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Ordering Temperatures and Critical Exponents in Ising Spin Glasses
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(Received 13 May 1996)

We propose a numerical criterion which can be used to obtain accurate and reliable values
ordering temperatures and critical exponents of spin glasses. Using this method we find a value
ordering temperature for the6J Ising spin glass in three dimensions which is definitely nonzero
in good agreement with previous estimates. We show that the critical exponents of three-dimen
Ising spin glasses do not obey the usual universality rules. [S0031-9007(96)01198-2]

PACS numbers: 75.10.Nr, 75.40.Mg
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The full explanation of the universality rules for critic
exponents in second order transitions through the re
malization group theory is one of the most impress
achievements of statistical physics. The universality ru
for such transitions state that the critical exponents
pend only on the space dimensiond and a few basic
parameters: the number of order parameter compon
n, the symmetry, and the range of the Hamiltonian [
No other parameters are pertinent. In fact, it is kno
that there are exceptions to universality—in certain tw
dimensional (2d) Ising systems with regular frustration
the critical exponents vary continuously with the value
a control parameter [2]. As far as we are aware, no res
of this type have been reported in any three-dimensio
(3d) family of Ising systems; it has been tacitly assum
that nonuniversality is very exceptional.

As compared to standard second order transitions,
situation concerning Ising spin glasses (ISGs) is m
less clear; indeed the history of ISG simulations h
been plagued by technical difficulties associated with lo
relaxation times. For two decades the very existence
a finite temperature transition in the3d ISG has been
hotly contested; as it is obviously essential to have
reliable value of the ordering temperature before obtain
accurate critical exponent estimates, it has been difficu
make stringent numerical tests of universality in3d ISGs.

We will present a numerical criterion which can
favorable cases provide precise and reliable values fo
ordering temperatureTg and for the critical exponents of
spin glass, with a moderate level of computational eff
If an independent estimate of the ordering temperatur
available the criterion leads to a convenient method
estimating the exponents. We study3d ISGs with various
sets of interactions, and we conclude from the data
the3d 6 J interaction ISG has a well-defined nonzeroTg

which can be estimated accurately, and that universa
in the usual sense does not hold in3d ISGs.

It would appear probable that glassy transitions in g
eral have a much richer critical behavior than conv
tional second order transitions.

Thus, technically, the most difficult problem in nume
cal ISG studies is the correct identification of the tra
sition temperatureTg. For the3d ISG with random6J
0031-9007y96y77(13)y2798(4)$10.00
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near neighbor interactions on a simple cubic lattice, wh
has been the subject of a considerable amount of workTg

has been estimated in two ways. Ogielski [3] studied
massive simulations the divergence of the spin glass
ceptibility, correlation length, and relaxation time of th
autocorrelation function

qstd ­ kSistdSis0dl (1)

in order to estimateTg and the critical exponents. How
ever, his analysis has been questioned because o
possibility of ambiguities in the manner of identifyin
a divergence, if nonconventional temperature depend
cies are invoked [4]. Bhatt and Young [5] used a fin
size scaling technique; they measured the Binder cu
lant for the fluctuations of the equilibrium autocorrelatio
function

gL ­
1
2

"
3 2

kq4l
kq2l2

#
(2)

as a function of sample sizeL. The curvesgLsT d for
different L should all intersect atTg; in the 3d 6 J ISG
case the curves indeed intersected but did not ap
to fan out below the apparentTg. Only recently have
intensive numerical studies shown that a weak fanning
at low temperatures really does occur [6,7]. Even w
results of high statistical accuracy at hand, Kawash
and Young [6] give a number of caveats concerning
interpretation of their own data.

We will describe an alternative criterion for determi
ing Tg. First, scaling rules [3] tell us that for a larg
sample in thermal equilibrium atTg the relaxation of the
autocorrelation function takes the form

qstd ­ lt2x (3)

with the exponentx related to the standard static an
dynamic exponentsh andz through

x ­
d 2 2 1 h

2z
. (4)

Second, the out of equilibrium relaxation of two ra
domly chosen replicasA and B of the same sample to
wards equilibrium atTg depends on another combinatio
© 1996 The American Physical Society
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of the same exponents [8]. The out of equilibrium s
glass susceptibility is defined as

x 0
SGstd ­ fkSA

i stdSB
i stdl2g , (5)

and it increases with time asth with

h ­
2 2 h

z
. (6)

Suppose we takehTij, a series of trial values forTg;
from measurements ofx and h on large samples at ea
Ti we can deduce from Eqs. (4) and (6) a set of appa
or effective exponents

h1sTd ­
4x 2 hsd 2 2d

2x 1 h
, (7)

zsTd ­
d

2x 1 h
. (8)

Finally, in another set of simulations on the sa
system at different (small) sample sizesL, from standard
finite size scaling rules [5] for the fluctuations in t
autocorrelation function in equilibrium atTg we have

Ld22kq2l ~ L2h . (9)

If we again take a series of trial values ofTg and fit the
results using this form at eachTi we will obtain a second
series of apparent exponent valuesh2sT d. (This type of fit
will only be appropriate close to and belowTg; at higher
T another factor appears on the right-hand side [5].)

We now ploth1sT d and h2sTd againstT ; for consis-
tency the curves must intersect at the point (h, Tg), which
represents the true critical exponenth and ordering tem
peratureTg of the system. At this temperature and t
temperature only the functional forms of Eqs. (3), (
and (9) should be exact; at neighboring temperatures t
forms are only approximate, but close toTg they will be
adequate to parametrize the numerical data. OnceTg is
fixed by the intersection we can obtainz using thezsT d
curve given above, and with knownh andTg we can go
on to fit kq2l data for temperatures aboveTg to obtain the
exponentn. From scaling relations, once we dispose
h andn all other static exponents are determined.

We show in Fig. 1 estimates forh1sT d and h2sT d
for the 3d 6J ISG calculated using data taken fro
the literature:xsT d from [3], hsT d from [8,9], and the
spin glass susceptibilities for different assumed va
of Tg (Tg ­ 1.0 from the data given in [5],Tg ­ 1.11
from [6], and Tg ­ 1.175 from [3]). There is a well-
defined crossing point withTg ­ 1.165 6 0.01 andh ­
20.245 6 0.02. Using the curve forzsT d from Eq, (8)
we estimatez ­ 6.0 6 0.2.

The values obtained in this way are at least as
cise as previous estimates and are very close to the
tral values given by Ogielski [3] (Tg ­ 1.175 6 0.025,
h ­ 20.22 6 0.05, z ­ 6.0 6 0.8), corroborating his
analysis. On the other hand, theTg is marginally out-
side the error bars quoted by Kawashima and Yo
(Tg ­ 1.11 6 0.04) who use extensive Binder cumula
in
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FIG. 1. h1 (±) and h2 (≤) vs T for various distributions.
(a) 6J, (b) uniform, (c) Gaussian, and (d) decreasing ex
nential. Note that the scale on thex axis is different for each
plot. Error bars on individualh points are about60.02.

data [6]. The difficulty in applying this latter method t
the3d 6J ISG case is that thegLsT d curves lie very close
together belowTg so the intersection point is sensitive
small changes in individualgL curves. Even with extreme
statistical accuracy, small corrections to finite size sca
(invoked as a possibility in [6]) can change the appar
position of the intersection point significantly. The resu
of Ref. [6] could be rendered consistent with the pres
analysis if thegL values for the smallest samples studi
were affected by corrections to finite size scaling at
1% level.

The present method is much less sensitive to proble
of systematics than are either of the other techniq
outlined above. First, bothx and h are determined
using “large” samples, so finite size corrections sho
be unimportant [8,9]. Second,h is measured out o
equilibrium and so is not subject to the problems
long equilibration times. The fact that no preparato
anneal is required also means that the measurem
are economical in computer time. The measurement
x need careful equilibration, but systematic tests us
successively longer preliminary anneals allow one
obtain reliable values. Numerical data [3,9] show th
in ISGs qstd already takes on the asymptotic form
Eq. (3), from quite early timest . 2 MCS (Monte Carlo
steps), and that sample to sample variations in the va
of x are small so extensive averaging over very la
numbers of samples (an essential condition for go
gL data) is unnecessary. Thus the curveh1sT d can be
established accurately with moderate numerical effort
minimal systematic error. For the finite size scaling d
from which h2sT d is deduced, thorough equilibratio
is necessary, but by studying pairs of replicas [5] a
again testing with increasing anneal times it is easie
obtain accurate values ofkq2stdl than the combination o
2799
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moments which constitute the Binder cumulant. Aga
the sample to sample variability is much less forkq2stdl
than for the Binder cumulant. In the3d 6J ISG the
two curves h1sT d and h2sTd intersect cleanly, Fig. 1
so the determination of the crossing point should no
very sensitive to minor deviations from scaling or sm
statistical uncertainties. Finally, no hypothesis is m
concerning the way divergences occur except the esse
assumption that standard scaling rules (as oppose
universality rules) hold. The excellent overall agreem
between Ogielski’s estimates [3] and the present o
gives considerable confidence in the general coher
of the standard scaling approach and appear to make
exotic scaling assumption unnecessary.

We therefore consider that bothhisT d curves can be
calculated with little in the way of disguised systema
errors; as they stand, theTg and exponent values that w
quote should not only be precise but reliable.

We have made further simulations on another3d ISG
with 6J interactions; this is the fully frustrated syste
with 20% random bond disorder that we studied
[10]. We already established an accurate value ofTg

(Tg ­ 0.96) for this spin glass from Binder cumula
measurements, and we now have measured the expo
x and h at Tg together with an estimate ofh from
the spin glass susceptibility (see Table I). The data
very consistent with each other and lead to anh value
which is less negative and az value which is smalle
as compared with those of the standard6J ISG. This
difference already indicates the nonuniversality of th
two exponents in3d ISGs.

We have also carried out extensive simulations
3d ISG systems with different sets of near neigh
interactions. For the3d ISGs with near neighbor uniform
Gaussian, and decreasing exponential interactions
[11] for the definitions of the distributions with the corre
normalizations), the data are shown in Fig. 1. Simulat
were done on samples withL ­ 16 for x, L ­ 10 for h,
and samples fromL ­ 2 to 6 for kq2stdl. Careful anneal
were carried out where appropriate, checked by
prescription given in [5]. At each temperature,10 samples
were used forx, 500 for h, and2000 to 200 depending on
L for kq2stdl. We estimate that theh1sT d curves are on
large enough samples for there to be virtually no fin
2800
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size correction, so the values can be taken as defin
(apart from statistical errors), but measurements on la
samples could modify theh2sT d curves marginally. It
can be seen that thehsT d curves again cross cleanly fo
the uniform case with a more negativeh than for the6J
case. However, for the Gaussian and exponential c
it turns out that the two curves are much more similar
each other making it difficult to identifyTg precisely; for
these distributions we have to fall back on an alterna
method to estimateTg.

The Migdal-Kadanoff (MK) scaling approach is know
to give reasonable values of the ordering tempera
for Ising spin glasses [12–14]. We have followed t
particular method used by Curado and Meunier [
but with improved statistical accuracy. It turns out th
with a scale factorb ­ 2 the MK estimate for the3d
6J ISG Tg is 1.16 6 0.01, precisely the same as th
value we have obtained above from the simulatio
This perfect agreement is certainly fortuitous (though
4d, where the MK method should be much poorer,
disagreement inTg between theb ­ 2 MK estimate and
an accurate simulation value is only15% [15]), but we
argue that as agreement happens to be excellent fo
6J case, if we apply the same method with the sa
scale factorb to other 3d ISGs with different sets o
interactions, we should obtainTg estimates which shoul
again be very close to the real values. We obtain M
Tg values which are1.00, 0.88, and0.72 for the uniform,
Gaussian, and exponential distributions, respectively [
The uniform distribution value is in good agreement w
the simulation value, and the other twoTg values are
within the range ofT , where the simulation curves fo
h1sT d and h2sTd overlap. The GaussianTg and h are
in good agreement with earlier estimates [5]. Putt
uncertainties at60.05 for possible systematic errors
the Gaussian and exponential MKTg estimates, we obtain
the set of exponent estimates shown in Table I.

According to the usual universality rules, the for
of the interaction distribution should not be a pertine
parameter as concerns the critical exponents. Here
find that 3d ISG systems which differ only by thi
distribution function show quite differenth andz values,
Table I. The results indicate a breakdown of conventio
universality in3d ISGs.
The

ian
TABLE I. Temperature of transiton and critical exponents for several distributions.
distributions are in order (i) random6J interactions, (ii) fully frustrated lattice with
20% disorder [10], (iii) random uniformly distributed interactions, (iv) random Gauss
interactions, and (v) random decreasing exponential interactions.

System Tg xsTgd hsTgd h z

6J 1.165 6 0.01 0.064 0.38 20.245 6 0.02 6.0 6 0.2
FFd0.2 0.96 6 0.02 0.091 0.437 20.12 6 0.02 4.85 6 0.3

U 1.05 6 0.03 0.054 0.41 20.375 6 0.03 5.8 6 0.5
G 0.88 6 0.05 0.035 0.355 20.50 6 0.04 7.1 6 0.6

Exp 0.72 6 0.05 0.02 0.275 20.62 6 0.12 9.5 6 0.7
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FIG. 2. hsT d and xsT d for 6J snd and uniform s±d distri-
butions. The temperature scale is common. The dashed
corresponds to the example given in the text.

In order to show that the apparent nonuniversality is
an artifact, we will turn back to the rawx andh data for
the 6J and uniform cases. In Fig. 2 we have plotted
values of these parameters as a function ofT; the error bars
are about60.005 for h and 60.002 for x.If universality
holds

hsssTgsUdddd ; hsssTgsJdddd , (10)

xsssTgsUdddd ; xsssTgsJdddd . (11)
By inspection, whatever trial valueT p we choose for
TgsJd within the generous limitsTp ­ 1.0 to 1.3 provided
by the figure, the relation (10) leads us to aTp

g sUd such
that xsssTp

g sUdddd is considerably smaller thanxsssTp
g sJdddd.

For instance, with Tp
g sJd ­ 1.16, Tp

g sUd ­ 0.88,
xsssTp

g sJdddd ­ 0.064, and xsssTp
g sUdddd ­ 0.036. The data

cannot satisfy (10) and (11) simultaneously, demonstra
nonuniversality.

For the 2d regularly frustrated systems which sho
continuous variation of critical exponents, the breakdo
of universality is necessarily associated with the existe
of a marginal operator [16], and it has been poin
out that when breakdown occurs, it does so in Is
systems having more than two ground states [17]
hence withn, the number of components of the ord
parameter, greater than1 [18]. On the Parisi image
of finite dimension ISGs [19],n is essentially infinite;
it would be of interest to identify possible margin
operators. We can note that in the regularly frustra
2d systems quoted above,n varies continuously buth is
constant so “weak universality” [20] still holds. This
ine
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not the case for the randomly frustrated systems we h
studied.

It would appear that universality breakdown could
much more prevalent than was suspected, and it may
be the rule rather than the exception at spin glass or g
transitions.
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