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Taylor Vortices in Wide Spherical Shells
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It was believed that no Taylor vortices would exist in wide spherical shells with an aspect ratio
of B > 0.24. In contrast, we have experimentally generated Taylor vortices in a relatively wide
spherical shell with 3 = 0.33 using some special initial conditions. It is found that the Taylor vortices
remain very stable in a range of the Reynolds nunits@r< Re < 2100, once they are established, in
which, normally, the axisymmetric basic state (spherical Couette flow) is preferred. Furthermore, it is
interesting that with increasing Reynolds number the Taylor vortices become asymmetric with respect
to the equatorial plane. [S0031-9007(96)00599-6]

PACS numbers: 47.32.Cc

The flow in spherical shells is an important problem Contrary to the above definition, we report here an ex-
in fluid dynamics and geophysics. Besides some engiperimental observation of Taylor vortices in a relatively
neering applications [1], this simple system representside gap with3 = 0.33. The motivation for the present
a parade example for study of structure formation [2].study is given by the existing discrepancy between experi-
Furthermore, spherical flow is often used to investigatenental and theoretical work on describing the flow in this
dynamics of large-scale geophysical and astrophysicakgime. The linear stability analysis with the basic flow
motions in planetary interior and atmospheres [3]. In thigoresented in a series approximation of Legendre polynomi-
respect, a wide spherical shell seems generally more releds [12] predicts several critical Reynolds numbers, which
vant as, e.g., the whole mantle thickness of the major terare far below the critical onset of three-dimensional sec-
restrial planets (Earth, Venus, and Mars) is believed to bendary azimuthal waves observed in experiments. More-
about half of the outer radius. over, using a continuation method, Schrauf [9] has found

Geometrically, a spherical shell can be considered asumerically that the widest gap in which the flow with one
a combination of two other simpler systems with parallelpair of Taylor vortices exists i# =~ 0.45-0.48 depend-
disks in the pole regime and cylindrical annulus near theéng on the Reynolds number. His results were, however,
equator. This is especially the case for narrow shellsargued because a steady-state solver was used and, there-
Thus in a narrow spherical shell, as in a cylindricalfore, the solutions are not necessarily stable [4]. On the
annulus, Taylor vortices can be generated in the equatoriaither hand, we know that the (spherical) Couette flow is a
region by rotating the inner sphere above a critical valuelassical example of nonuniqueness [5]. The final state of
while the outer sphere is held at rest. These axisymmetrithe flow depends not only on the Reynolds number and the
toroidal vortices are driven by the centrifugal force.gap size, but also on the history of the flow. The classifi-
As the shell width becomes larger the interaction ofcation for the wide gapg > 0.24) of Marcus and Tuck-
the two local effects becomes dominant. The strongerman [4] is based on the fact that Taylor vortices have not
Ekman pumping at the poles similar to that betweerbeen generated in the usual way, i.e., by rotating the inner
two disks alters the flow behavior near the equatorsphere while the outer sphere is at rest. Using this initial
According to the previous experimental observation thecondition, the limit for the existence of Taylor vortex was
spherical geometry regarding the aspect ratie= d/R;  verified and slightly extended {8 = 0.25 by Egbers and
(d = R, — R;, whereR; and R, are the radii of the Rath [11]. Itis imaginable that other basins of attraction
inner and outer spheres, respectively) was divided ifn the phase space could be reached if the initial condi-
three characteristic regimes [4]: the narrow gap withtions are strongly altered by rotating the outer sphere ad-
B < 0.12, the medium gap witl).12 = 8 = 0.24, and ditionally. In fact, in a work of Belyaeet al. [13], which
the wide gap withB > 0.24. In narrow and medium is written in Russian and seems unknown to Marcus and
gaps Taylor vortices occur as the first instability (theTuckerman [4], Taylor vortices were also generated in the
difference between narrow and medium gaps consists @fap of 8 = 0.3038 with the help of the additional rota-
the different torque behavior of the Taylor vortex flow). tion of the outer sphere at the beginning. It was said that
Since the pioneering work of Sawatzki and Zierep [5], thethe generation is very difficult, but without going into any
majority of previous studies on the spherical shell flowdetails. However, the situation was, compared to Belyaev
concentrated on the medium gap [4,6—9]. In contrastet al, more challenging to us because Dumas [14] defined
little attention has been paid to the wide-gap case, whera criterion 8 < 0.3 for the mere possibility of develop-
no Taylor vortices could be observed experimentally, asng ultimately Taylor vortices in the spherical Couette flow
yet. The flow undergoes directly to three-dimensionalaccording to the length-scale analysis. By examining the
secondary waves as the first instability [10,11]. position of the local maximum in the meridional stream
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function of the basic flow, he found that f@r > 0.3 there  the outer sphere due to rotation of the outer sphere
is simply no space available to allow for the formation dominates, as sketched in Fig. 1(a). After a few minutes,
process to occur (pinched flow, Taylor vortices). the frequency of rotation of the outer sphere is reduced
The experimental apparatus used has been describedtmn, = —6 rpm. The flow becomes three dimensional; a
detail elsewhere [11]. Several sets of the spherical shellsingle spiral, as sketched in Fig. 1(b), travels azimuthally
are available. For the present stugly= 0.33 is chosen. following the outer sphere rotation. The traveling speed
The outer sphereR, = 40.00 = 0.02 mm) is made out decreases very slowly in time. After another few minutes,
of transparent acrylic plastic, and the inner sph&®e=t  the outer sphere is stopped and one pair of Taylor vortices
29.95 = 0.03 mm) of aluminum alloy. Generally, both occurs, which is axially and equatorially symmetric, as
spheres can be rotated independently by means of two bedhown in Fig. 2(a). With this procedure, which will be
drives. A silicone oil (Baysilone M3) is used as working referred to as “step method,” we succeeded in generating
fluid. The temperature of the fluid is measured by fiveTaylor vortices by abou0%. The time elapsed in the
temperature sensors (PT 1000) installed on both sphersgcond stagen, = —6 rpm) is decisive and it should be
(two on the inner sphere and three on the outer sphereabout 3 min. In this way Taylor vortices can be generated
The Reynolds number is defined with respect to the inneonly by holding the inner sphere rotation in the range of
sphere rotation as Re (27n;/60)R? /v, wheren; is the 494 = Re = 526. Later, we found that Taylor vortices
rotation rate of the inner sphere per minute (rpm), and could be induced more easily and quickly, although not
is the kinematic viscosity of the fluid. always, by a small tick of outer sphere in the counter
Small aluminum flakes0(05% by weight) are sus- direction with hand, whereby the inner sphere is held at
pended for visualization. The flow structure is observedRe = (525 = 5)%.
through the outer sphere in the area up to the colatitude Figure 3 shows the evolution of the flow as the
# = 110° (i.e., the northern hemisphere and the equatoReynolds number is changed in terms of the modes
rial region). A system with a fiber optic is applied to observed. We see that the basic state (spherical Cou-
illuminate the global flow structure, while the flow pattern ette flow) is always stable before the first instability
in the meridional cross section of the spherical annulus ign the form of the secondary waves occurs at about
additionally visualized by a light sheet technique. Re = 2800. Taylor vortices coexist in the range of about
In medium gaps various flow states could be generated70 = Re = 2100 and merge into the basic flow state
by different acceleration rates of the inner sphere fromat both Re limits. We note that the Taylor vortices are
rest to a given Reynolds number, whereas the outer spherather stable against small disturbances, once they are
remains always at rest [6]. Our search for Taylor vorticeggenerated. With the constant acceleration time of 10 sec
in B = 0.33 failed in this way. After many experiments (in which the Reynolds number is increased linearly
with very different combinations of ways allowable by from one to the other), no premature transition to the
our experimental apparatus, the Taylor vortices couldasic flow occurred by the maximum applied step size
finally be generated by first counterrotating the outerof ARe= 160. At Re= 1600 Taylor vortices become
sphere and then stepwise reducing its angular velocity tawavy and the amplitude of about four to six azimuthal
zero, as illustrated in Fig. 1. In particular, the generatingvaves grows with increasing Reynolds number until the
procedure begins with the inner sphere rotating at aortices are finally destroyed abruptly. It is unclear if
constant rate;; = 15 rpm and the outer sphere af =
—10 rpm (in counter direction of the inner sphere). In
this stage the flow is axisymmetric, and the vortex near
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FIG. 2. Experimental photographs of the Taylor vortex in

’ the northern hemisphere: (a) Equatorially symmetric mode at
FIG. 1. Upper: Generation procedure of Taylor vortices.Re = 535; (b) equatorially asymmetric mode at Re 1840.
Lower: Two typical flow configurations in the transient stage The location of the vortex is additionally depicted by bars at
at (a)n, = —10 rpm and (b)—6 rpm. the vortex boundary.
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FIG. 3. Flow modes i3 = 0.33. Mode I: spherical Couette 0.6"-
flow; mode llI: axially and equatorially symmetric Taylor vor- 0.6 - o2
tices; mode ll&: axially symmetric but equatorially asymmetric ) e ]
Taylor vortices; mode VI: three-dimensional secondary waves. 04l —— 0.5 1
’ ——025 /V, ]
02} //// l
the wave motion is induced by geometrical imperfection As/d 0ol . i
of the apparatus such as the supporting shaft of the inner
sphere located at the south pole. 02} .
In the course of experiments, a further interesting

phenomenon was observed: The Taylor vortices become 0.4r 1
asymmetric with respect to the equatorial plane as the o5l ]

Reynolds number is increased to about R&50, as ' ' ’ '
. ! . : 000
shown in Fig. 2(b) for Re= 1840. This effect has 500 1000 Re 1300 g

been observed by Biihler [8] both experimentally andFlG 4 Ch istics of ic Tavl _ hiah
numerically for the gap ofB = 0.154, but not yet . 4. aracteristics of asymmetric Taylor vortices at hig

. . ; . ! Reynolds numbers. Several runs have been carried out for
in other medium gaps. In order to investigate if they, — | see text for explanation.

magnitude of the asymmetry and its onset depend on
the step size of Re enhancemeAREe), many runs with
different ARe (An; = 0.25-5) were carried out. The
waiting time at each step is at least 3 min (the viscouke = 750, and then remains essentially constant up to
diffusion time from the inner to outer sphere is aboutabout Re= 1400. Increasing the Reynolds number fur-
30 sec, and from the pole to the equator is about 12 minther, a wholly different development in the vortex size
The relative width {/d) of the Taylor vortex in the takes place. Comparing to the displacement in Fig. 4(b)
northern hemisphere and its displacemefit fd) from  we see that a further growth of the vortex occurs when
the equatorial plane with respect to the gap width aréhe vortex is displaced in the southern hemisphere; in
shown as a function of the Reynolds number by differentontrast, the vortex size decreases when it is displaced
increasing rates of Re in Fig. 4. The measurement was the northern hemisphere. The asymmetry appears in
done on the monitor of the video records (no opticalmost cases already at Re 650, but in some cases at
correction is performed because it is not essential in thiRe = 1100 first. By reflecting the upper (positive) curves
case). It is interesting to note that Taylor vortices arein Fig. 4(b) downward, it can be seen that the bifurcation
always displaced in the southern directichs{d < 0)  follows essentially two loops. For the step sixRe = 1
when they are generated by the step method. If Tayloseveral runs are performed and it seems random, in which
vortices are generated manually, a displacement in botloop it falls.
directions was observed. A rough estimate appears that After generating Taylor vortices if8 = 0.33 experi-
the asymmetry goes northward when Taylor vortices arenentally, we have tried to simulate them numerically with
generated by Re- 525, and southward by Rel 515, the initial-value finite-difference code of Liu, Delgado,
although no difference in the Taylor vortices at thisand Rath [15]. This code was, however, developed only
low Re regime could be recognized. In one case wdor axially symmetric flows in the spherical shell. The
also observed a sign change of the displacement first ireconstruction with the conditions as in the step method
the northern and then in the southern direction as thelid not succeed in obtaining Taylor vortices, presumably
Reynolds number was increased. due to the three-dimensional nature of the flow in the sec-
From Fig. 4, no significant dependence of the vortexond stage [the axisymmetric flow structure as in Fig. 1(a)
width and the asymmetry on the step size of Re enhanceould be simulated directly]. However, with wholly dif-
ment can be recognized. The width of the Taylor vor-ferent combinations of the inner and the outer sphere rota-
tex grows quickly with the Reynolds number up to abouttion as well as the duration at each step, through trial and
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error, we have actually generated a pair of Taylor vorticeso the Taylor vortices. However, it was found that
in B = 0.33 directly from the rest initial state. the critical mode was nonsymmetric with respect to the

With the initial-value code of Livet al.[15] we also equator, which may be consistent with the asymmetric
studied the existence of the Taylor vortices in the (R, behavior of Taylor vortices at high Reynolds numbers
plane, because a steady-state solver was used by Schrdofind in our experiments.
[9] and the solution is therefore not necessarily stable In summary, we have, for the first time, found and
[4]. Our results as well as Schrauf's are shown in Fig. 5studied stable Taylor vortices in a wide spherical shell
The agreement of two curves is apparent except in th@ = 0.33 experimentally. This study partly verifies the
upper right regime. Our curve with a higher resolution ofnumerical calculations of Schrauf [9]. A further novel
25 X 120 grid points lies generally within the Schrauf's feature of Taylor vortices from this study is that the
(21 X 121). This is consistent with the estimate of vortices become asymmetric with respect to the equator
Schrauf that the higher resolution shifts the curve inwardat high Reynolds numbers. Clearly, many additional
From our calculations the widest gap in which Taylorexperiments are required in order to understand the
vortices remain stable ig8 = 0.483 (by Re= 1400). phenomena revealed in this study, for example, why
Compared to our experiments, we note that the numericahe Taylor vortices become equatorially asymmetric at
value of the lower Re limit of Taylor vortices existence high Reynolds numbers, and why the Taylor vortices
for B = 0.33 is about50 smaller than the experiment. merge into the basic state instead of persisting to higher
Moreover, we found that, in contrast to the experimentReynolds number until the first instability in the form
Taylor vortices by the numerical simulation (of course,of the secondary waves occurs. Furthermore, we need a
no equatorial symmetry is imposed numerically) alwaysmore precise apparatus with better controlled temperature
remain symmetric with respect to the equatorial plane irand rotation rate in order to quantify the initial conditions
the whole Re range studied. This may be relevant to thand the behavior of the asymmetry.
result of Buhler [8] forB = 0.154, where the equatorially This work was supported by the Deutsche Agentur fir
asymmetric mode could be simulated numerically onlyRaumfahrtangelegenheiten (DARA) and the Senator fur
with the very special initial conditions not identical to the Bildung, Wissenschaft und Kunst des Landes Bremen.
experiments.
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