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Taylor Vortices in Wide Spherical Shells
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(Received 27 November 1995)

It was believed that no Taylor vortices would exist in wide spherical shells with an aspect ratio
of b . 0.24. In contrast, we have experimentally generated Taylor vortices in a relatively wide
spherical shell withb ­ 0.33 using some special initial conditions. It is found that the Taylor vortices
remain very stable in a range of the Reynolds number467 , Re , 2100, once they are established, in
which, normally, the axisymmetric basic state (spherical Couette flow) is preferred. Furthermore, it is
interesting that with increasing Reynolds number the Taylor vortices become asymmetric with respect
to the equatorial plane. [S0031-9007(96)00599-6]
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The flow in spherical shells is an important proble
in fluid dynamics and geophysics. Besides some e
neering applications [1], this simple system represe
a parade example for study of structure formation [
Furthermore, spherical flow is often used to investig
dynamics of large-scale geophysical and astrophys
motions in planetary interior and atmospheres [3]. In t
respect, a wide spherical shell seems generally more
vant as, e.g., the whole mantle thickness of the major
restrial planets (Earth, Venus, and Mars) is believed to
about half of the outer radius.

Geometrically, a spherical shell can be considered
a combination of two other simpler systems with para
disks in the pole regime and cylindrical annulus near
equator. This is especially the case for narrow she
Thus in a narrow spherical shell, as in a cylindric
annulus, Taylor vortices can be generated in the equat
region by rotating the inner sphere above a critical va
while the outer sphere is held at rest. These axisymme
toroidal vortices are driven by the centrifugal forc
As the shell width becomes larger the interaction
the two local effects becomes dominant. The stro
Ekman pumping at the poles similar to that betwe
two disks alters the flow behavior near the equa
According to the previous experimental observation
spherical geometry regarding the aspect ratiob ­ dyRi

(d ­ Ro 2 Ri , where Ri and Ro are the radii of the
inner and outer spheres, respectively) was divided
three characteristic regimes [4]: the narrow gap w
b , 0.12, the medium gap with0.12 # b # 0.24, and
the wide gap withb . 0.24. In narrow and medium
gaps Taylor vortices occur as the first instability (t
difference between narrow and medium gaps consist
the different torque behavior of the Taylor vortex flow
Since the pioneering work of Sawatzki and Zierep [5],
majority of previous studies on the spherical shell fl
concentrated on the medium gap [4,6–9]. In contr
little attention has been paid to the wide-gap case, wh
no Taylor vortices could be observed experimentally,
yet. The flow undergoes directly to three-dimensio
secondary waves as the first instability [10,11].
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Contrary to the above definition, we report here an e
perimental observation of Taylor vortices in a relative
wide gap withb ­ 0.33. The motivation for the presen
study is given by the existing discrepancy between exp
mental and theoretical work on describing the flow in th
regime. The linear stability analysis with the basic flo
presented in a series approximation of Legendre polyno
als [12] predicts several critical Reynolds numbers, wh
are far below the critical onset of three-dimensional s
ondary azimuthal waves observed in experiments. Mo
over, using a continuation method, Schrauf [9] has fou
numerically that the widest gap in which the flow with on
pair of Taylor vortices exists isb ø 0.45 0.48 depend-
ing on the Reynolds number. His results were, howev
argued because a steady-state solver was used and, t
fore, the solutions are not necessarily stable [4]. On
other hand, we know that the (spherical) Couette flow i
classical example of nonuniqueness [5]. The final state
the flow depends not only on the Reynolds number and
gap size, but also on the history of the flow. The class
cation for the wide gap (b . 0.24) of Marcus and Tuck-
erman [4] is based on the fact that Taylor vortices have
been generated in the usual way, i.e., by rotating the in
sphere while the outer sphere is at rest. Using this ini
condition, the limit for the existence of Taylor vortex wa
verified and slightly extended tob ­ 0.25 by Egbers and
Rath [11]. It is imaginable that other basins of attracti
in the phase space could be reached if the initial con
tions are strongly altered by rotating the outer sphere
ditionally. In fact, in a work of Belyaevet al. [13], which
is written in Russian and seems unknown to Marcus a
Tuckerman [4], Taylor vortices were also generated in
gap of b ­ 0.3038 with the help of the additional rota
tion of the outer sphere at the beginning. It was said t
the generation is very difficult, but without going into an
details. However, the situation was, compared to Belya
et al., more challenging to us because Dumas [14] defin
a criterionb , 0.3 for the mere possibility of develop
ing ultimately Taylor vortices in the spherical Couette flo
according to the length-scale analysis. By examining
position of the local maximum in the meridional strea
© 1996 The American Physical Society
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function of the basic flow, he found that forb . 0.3 there
is simply no space available to allow for the formati
process to occur (pinched flow, Taylor vortices).

The experimental apparatus used has been describ
detail elsewhere [11]. Several sets of the spherical sh
are available. For the present study,b ­ 0.33 is chosen.
The outer sphere (Ro ­ 40.00 6 0.02 mm) is made out
of transparent acrylic plastic, and the inner sphere (Ri ­
29.95 6 0.03 mm) of aluminum alloy. Generally, bot
spheres can be rotated independently by means of two
drives. A silicone oil (Baysilone M3) is used as workin
fluid. The temperature of the fluid is measured by fi
temperature sensors (PT 1000) installed on both sph
(two on the inner sphere and three on the outer sphe
The Reynolds number is defined with respect to the in
sphere rotation as Re­ s2pniy60dR2

i yn, whereni is the
rotation rate of the inner sphere per minute (rpm), ann

is the kinematic viscosity of the fluid.
Small aluminum flakes (0.05% by weight) are sus-

pended for visualization. The flow structure is observ
through the outer sphere in the area up to the colatit
u ­ 110± (i.e., the northern hemisphere and the equa
rial region). A system with a fiber optic is applied
illuminate the global flow structure, while the flow patte
in the meridional cross section of the spherical annulu
additionally visualized by a light sheet technique.

In medium gaps various flow states could be genera
by different acceleration rates of the inner sphere fr
rest to a given Reynolds number, whereas the outer sp
remains always at rest [6]. Our search for Taylor vortic
in b ­ 0.33 failed in this way. After many experiment
with very different combinations of ways allowable b
our experimental apparatus, the Taylor vortices co
finally be generated by first counterrotating the ou
sphere and then stepwise reducing its angular velocit
zero, as illustrated in Fig. 1. In particular, the generat
procedure begins with the inner sphere rotating a
constant rateni ­ 15 rpm and the outer sphere atno ­
210 rpm (in counter direction of the inner sphere).
this stage the flow is axisymmetric, and the vortex n

FIG. 1. Upper: Generation procedure of Taylor vortic
Lower: Two typical flow configurations in the transient sta
at (a)no ­ 210 rpm and (b)26 rpm.
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the outer sphere due to rotation of the outer sph
dominates, as sketched in Fig. 1(a). After a few minut
the frequency of rotation of the outer sphere is redu
to no ­ 26 rpm. The flow becomes three dimensional
single spiral, as sketched in Fig. 1(b), travels azimutha
following the outer sphere rotation. The traveling spe
decreases very slowly in time. After another few minut
the outer sphere is stopped and one pair of Taylor vort
occurs, which is axially and equatorially symmetric,
shown in Fig. 2(a). With this procedure, which will b
referred to as “step method,” we succeeded in genera
Taylor vortices by about20%. The time elapsed in the
second stage (no ­ 26 rpm) is decisive and it should b
about 3 min. In this way Taylor vortices can be genera
only by holding the inner sphere rotation in the range
494 # Re # 526. Later, we found that Taylor vortice
could be induced more easily and quickly, although n
always, by a small tick of outer sphere in the coun
direction with hand, whereby the inner sphere is held
Re ­ s525 6 5d%.

Figure 3 shows the evolution of the flow as th
Reynolds number is changed in terms of the mo
observed. We see that the basic state (spherical C
ette flow) is always stable before the first instabil
in the form of the secondary waves occurs at ab
Re ­ 2800. Taylor vortices coexist in the range of abo
470 # Re # 2100 and merge into the basic flow sta
at both Re limits. We note that the Taylor vortices a
rather stable against small disturbances, once they
generated. With the constant acceleration time of 10
(in which the Reynolds number is increased linea
from one to the other), no premature transition to t
basic flow occurred by the maximum applied step s
of DRe ø 160. At Re ø 1600 Taylor vortices become
wavy and the amplitude of about four to six azimuth
waves grows with increasing Reynolds number until
vortices are finally destroyed abruptly. It is unclear

FIG. 2. Experimental photographs of the Taylor vortex
the northern hemisphere: (a) Equatorially symmetric mode
Re ­ 535; (b) equatorially asymmetric mode at Re­ 1840.
The location of the vortex is additionally depicted by bars
the vortex boundary.
287
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FIG. 3. Flow modes inb ­ 0.33. Mode I: spherical Couette
flow; mode III: axially and equatorially symmetric Taylor vo
tices; mode IIIa: axially symmetric but equatorially asymmetr
Taylor vortices; mode VI: three-dimensional secondary wav

the wave motion is induced by geometrical imperfecti
of the apparatus such as the supporting shaft of the in
sphere located at the south pole.

In the course of experiments, a further interest
phenomenon was observed: The Taylor vortices beco
asymmetric with respect to the equatorial plane as
Reynolds number is increased to about Re­ 650, as
shown in Fig. 2(b) for Re­ 1840. This effect has
been observed by Bühler [8] both experimentally a
numerically for the gap ofb ­ 0.154, but not yet
in other medium gaps. In order to investigate if t
magnitude of the asymmetry and its onset depend
the step size of Re enhancement (DRe), many runs with
different DRe (Dni ­ 0.25 5) were carried out. The
waiting time at each step is at least 3 min (the visco
diffusion time from the inner to outer sphere is abo
30 sec, and from the pole to the equator is about 12 m
The relative width (syd) of the Taylor vortex in the
northern hemisphere and its displacement (Dsyd) from
the equatorial plane with respect to the gap width
shown as a function of the Reynolds number by differ
increasing rates of Re in Fig. 4. The measurement
done on the monitor of the video records (no optic
correction is performed because it is not essential in
case). It is interesting to note that Taylor vortices a
always displaced in the southern direction (Dsyd , 0)
when they are generated by the step method. If Ta
vortices are generated manually, a displacement in b
directions was observed. A rough estimate appears
the asymmetry goes northward when Taylor vortices
generated by Re. 525, and southward by Re, 515,
although no difference in the Taylor vortices at th
low Re regime could be recognized. In one case
also observed a sign change of the displacement firs
the northern and then in the southern direction as
Reynolds number was increased.

From Fig. 4, no significant dependence of the vor
width and the asymmetry on the step size of Re enhan
ment can be recognized. The width of the Taylor v
tex grows quickly with the Reynolds number up to abo
288
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FIG. 4. Characteristics of asymmetric Taylor vortices at hi
Reynolds numbers. Several runs have been carried out
Dni ­ 1. See text for explanation.

Re ­ 750, and then remains essentially constant up
about Re­ 1400. Increasing the Reynolds number fu
ther, a wholly different development in the vortex siz
takes place. Comparing to the displacement in Fig. 4
we see that a further growth of the vortex occurs wh
the vortex is displaced in the southern hemisphere;
contrast, the vortex size decreases when it is displa
in the northern hemisphere. The asymmetry appears
most cases already at Reø 650, but in some cases a
Re ø 1100 first. By reflecting the upper (positive) curve
in Fig. 4(b) downward, it can be seen that the bifurcati
follows essentially two loops. For the step sizeDRe ­ 1
several runs are performed and it seems random, in wh
loop it falls.

After generating Taylor vortices inb ­ 0.33 experi-
mentally, we have tried to simulate them numerically wi
the initial-value finite-difference code of Liu, Delgado
and Rath [15]. This code was, however, developed o
for axially symmetric flows in the spherical shell. Th
reconstruction with the conditions as in the step meth
did not succeed in obtaining Taylor vortices, presumab
due to the three-dimensional nature of the flow in the s
ond stage [the axisymmetric flow structure as in Fig. 1
could be simulated directly]. However, with wholly dif
ferent combinations of the inner and the outer sphere ro
tion as well as the duration at each step, through trial a
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error, we have actually generated a pair of Taylor vorti
in b ­ 0.33 directly from the rest initial state.

With the initial-value code of Liuet al. [15] we also
studied the existence of the Taylor vortices in the (Re,b)
plane, because a steady-state solver was used by Sc
[9] and the solution is therefore not necessarily sta
[4]. Our results as well as Schrauf’s are shown in Fig
The agreement of two curves is apparent except in
upper right regime. Our curve with a higher resolution
25 3 120 grid points lies generally within the Schrauf
(21 3 121). This is consistent with the estimate
Schrauf that the higher resolution shifts the curve inwa
From our calculations the widest gap in which Tay
vortices remain stable isb ­ 0.483 (by Re­ 1400).
Compared to our experiments, we note that the nume
value of the lower Re limit of Taylor vortices existen
for b ­ 0.33 is about50 smaller than the experimen
Moreover, we found that, in contrast to the experime
Taylor vortices by the numerical simulation (of cours
no equatorial symmetry is imposed numerically) alwa
remain symmetric with respect to the equatorial plane
the whole Re range studied. This may be relevant to
result of Bühler [8] forb ­ 0.154, where the equatorially
asymmetric mode could be simulated numerically o
with the very special initial conditions not identical to th
experiments.

We have also tried to generate Taylor vortices
the presently available next wider spherical shell w
b ­ 0.5. No stable Taylor vortices could be establish
although they have often been observed at the in
phase after manually rotating the outer sphere. This m
confirm the numerical results.

The linear stability analysis in [12] for the onl
(very wide) spherical shell ofb ­ 1 shows a critical
Reynolds number at 325. We note that this value
extrapolated because for Re. 225 numerical difficulties
were encountered in the integration of the system
nonlinear ordinary differential equations governing t
basic flow. It is therefore unclear if this mode correspon

FIG. 5. Existence regime of the Taylor vortices based on
numerical simulation. Dashed line is results of Schrauf [9].
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to the Taylor vortices. However, it was found th
the critical mode was nonsymmetric with respect to t
equator, which may be consistent with the asymme
behavior of Taylor vortices at high Reynolds numbe
found in our experiments.

In summary, we have, for the first time, found an
studied stable Taylor vortices in a wide spherical sh
b ­ 0.33 experimentally. This study partly verifies th
numerical calculations of Schrauf [9]. A further nov
feature of Taylor vortices from this study is that th
vortices become asymmetric with respect to the equa
at high Reynolds numbers. Clearly, many addition
experiments are required in order to understand
phenomena revealed in this study, for example, w
the Taylor vortices become equatorially asymmetric
high Reynolds numbers, and why the Taylor vortic
merge into the basic state instead of persisting to hig
Reynolds number until the first instability in the form
of the secondary waves occurs. Furthermore, we nee
more precise apparatus with better controlled tempera
and rotation rate in order to quantify the initial condition
and the behavior of the asymmetry.
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