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Ordering Temperatures and Critical Exponents in Ising Spin Glasses
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We propose a numerical criterion which can be used to obtain accurate and reliable values of the
ordering temperatures and critical exponents of spin glasses. Using this method we find a value of the
ordering temperature for theeJ Ising spin glass in three dimensions which is definitely nonzero and
in good agreement with previous estimates. We show that the critical exponents of three-dimensional
Ising spin glasses do not obey the usual universality rules. [S0031-9007(96)01198-2]

PACS numbers: 75.10.Nr, 75.40.Mg

The full explanation of the universality rules for critical near neighbor interactions on a simple cubic lattice, which
exponents in second order transitions through the renohas been the subject of a considerable amount of Viigrk,
malization group theory is one of the most impressivehas been estimated in two ways. Ogielski [3] studied in
achievements of statistical physics. The universality rulesnassive simulations the divergence of the spin glass sus-
for such transitions state that the critical exponents deeeptibility, correlation length, and relaxation time of the
pend only on the space dimensiaghand a few basic autocorrelation function
parameters: the number of order parameter components
n, the symmetry, and the range of the Hamiltonian [1]. q() = (Si(1)S;(0)) (1)

No other parameters are pertinent. In fact, it is knownin order to estimatd’, and the critical exponents. How-
that there are exceptions to universality—in certain tWo-ever, his analysis has been questioned because of the
dimensional 2d) Ising systems with regular frustration, possibility of ambiguities in the manner of identifying
the critical eXponentS vary Continuously with the value Ofa divergence, if nhonconventional tempera‘ture dependen_
a control parameter [2]. As far as we are aware, no resuligies are invoked [4]. Bhatt and Young [5] used a finite
of this type have been reported in any three-dimensionajze scaling technique; they measured the Binder cumu-
(3d) family of Ising systems; it has been tacitly assumedant for the fluctuations of the equilibrium autocorrelation

that nonuniversality is very exceptional. function

As compared to standard second order transitions, the .
situation concerning Ising spin glasses (ISGs) is much gL = 1 3 _ {q*) )
less clear; indeed the history of ISG simulations has 2 (g?)?

been plagued by technical difficulties associated with long . .

relaxation times. For two decades the very existence &S @ function of sample size. The curvesg,(T) for

a finite temperature transition in thi/ ISG has been differentZ should all intersect &f; in the 3d = J ISG

hotly contested: as it is obviously essential to have £aS€ the curves indeed intersected but did not appear

reliable value of the ordering temperature before obtaining® fan out below the apparerf,. Only recently have

accurate critical exponent estimates, it has been difficult t§1t€nsive numerical studies shown that a weak fanning out

make stringent numerical tests of universalitin1SGs.  at low temperatures really does occur [6,7]. Even with
We will present a numerical criterion which can in results of high s_tatlstlcal accuracy at hand, Kawgshlma

favorable cases provide precise and reliable values for tfa"d Young [6] give a number of caveats concerning the

ordering temperaturg, and for the critical exponents of a 'Nterpretation of their own data. o _

spin glass, with a moderate level of computational effort, We will _descrlbe_an alternative criterion for determin-

If an independent estimate of the ordering temperature &9 Tg- First, scaling rules [3] tell us that for a large

available the criterion leads to a convenient method fosample in thermal equilibrium &t, the relaxation of the

estimating the exponents. We stugly ISGs with various ~ utocorrelation function takes the form

sets of interactions, and we conclude from the data that g(t) = Ar™* 3)

the3d = J interaction ISG has a well-defined nonzé&ip

which can be estimated accurately, and that universalityith the exponentr related to the standard static and

in the usual sense does not holdi ISGs. dynamic exponentg andz through
It would appear probable that glassy transitions in gen- d—2+
eral have a much richer critical behavior than conven- x = 2—” 4
Z

tional second order transitions.
Thus, technically, the most difficult problem in numeri- Second, the out of equilibrium relaxation of two ran-

cal ISG studies is the correct identification of the tran-domly chosen replicad and B of the same sample to-

sition temperaturd’,. For the3d ISG with random=J  wards equilibrium af, depends on another combination
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of the same exponents [8]. The out of equilibrium spin 0.70 . - : 0.70

glass susceptibility is defined as a b)
xsc(t) = [(SHDSE 1)1, (5) 0.50 f { os0 % ]

and it increases with time a& with

~—

030 | 1 030} ]
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e (6)
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Suppose we takéT;}, a series of trial values fof,;
from measurements of and z on large samples at each %7 ' ' 0.70 '
T; we can deduce from Egs. (4) and (6) a set of apparent <) d)
or effective exponents 0.50 | N 1™ |
4x — h(d — 2)
T)= —F7—""—"—" 7 30 b { 030} .
1 (T) T+ h , (7) 0.30 0.30
T) = d 8 0.10 . : 0.10 . .
2(T) = % + h (8) 7075 08 095 105 065 0.75 0.85

Finally, in another set of simulations on the sameFIG. 1. 7, (o) and 7, () vs T for various distributions.
system at different (small) sample sizeésfrom standard (@) =J, (b) uniform, (c) Gaussian, and (d) decreasing expo-
finite size scaling rules [5] for the fluctuations in the nNential. Note that the scale on theaxis is different for each
autocorrelation function in equilibrium dt, we have plot. - Error bars on individuah points are about-0.02.

LT Hg?) = L7, (®)  data [6]. The difficulty in applying thi
. y in applying this latter method to

If we again take a series of trial values®f and fit the the3d *=J ISG case is that thg, (T') curves lie very close
results using this form at eadh we will obtain a second together belowrl’, so the intersection point is sensitive to
series of apparent exponent valuggT). (This type of fit  small changes in individual; curves. Even with extreme
will only be appropriate close to and beldiy; at higher  statistical accuracy, small corrections to finite size scaling
T another factor appears on the right-hand side [5].) (invoked as a possibility in [6]) can change the apparent

We now plot 7 (T) and n,(T) againstT; for consis- position of the intersection point significantly. The results
tency the curves must intersect at the point®,), which  of Ref. [6] could be rendered consistent with the present
represents the true critical exponeptand ordering tem- analysis if theg; values for the smallest samples studied
peratureT, of the system. At this temperature and thiswere affected by corrections to finite size scaling at the
temperature only the functional forms of Egs. (3), (6),1% level.
and (9) should be exact; at neighboring temperatures these The present method is much less sensitive to problems
forms are only approximate, but closeTg they will be  of systematics than are either of the other techniques
adequate to parametrize the numerical data. Qnces  outlined above. First, bothx and i are determined
fixed by the intersection we can obtainusing thez(7)  using “large” samples, so finite size corrections should
curve given above, and with known and7, we can go be unimportant [8,9]. Second; is measured out of
on to fit(¢?) data for temperatures abo¥e to obtain the equilibrium and so is not subject to the problems of
exponentry. From scaling relations, once we dispose oflong equilibration times. The fact that no preparatory
n andv all other static exponents are determined. anneal is required also means that the measurements

We show in Fig. 1 estimates fo(T) and 7,(T) are economical in computer time. The measurements of
for the 3d *J ISG calculated using data taken from x need careful equilibration, but systematic tests using
the literature:x(T) from [3], A(T) from [8,9], and the successively longer preliminary anneals allow one to
spin glass susceptibilities for different assumed valuesbtain reliable values. Numerical data [3,9] show that
of T, (T, = 1.0 from the data given in [5]T, = 1.1l  in ISGs ¢(r) already takes on the asymptotic form,
from [6], and T, = 1.175 from [3]). There is a well- Eq. (3), from quite early times = 2 MCS (Monte Carlo

defined crossing point witlf, = 1.165 = 0.01 andn =  steps), and that sample to sample variations in the values
—0.245 = 0.02. Using the curve forz(T) from Eq, (8) of x are small so extensive averaging over very large
we estimate = 6.0 = 0.2. numbers of samples (an essential condition for good

The values obtained in this way are at least as preg; data) is unnecessary. Thus the cumgT) can be
cise as previous estimates and are very close to the ceastablished accurately with moderate numerical effort and
tral values given by Ogielski [3]7, = 1.175 = 0.025,  minimal systematic error. For the finite size scaling data
n = —0.22 * 0.05, z = 6.0 = 0.8), corroborating his from which 7,(T) is deduced, thorough equilibration
analysis. On the other hand, tifig is marginally out- is necessary, but by studying pairs of replicas [5] and
side the error bars quoted by Kawashima and Younggain testing with increasing anneal times it is easier to
(T, = 1.11 = 0.04) who use extensive Binder cumulant obtain accurate values ¢§*(¢)) than the combination of
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moments which constitute the Binder cumulant. Again,size correction, so the values can be taken as definitive
the sample to sample variability is much less {gf())  (apart from statistical errors), but measurements on larger
than for the Binder cumulant. In th&d *J ISG the samples could modify they,(T) curves marginally. It
two curves n((T) and n,(T) intersect cleanly, Fig. 1, can be seen that thg(T) curves again cross cleanly for
so the determination of the crossing point should not béhe uniform case with a more negativethan for the=J
very sensitive to minor deviations from scaling or smallcase. However, for the Gaussian and exponential cases
statistical uncertainties. Finally, no hypothesis is madet turns out that the two curves are much more similar to
concerning the way divergences occur except the essentieach other making it difficult to identif§’, precisely; for
assumption that standard scaling rules (as opposed these distributions we have to fall back on an alternative
universality rules) hold. The excellent overall agreemenimethod to estimaté,.
between Ogielski’'s estimates [3] and the present ones The Migdal-Kadanoff (MK) scaling approach is known
gives considerable confidence in the general coherende give reasonable values of the ordering temperature
of the standard scaling approach and appear to make amgr Ising spin glasses [12—14]. We have followed the
exotic scaling assumption unnecessary. particular method used by Curado and Meunier [14]
We therefore consider that both;(T) curves can be but with improved statistical accuracy. It turns out that
calculated with little in the way of disguised systematicwith a scale factorb = 2 the MK estimate for the3d
errors; as they stand, ti# and exponent values that we =J ISG T, is 1.16 = 0.01, precisely the same as the
quote should not only be precise but reliable. value we have obtained above from the simulations.
We have made further simulations on anotBérISG  This perfect agreement is certainly fortuitous (though in
with *=J interactions; this is the fully frustrated system 4d, where the MK method should be much poorer, the
with 20% random bond disorder that we studied indisagreement i, between theb = 2 MK estimate and
[10]. We already established an accurate valueT'pf an accurate simulation value is onl$% [15]), but we
(T, = 0.96) for this spin glass from Binder cumulant argue that as agreement happens to be excellent for the
measurements, and we now have measured the exponentd case, if we apply the same method with the same
x and h at T, together with an estimate ofy from scale factorb to other3d ISGs with different sets of
the spin glass susceptibility (see Table I). The data arenteractions, we should obtaif, estimates which should
very consistent with each other and lead to-arvalue again be very close to the real values. We obtain MK
which is less negative and a value which is smaller T, values which ard.00, 0.88, and0.72 for the uniform,
as compared with those of the standatd ISG. This Gaussian, and exponential distributions, respectively [15].
difference already indicates the nonuniversality of thes@he uniform distribution value is in good agreement with
two exponents i3d ISGs. the simulation value, and the other twiy values are
We have also carried out extensive simulations orwithin the range off’, where the simulation curves for
3d ISG systems with different sets of near neighborn;(7) and n,(T) overlap. The Gaussiafi, and n are
interactions. For thdd ISGs with near neighbor uniform, in good agreement with earlier estimates [5]. Putting
Gaussian, and decreasing exponential interactions (semcertainties att0.05 for possible systematic errors in
[11] for the definitions of the distributions with the correct the Gaussian and exponential MK estimates, we obtain
normalizations), the data are shown in Fig. 1. Simulationshe set of exponent estimates shown in Table I.
were done on samples with = 16 for x, L = 10 for #, According to the usual universality rules, the form
and samples fronh = 2 to 6 for(¢*(¢)). Careful anneals of the interaction distribution should not be a pertinent
were carried out where appropriate, checked by thg@arameter as concerns the critical exponents. Here we
prescription given in [5]. At each temperatuit®,samples find that 3d ISG systems which differ only by this
were used for, 500 for &, and2000 to 200 depending on distribution function show quite different andz values,
L for {¢*(1)). We estimate that the,(7) curves are on Table |. The results indicate a breakdown of conventional
large enough samples for there to be virtually no finiteuniversality in3d 1SGs.

TABLE |I. Temperature of transiton and critical exponents for several distributions. The
distributions are in order (i) random:J interactions, (ii) fully frustrated lattice with
20% disorder [10], (iii) random uniformly distributed interactions, (iv) random Gaussian
interactions, and (v) random decreasing exponential interactions.

System T, x(Ty) h(Ty) n b4
*J 1.165 = 0.01 0.064 0.38 —0.245 = 0.02 6.0 £ 0.2
FFdO0.2 0.96 = 0.02 0.091 0.437 —=0.12 £ 0.02 485 +0.3
U 1.05 = 0.03 0.054 0.41 —0.375 = 0.03 58 £ 0.5
G 0.88 = 0.05 0.035 0.355 —0.50 £ 0.04 7.1 = 0.6
Exp 0.72 = 0.05 0.02 0.275 —-0.62 £ 0.12 95 = 0.7
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D45 - - - - - not the case for the randomly frustrated systems we have
studied.
D.40 It would appear that universality breakdown could be
h much more prevalent than was suspected, and it may well
oe | be the rule rather than the exception at spin glass or glass
transitions.
5 We would like to thank Dr. N. Kawashima for permis-
008 | sion to quote unpublished data. Simulations were car-
ried out thanks to time allocations from IDRIS (Institut
x 007 du Développement des Ressources en Informatique Sci-
entifique) and TRACS, University of Edinburgh. L.W.B.
005 | gratefully acknowledges support from TRACS.
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