 ­ 1y2 and u2 ­ 1y4 [16], but larger n have not
been considered before to our knowledge. Applicat
of the independent interval approximation [17] give
equations of the same structure as for the diffus
process, but withsechdsTy2d in (2) and (9) replaced by
s2 2 1ynd exps2Ty2d 2F1f1, 1 2 n; 1 1 n; exps2T dg ,
where2F1 is the hypergeometric function. This approa
gives u2 ­ 0.2647 (instead of1y4) while, for largern,
un approaches a limiting valueu` ­ 0.1862 . . ., i.e., the
same exponent as thed ­ 2 diffusion equation. In fact,
the equality of the exponents for then ­ ` process and
d ­ 2 diffusion can be proved exactly [17], implying
limiting exponent 0.1875 6 0.0010 (from Table I) for
the former.

To summarize, we have calculated the probability forn
zero crossings, between timest1 andt2, of a diffusion field
at a given point in space, by assuming that the interv
between crossings, measured in the variableT ­ ln t, are
independent. The time dependence of these probabil
is characterized by a single nontrivial exponentu, the
predicted values of which are in excellent agreement w
precise simulation results ind ­ 1, 2, and 3. These ideas
are relevant to any system where the diffusion equat
2870
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(or “heat equation”) plays a role, ranging from physic
and chemical systems to fluctuations in financial mark
and can be extended to other Gaussian processes.
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Note added.—After the manuscript was completed, w
learned of similar work by Derrida, Hakim, and Ze
tak [18].
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