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Construction of the Strong Coupling Expansion for the Ground State Energy of the Quatrtic,
Sextic, and Octic Anharmonic Oscillator via a Renormalized Strong Coupling Expansion

Ernst Joachim Weniger*

Institut fur Physikalische und Theoretische Chemie, Universitat Regensburg, D-93040 Regensburg, Federal Republic of Germany
(Received 10 November 1995

A recently developed renormalized strong coupling expansion [E.J. Weniger, Ann. Phys. ZK6Y.)
133 (1996)] is employed to compute the coefficients of the standard strong coupling expansion for the
ground state energy of the quartic, sextic, and octic anharmonic oscillator. This approach is very simple,
both conceptually and technically, and produces more accurate results than previously used techniques
which were in most cases applied to the quartic case only. [S0031-9007(96)01319-1]
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Rayleigh-Schrodinger perturbation theory expresses adanke and Kleinert [12]. Very good results were also ob-
eigenvalue of a Hamiltonia# (8) = H, + BV as afor- tained by Guardiolat al. [10] who computed coefficients
mal power series if8. Frequently, such a series divergesK,g’” with m = 2,3,4,5.
for everyB # 0 and has to be summed [1]. #&is small, It is the purpose of this Letter to demonstrate that the
this can often be accomplished, for instance, by Padé apnoefficientsK,g’") can be computed via some remarkably
proximants or by the Borel method. Unfortunately, sum-simple intermediate steps directly from the coefficients
mation techniques for power series do not worg iis very b,(j"> of the weak coupling expansion (2). The_starting
large, because then the terms diverge individually. Thuspoint is a renormalization scheme introduced Gizek
alternative summation methods for the troublesome strongnd Vrscay [13] and worked out by Vinette a@izek
coupling regime are needed. [14]. This renormalization scheme replacgse [0, «)

The anharmonic oscillators, which are defined by theby a renormalized coupling constante [0, 1) [14]:

Hamiltonians
K

1
AmB) = p* + 22+ ¥, m=23.4,...., (1) B= g G- mr Mm=234 @)

are well suited to illustrate these problems. The wea

; : : = — ny/om-l1
coupling perturbation series mere,Bm m(2m — HN/2m,

" In this schem/e, the Hamiltonian (1) is transformed
EM(g) = S pimgn 2 into (1 — x)"2{p? + 2% + (k/B,) [#*" — B,x*].
#) ,;) " P @ ConsequentlyE™)(B) can be expressed as follows [3]:

for the ground state energy eigenvalé”(g) of the EM(B) =1 - k) V2EM (). (5)
Hamiltonian (1) diverges quite strongly for evegy # 0,
since the coefficient$ grow essentially like([m —
1ln)! asn — o [2]. If B is small, this series can be
summed by a variety of methods, but # is large, a
straightforward summation of this power series is not
possible [3].

With the help of Symanzik scaling, the Hamiltonian
(1) can be transformed into an equivalent HamiltonianThe coefficientsc"™ can be computed via nonlinear dif-
Bl/mID[p2 4 g=2/mFDg2 4 $2m][ 4]. Consequently, ference equations [3]. However, they can also be com-
E™)(B) possesses also the strong coupling expansion  puted from the coefficients™ in Eq. (2). In the weak

°° coupling expansion (2)8 is substituted according to
E™M(B) = pY/mth Y gmpgan/mth), (3)  Eq. (4), and the produdtl — «)/2E™(B) is expanded

The renormalized ground state ene@g")(fc) possesses
the following weak coupling perturbation expansion [3]:

ES (k) = > M, 6)
n=0

n=0 in powers ofk. Comparison with Eq. (6) yields
which converges if3 is sufficiently large [4].
Hence, the use of this expansion in the strong coupling o) i ((m + Dv = 11/2),—, b )
regime is in principle very desirable. Unfortunately, the " b (n — v)! [B,]" "

computation of the coefficients!™ is very difficult, since

the eigenvalues and eigenfunctions of the HamiltoniarHere,(((m + 1)» — 1]/2),—, is a Pochhammer symbol.
p? + 2¥™ are not known in closed form. Consequently, The renormalized perturbation expansion (6) diverges
alternative techniques for the computation of the coeffi-almost as strongly as the weak coupling expansion (2) and
cientsK,(z’"> had to be developed [5—12]. In the quartic has to be summed [3,15,16]. Thus, its main advantage
case fn = 2), the so far best results were obtained byseems to be the bounded domain«of However, there
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are several advantageshf”) () is computed via Eq. (5). ized strong coupling expansion (9) converges in a neigh-

For example, Eq. (4) implies that borhood ofk = 1. Moreover, there is strong numerical
Lm+1) s evidence that this series converges also #o+= 0 and
B ~(1 =K% B (8)  hence for allk € [0, 1] (Tables 5, 7, and 8 of Ref. [18]).

Thus, E®(B) can for all physically relevang € [0, )

)12
The prefactor(l — «) in Eq. (5) guarantees that the rl13e computed by the convergent perturbation expansion

terms ar(ml) partial sums o1;/t2he reno(rr)nalized perturbatio
series EM(B) = (1 — k)~ n—o C\M k" possess the . 13 = ol .
correct asyr'f\ptotic behavior z%%—? %, Thispgreatly fa- EMB) = (1 =) 2 T~ «)". (11)
cilitates summation even for small values®13,17,18]. n=0

Moreover, EX")(K) is finite at k = 1 and can be This perturbation expansion makes the computation of
computed by summing the renormalized perturbationE™ () almost trivial (Tables 6—8 of Ref. [18]). Its only
series (6). In contrastE™(B) diverges according to disadvantage is that for a giveg the corresponding
Eq. (3) like g'/m*) as B — . This has far-reaching renormalized coupling constant has to be computed
consequences. For example, the infinite coupling limitdy solving the nonlinear equation (4). Otherwise, it is
km = limg_ EM(B)/BY+1) which is identical with ~even more convenient than the strong coupling expansion
the ground state eigenvalue of the Hamiltonfan+ £ (3) which only converges ifg is sufficiently large.
and with the leading ternky" of the strong coupling With the help of the strong coupling expansion (11),
expansion (3), cannot be computed by a straightforwar&ffeCt'V,e characteristic polynomials and two-point Padé
summation of the weak coupling expansion (2). However@PProximants foiz)(3) could also be constructed [24].
k,, can be computed comparatively easily by summing the From Ea. (4) we immediately obtain
renormalized perturbation expansion (6) [3,15,16]. Bt (g ATV )2t

It is even possible to compute higher derivatives

of Efgm)(fc) at k = 1 via the renormalized perturbation Obviously, 3~%*1 can be expressed as a convergent

expansion (6). Consequently, it makes sense to expreggpwer series inl — «x, and the expansions (3) and

(12)

E;Qm)(;() by a Taylor expansion arouned = 1 [18]: (11) are closely related. The coefficieanﬁm) can be
m computed from the coefficientd™ and vice versa.

Eg")(,() - Z rm — k), (9) In the strong coupling expansion (3 is substituted

er according to Eq. (4), and the produdt — «)!/2E™(B)

o ] is expanded in powers of — k. Comparison with
The coefficientsI'"™ can be computed by summing the Eq. (6) yields

following divergent series [18]: .
F(m) _ Z[Bm](ZV—l)/(m+1)

ron — % S+ D, (10) =
v=0 v ((21/ - 1)/(’71 + 1))11—VK(m) 13
Padé approximants are not powerful enough to sum this (n — v)! o (13)

series effectively, in particular in the sextia (= 3) and

octic (n = 4) case. Much better results were obtainedThus, the coefficientsl",ﬁ'”) can be computed from the
with the help of the sequence transformati&j’w’)(g, Sn) coefficientsK,(z’”. However, Eq. (13) can also be inter-
[Eq. (8.4-4) of Ref. [19]], which is able to sum effec- preted as a system of linear equations for the coefficients
tively many strongly divergent quantum mechanicalk("™). It can be solved recursively starting Wim()'") =
perturbati_on e_xpansions _[3,15—1_8,20] and divergenEBm]l/(m1)I~(()m), if the coefficientsl“flm) are known.
asymptotic series for special functions [19-21]. Further In Tables | and I coefficientx,gm) of the strong cou-

. (n) .
details ond, '({,s,) and related transformations can be pling expansion (3) for the ground state energy of the quar-
found in Refs. [3,16—-19], in Sec. 2.7 of the book bytic, sextic, and octic anharmonic oscillator are listed. They
Brezinski and Redivo Zaglla [22], or in an article by Roy, were Computed via Eq (13) from those Coef‘ficieﬁﬁg),

Bhattacharya, and Bhowmick [23]. . which are listed in Tables 2—4 of Ref. [18]. The resulting
In Ref. [3], the renormalized coefficiens§” with n = system of linear equations was solved USIPLE.
200, ¢® with n = 165, and ¢¥ with n = 139 were In the quartic case, very accurate results could be ob-

computed using the exact rational arithmeticsveLE.  tained. The coefficient&® in Table | are clearly more
Using these coefficients, the strong coupling coefficientsiccurate than the coefficients in the second column of Ta-
I'? with n =< 20, I with n = 9, andT'{Y with n =5 ple IV of Guardiolaet al.[10]. The coefficientsa, in
could be computed by summing the divergent series (10fable | of Janke and Kleinert [12], which satisfy, =
(Tables 2-4 of Ref. [18]). K® /20273 differ at most in the last two digits from

It can be proven thaEfgm)(K) is analytic atk = 1 the more accurate coefficients in Table I. However, it is
(Theorems 1 and 2 of Ref. [18]). Hence, the renormalnot easy to decide whether the summation method used in
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TABLE .

Coefficientsk? of the strong coupling expansion

(3) for the ground state energy®(B) of the quartic anhar-
monic oscillator, using the coefficienet;‘;z) with n = 200 of the
weak coupling expansion (2).

TABLE Il

the quartic anharmonic oscillator.

Convergence of the partial sums of the strong
coupling expansion (3) for the ground state eneB§)(B3) of

n B=1/5 B=1

n K®

1 0 0.620103512 1.060362 090484 182900
0 1.060362090484 182899647046 016692661 1.239153534 1.422384 739272859 745
1 0.362022648 788676845644 761000340732 1.066 602220 1.387874 476549650629
2 —0.03451026272320911651185498905510 3 1.142 558 007 1.393069 779260560 143
3 0.005195302710909514 585377 423303574 1.107040334 1.392238944814 251 829
4 —0.00083083444630831483811900570275 5 1.123179322 1.392368 056722012 484
5 0.000129111907 760655 436 096 641 966 256 1.116 421382 1.392349567 258571732
6 —0.00001848946344075167493741010091 7 1.118840640 1.392351830923332301
7 0.000002 263 664 760568 938 396 637 753 158 1.118250727 1.392351642 151317 408
8 —0.00000018877201489339945149779696 9 1.118191115 1.392351635627 446 336
9 —0.00000000652387107206325808365165 10 1.118398 864 1.392 351 643402 955565
10 0.000000007 775509229 188590 256 4388111 1.118220058 1.392351641114233679
11 —0.00000000228872188643277091681536 12 1.118331979 1.392351641604174104
12 0.000000004899404250539781295708413 1.118275814 1.392 351641520089 496
13 —0.000000000084 084 6075182235136051 14 1.118297 334 1.392351641531107 828
14 0.00000000001101833156107190896 15 1.118293195 1.392351 641530383034
15 —0.0000000000007247939928992581 16 1.118290653 1.392351641530230821
16 —0.0000000000001522121780682847 17 1.118294 492 1.392351 641530309448
17 0.000000000000078626634 169299 18 1.118291 440 1.392 351641530288 069
18 —0.000000000000021 379266380 19 1.118293291 1.392 351 641530292503
19 0.000000000000004 43415229 20 1.118292403 1.392351641530291775
20 —0.0000000000000007280303 Exact

1.118292 654

1.392351641 530291 856

this Letter or the method of Janke and Kleinert [12] givesk® and k¥ in Table I are slightly more accurate than
better results in the quartic case. Here, the coefficientthe coefficients in the third and fourth columns of Ta-
cff) with n = 200 were used, whereas Janke and Kleinertble IV of Guardiolaet al. [10], but not nearly as accurate
apparently used the coefficients” with n < 251 [see as the coefficient&® in Table I.
the text following Eq. (19) of Ref. [12]]. Nevertheless, the coefficieni® and K in Table I
Table lll shows that the partial sums of the strongare by no means useless. In Tables IV and V it is shown
coupling expansion (3) converge fer = 2 remarkably that the partial sums of the strong coupling expansion (3)
rapidly for coupling constants as small As= 1. provide in the sextic and octic case remarkably accurate
The infinite series (10) foﬂ“,(j") diverges much more approximations to the ground state energy.
strongly in the sextic and octic than in the quartic case. Thus, the coefficients!(,(l"’) of the strong coupling ex-
Moreover, fewer coefficientsﬁz”’) were available in sextic pansion (3) can be computed directly from the coefficients
and octic than in the quartic case. Thus, the coefficientéf[” of the weak coupling expansion (2). In the first step,
the coefficientsdzm) of the renormalized weak coupling

TABLE Il. Coefficients K and k¥ of the strong coupling

expansion (3) for the ground state energie§)(8) and TABLE IV. Convergence of the partial sums of the strong
EW(B) of the sextic and octic anharmonic oscillator, using coupling expansion (3) for the ground state enefsy(3) of
the coefficientsc® with n = 165 and ¢ with n = 139,  the sextic anharmonic oscillator.

respectively, of the weak coupling expansion (2).

n B =1/5 B =1 B =4
n K? K 0 0.765575542  1.144802454  1.618995156
0 1 144,802 453 80 12758146 L 1.226023793  1.452722758  1.836727691
1 0.307 920303 73 09771245 2 1164026002  1.434181093  1.830172223
5 0018541 66432 —00l26346 3 1175687795  1.435740835  1.830447948
3 0.001 550 742 20 0.0007510 4 1173616352  1.435616934  1.830436998
1 0.000123901 17 00000387 5 1173914373  1.435624906  1.830437 350
c 0.000007 97195 0.0000013 6 1173891998  1.435624639  1.830437343
o 0,000 000 267 67 7 1173887302  1.435624613  1.830437343
7 0.000000 025 12 8 1173889936  1.435624620  1.830437 343
8 0.000 000 006 3 9 1173889001  1.435624619  1.830437343
9 —0.000000001 Exact  1.173889345  1.435624619  1.830437344
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TABLE V. Convergence of the partial sums of the strongL. Skala and JCizek. A manuscript is in preparation.
coupling expansion (3) for the ground state eneBf§(3) of
the octic anharmonic oscillator.

n B =1/5 B =1 B =4

0 0.88844 1.22581 1.61747 *Present address: Department of Applied Mathematics,
1 1.27080 1.50294 1.82749 University of Waterloo, Waterloo, Ontario N2L 3G1,
2 1.23762 1.49030 1.82199 Canada, weniger@theochem.uwaterloo.ca
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