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Existing quantum cryptographic schemes are not, as they stand, operable in the presence of nois
on the quantum communication channel. Although they become operable if they are supplemented b
classical privacy-amplification techniques, the resulting schemes are difficult to analyze and have no
been proved secure. We introduce the concept of quantum privacy amplification and a cryptographic
scheme incorporating it which is provably secure over a noisy channel. The scheme uses an
“entanglement purification” procedure which, because it requires only a few quantum controlled-
not and single-qubit operations, could be implemented using technology that is currently being
developed. [S0031-9007(96)01288-4]
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Quantum cryptography [1–3] allows two parties (tr
ditionally known as Alice and Bob) to establish a sec
random cryptographic key if, first, they have access t
quantum communication channel, and second, they
exchange classical public messages which can be m
tored but not altered by an eavesdropper (Eve). Us
such a key, a secure message of equal length ca
transmitted over the classical channel. However, the
curity of quantum cryptography has so far been pro
only for the idealized case where the quantum chan
in the absence of eavesdropping, isnoiseless. That is
because, under existing protocols, Alice and Bob de
eavesdropping by performing certain quantum meas
ments on transmitted batches of qubits and then u
statistical tests to determine, with any desired degre
confidence, that the transmitted qubits are not entan
with any third system such as Eve. The problem is t
there is in principle no way of distinguishing entang
ment with an eavesdropper (caused by her measurem
from entanglement with the environment caused by in
centnoise, some of which is presumably always presen

This implies that all existing protocols are, strict
speaking, inoperable in the presence of noise, since the
quire the transmission of messages to be suspended w
ever an eavesdropper (or, therefore, noise) is detec
Conversely, if we want a protocol that is secure in the pr
ence of noise, we must find one that allows secure tra
mission to continue even in the presence of eavesdrop
To this end, one might consider modifying the existing p
tocols by reducing the statistical confidence level at wh
Alice and Bob accept a batch of qubits. Instead of
astronomically high level envisaged in the idealized pro
col, they would set the level so that they would accept m
batches that had encountered a given level of noise. T
0031-9007y96y77(13)y2818(4)$10.00
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would then have to assume that some of the informa
in the batch was known to an eavesdropper. It seems
sonable that classical privacy amplification [4] could th
be used to distill, from large numbers of such qubits, a k
in whose security one could have an astronomically h
level of confidence [5]. However, no such scheme has
been proved to be secure. Existing proofs of the securit
classical privacy amplification apply only to classical co
munication channels and classical eavesdroppers. The
not cover the new eavesdropping strategies that bec
possible in the quantum case: for instance, causing a q
tum ancilla to interact with the encrypted message, stor
the ancilla and later performing a measurement on it tha
chosen according to the data that Alice and Bob excha
publicly.

In this paper we present a protocol that is sec
in the presence of noise and an eavesdropper. It
entanglement-based quantum cryptography [2], but wit
new element, an “entanglement purification” procedu
This allows Alice and Bob to generate a pair of qubits in
state that is close to a pure, maximally entangled state,
whose entanglement with any outside system is arbitra
low. They can generate this from any supply of pairs
qubits in mixed states with nonzero entanglement, e
if an eavesdropper has had access to those qubits
also [6,7]).

Our procedure—aquantum privacy amplificationalgo-
rithm—(abbreviated as QPA algorithm) can be perform
by Alice and Bob at distant locations by a sequence of
cal operations which are agreed upon by communica
over a public channel. It is related to the procedure
scribed in [8], but is more efficient.

In the idealized theory of entanglement-based quan
cryptography, Alice and Bob have a supply of qubit pai
© 1996 The American Physical Society
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each pair being in the pure, maximally entangled s
jf1l, where

jf6l ­
1

p
2

sj00l 6 j11ld ,

jc6l ­
1

p
2

sj01l 6 j10ld .
(1)

These are the so-called “Bell states” which form a c
venient basis for the state space of a qubit pair. A
and Bob each have one qubit from each pair. In the p
ence of noise, each pair would in general have become
tangled with other pairs and with the environment, a
would be described by a density operator on the sp
spanned by (1).

Note that any two qubits that are jointly in a pu
state cannot be entangled with any third physical obj
Therefore any algorithm that delivers qubit pairs
pure states must also have eliminated the entanglem
between any of those pairs and any other system.
scheme is based on an iterative quantum algori
which, if performed with perfect accuracy, starting w
a collection of qubit pairs in mixed states, would disca
some of them and leave the remaining ones in st
converging tojf1l kf1j.

Our first departure from existing quantum cryptograp
schemes is to assume that Evedoesinteract with all the
qubits that are transmitted or received by either Alice
Bob. Indeed we analyze the scenario that is most fa
able for eavesdropping, namely where Eve herself is
lowed to prepare all the qubit pairs that Alice and B
will subsequently use for cryptography. Any realistic si
ation would also involve environmental noise that is n
under Eve’s control, but this may be treated as a spe
case in which Eve is not using the full information ava
able to her.

Suppose, then, that Eve has prepared two qubit pai
some manner of her own choosing and sends one q
from each pair to both Alice and Bob. Let the dens
operators of the two pairs bêr andr̂0, respectively. Alice
performs a unitary operation

j0l !
1

p
2

sj0l 2 ij1ld , (2)

j1l !
1

p
2

sj1l 2 ij0ld (3)

on each of her two qubits; Bob performs the inve
operation

j0l !
1

p
2

sj0l 1 ij1ld , (4)

j1l !
1

p
2

sj1l 1 ij0ld (5)

on his. If the qubits are spin-1
2 particles and the compu

tation basis is that of the eigenstates of thez components
of their spins, then the two operations correspond, res
tively, to rotations bypy2 and2py2 about thex axis.
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Then Alice and Bob each perform two instances of t
quantum controlled-not operation

control
jal

target

jbl !
control
jal

target

ja © bl sa, bd [ h0, 1j , (6)

where one pairsr̂d comprises the two control qubits an
the other onesr̂0d the two target qubits [9]. Alice and
Bob then measure the target qubits in the computatio
basis (e.g., they measure thez components of the targets
spins). If the outcomes coincide (e.g., both spins up
both spins down) they keep the control pair for the ne
round and discard the target pair. If the outcomes do
coincide, both pairs are discarded.

To see the effect of this procedure, consider the spe
case in which each pair is in statêr and the joint state
of the two pairs is the simple productr̂ ≠ r̂. This case
will suffice for our applications. We express the dens
operatorr̂ in the Bell basishjf1l, jc2l, jc1l, jf2lj and
denote byhA, B, C, Dj the diagonal elements in that basi
Note that the first diagonal elementA ­ kf1jr̂jf1l,
which we call the “fidelity,” is the probability that the
qubit would pass a test for being in the statejf1l. Thus
we wish to drive the fidelity to 1 (which implies tha
the other three diagonal elements go to 0). Now, in
case where the control qubits are retained, their den
operator r̂˜ will have diagonal elementshÃ, B̃, C̃, D̃j
which depend on averageonly on the diagonal elements o
r̂ (the average is taken over the two different coincide
outcomes, e.g., both spins up and both spins out):

Ã ­
A21B2

N ,

B̃ ­
2CD

N ,

C̃ ­
C21D2

N ,
(7)

D̃ ­
2AB
N ,

whereN ­ sA 1 Bd2 1 sC 1 Dd2 is the probability that
Alice and Bob obtain coinciding outcomes in the me
surements on the target pair. That is, if the procedure
carried out many times on an ensemble of such pairs
pairs, thenÃ, B̃, C̃, andD̃ give the average diagonal en
tries of the surviving pairs. Note that if the averageÃ is
driven to 1 then each of the surviving pairs must individ
ally approach the pure statejf1l kf1j.

In passing, we note that if the two input pairs havedif-
ferentstatesr̂ andr̂0 with diagonal elementshA, B, C, Dj
andhA0, B0, C0, D0j, respectively, then the retained contr
pairs will, on average, have diagonal elements given b

Ã ­
AA01BB0

N ,

B̃ ­
C0D1CD0

N ,

C̃ ­
CC01DD0

N ,
(8)

D̃ ­
AB01A0B

N ,

where N ­ sA 1 Bd sA0 1 B0d 1 sC 1 Dd sC0 1 D0d,
which generalizes (7).
2819
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Suppose that Eve has providedL pairs of qubits, with
density operatorŝr1, r̂2, . . . , r̂L. This is not to say that
their overall density operator is necessarily of the prod
form

r̂1 ≠ r̂2 ≠ · · · ≠ r̂L (9)

for Eve may have prepared them in an entangled s
However, let us consider first the case in which the p
are not entangled with each other, i.e., the overall s
is of the form (9) above. Alice and Bob know nothin
about the state preparation, they are simply presented
an ensemble ofL pairs of qubits from which they can (
they wish) estimate the average density operatorr̂ave:

r̂ave ­ 1
L sr̂1 1 r̂2 1 · · · 1 r̂Ld , (10)

which characterizes the ensemble of pairs.
Alice and Bob now select pairs at random from t

ensemble of provided pairs and apply the QPA proced
to pairs of these selected pairs. Thus we may setr̂ ­
r̂ave in (7) and we are in effect studying the properties
the map 0BBB@

A
B
C
D

1CCCA !

0BBB@
Ã
B̃
C̃
D̃

1CCCA ­
1
N

0BBB@
A2 1 B2

2CD
C2 1 D2

2AB

1CCCA . (11)

hÃ, B̃, C̃, D̃j in (11) gives the average diagonal entr
for the states of the surviving pairs, i.e., the diago
entries of the average density operator of the ensem
of surviving pairs. Therefore the repeated applicat
of the QPA procedure—generating successive ensem
of surviving pairs—corresponds to iteration of the m
in (11).

Several interesting properties of this map can be ea
verified. For example, if at any stage the fidelityA
exceeds1

2 , then after one more iteration, it still exceeds1
2 .

Although A does not necessarily increase monotonica
our target point,A ­ 1, B ­ C ­ D ­ 0, is a fixed point
of the map and is the only fixed point in the regionA .

1
2 .

It is a local attractor. We have been unable to obta
proof that it is also a global attractor in the regionA .

1
2 ,

but we have verified this by computer simulation.
other words, if we begin with pairs whose average fide
exceeds1

2 , but which are otherwise in an arbitrary sta
(unentangled with each other), then the states of p
surviving after successive iterations always converge
the unit-fidelity pure statejf1l. Since this is a pure stat
none of the surviving pairs is, in the limit, entangled w
any other system.

To illustrate the behavior of the iteration in Fig.
we plot the fidelity as a function of the initial fidelit
and the number of iterations, in cases whereA .

1
2 and

B ­ C ­ D initially.
The above analysis applies to the case in which

does not entangle the pairs with each other [c.f. Eq. (
2820
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FIG. 1. Average fidelity as a function of the initial fidelit
and the number of iterations.

However, if Eve provides pairs whichare entangled
with each other, then Eq. (11) no longer holds, and
QPA iterations may or may not converge to the pu
state jf1l kf1j. Nevertheless it isnever of advantage
to Eve to entangle pairs with each other: Eve kno
that Alice and Bob will apply the QPA procedure to th
distributed pairs. In the course of the QPA iteratio
Alice and Bob will periodically check the average fideli
of the surviving pairs, which is achieved by purely loc
operations and classical communication between th
Thus they determine whether they have achieved
acceptably high fidelity. If Eve provides pairs which a
entangle with each other then the QPA procedure m
not converge. In this case the protocol will force Alic
and Bob to discard the entire transmission, and Eve
merely in effect blocking the quantum channel. (Th
would also be the case if, for example, she distribu
pairs unentangled with each other, but havingA ,

1
2 .)

On the other hand, if Eve provides pairs whichdo
converge tojf1l kf1j (at an acceptable rate, i.e., at lea
the rate corresponding to the starting values ofA, B,
C, and D, which can be measured before starting t
QPA procedure), then the QPA procedure is effective
excluding Eve despite the initial entanglement betwe
the pairs. Thus Eve never benefits from providing pa
which are entangled with each other, and hence the ab
analysis suffices to prove the security of the protocol.

The QPA procedure is rather wasteful in terms
discarded particles—at least on half of the particles (
ones used as targets) are lost at every iteration.
efficiency of the procedure (i.e., the ratio of the numb
of surviving pairs to the number of initial pairs) depen
on the final fidelity required and on the initial stat
As an example, in Fig. 2(a) we plot the efficiency as
function of the initial fidelityA (taking B ­ C ­ D), for
purification to fidelity 0.99, and in Fig. 2(b) we sho
the number of iterations used. The efficiency of o
scheme compares very favorably with the entanglem
purification scheme as described in [8], and it can
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FIG. 2. States withB ­ C ­ D are purified up to a fidelity
of 0.99. (a) The efficiency of the purification as a function
the initial fidelity A. (b) The number of iterations used in th
QPA procedure as a function of the initial fidelity.

directly applied to purify states which are not necessa
of the Werner form [10].

Even though the efficiency of our procedure may
low in many cases, it nevertheless establishes that th
exist unconditionally secure quantum key distributio
protocols. This is in contrast to recent claims [1
that quantum bit commitment protocols can never
unconditionally secure.

The QPA procedure is capable of purifying a collectio
of pairs in any statêr of the product form (9), whose
average fidelity with respect to at least one maxima
entangled state (i.e., a Bell state or a state obtained f
a Bell state via local unitary operations) is greater than1

2
(because any state of that type can be transformed
jf1l via local unitary operations [12]). If we denot
by B a class of pure, maximally entangled states (
generalized Bell states) then the condition that the s
r̂ can be purified using the QPA procedure is

max
f[B

kfjr̂jfl .
1
2 . (12)

Note that this condition is not equivalent to the Horodec
condition [13] characterizing mixed states which c
violate a generalized Bell inequality (CHSH inequali
[14]). Indeed there exist mixed states which satisfyboth
our condition (12)and the CHSH inequalities. Thus th
QPA algorithm reveals a more complete characterizat
of nonlocality than that given by Bell’s theorem (c.f. als
[6,7,15–17]). We hope to elaborate this in a forthcomi
paper.

The practical implementation of the QPA procedu
would require efficient quantum controlled-not gates o
erating directly on information carriers. Perhaps the m
promising implementation of gates of this type (in th
QPA context) is the one proposed by Turchetteet al. [18].
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It operates on polarized photons and allows the polar
tion of the target photon to be rotated depending on
polarization of the control photon. Although the curre
efficiency of the device is quite low, recent experimen
progress in this field raises hopes for a successful Q
experiment in the not too distant future.
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