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Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated
a mean-field approximation for the interchain coupling and exact results for the resulting effe
one-dimensional problem. Results for staggered magnetization, Néel temperature, and spin
excitations are in agreement with experiments on KCuF3. The existence of a narrow longitudinal mod
is predicted. The results are in agreement with general scaling arguments, contrary to spin wave
[S0031-9007(96)01025-3]
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One-dimensional quantum spin chains are interes
objects to study for a number of reasons. On the
hand, experimental systems are generally very well
scribed by simple yet nontrivial Hamiltonians involvin
very few unknown parameters. The standard examp
the Heisenberg model, with only one free parameter,
exchange constant. Comparison between theory and
periment then becomes a particularly stringent test,
variety of data have to be explained by one single par
eter. Moreover, both a large number of exact theor
cal results and powerful analytical and numerical meth
are available, making this comparison particularly inter
ing. On the other hand, in spite of their simplicity, mod
of quantum spin chains have lead to a number of un
pected and unconventional predictions. For example
exact solution of the antiferromagnetic spin-1y2 Heisen-
berg chain shows that the low-lying excitations are sp
1y2 objects [1] (now called spinons), quite different fro
standard spin waves. This prediction has been confir
experimentally quite recently in KCuF3 [2]. Another ex-
ample is Haldane’s prediction of a gap in the excitat
spectrum for integer-S antiferromagnets [3], which aga
has found experimental confirmation [4,5].

Strictly one-dimensional models of course do not
hibit phase transitions into states with a broken sym
try. It is nevertheless clear that in any real compound,
KCuF3 [2,6,7], Sr2CuO3 [8,9], or Yb4As3 [10] some form
of interchain coupling is present. Then three-dimensio
magnetic long-range order can appear below a Néel
peratureTN . In the present paper I show that in th
case a conceptually simple approach, namely treating
interchain coupling in the mean-field approximation a
treating the resulting effective one-dimensional probl
as exactly as possible [11,12], gives a coherent des
tion of the ordered state and produces nontrivial quan
tive predictions for static and dynamic quantities that
be successfully compared to experiments, in particula
KCuF3 where detailed neutron scattering results are av
able [2,6].

I start with the natural model for coupled spin-1y2
antiferromagnetic chains, namely, a spatially anisotro
0031-9007y96y77(13)y2790(4)$10.00
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Heisenberg model for parallel chains forming a squ
lattice (i.e., the lattice has tetragonal symmetry):

H ­ J
X
i,r

Si,r ? Si11,r 1 J'

X
i,r,d

Si,r ? Si,r1d . (1)

Here i and r label lattice sites along the chain (z) and
perpendicular (x, y) directions, d is summed over the
two nearest neighbor vectors in the transverse directi
and Si,r is a spin-1y2 operator at lattice sitesi, rd. The
longitudinal and transverse exchange constants arJ
(.0) and J' , 0, where in order to be close to th
situation in KCuF3 a ferromagnetic interchain coupling
used (but all of the subsequent results apply with mi
modifications also toJ' . 0).

I now treat antiferromagnetic order using a mean-fi
treatment of the interchain coupling. Assuming the or
to be oriented along thez direction in spin space, th
Hamiltonian (1) transforms into an effective single-cha
problem described by

H1 ­ J
X

i

Si ? Si11 2 h
X

i

s21diSz
i 2 2NJ'm2

0 . (2)

Here N is the number of sites in the chain,m0 ­
s21dikSz

i l is the staggered magnetization, andh ­
24J'm0. We thus have a one-dimensional antifer
magnet in an effective staggered fieldh, with the order
parameterm0 to be determined by minimizing the energ
The next step is to transform (2) into a fermionic mod
by a Jordan-Wigner transformation and to go to
continuum limit. The resulting fermionic model then
described by

H2 ­
Z

dz f2iyscy
L ≠zcL 2 c

y
R≠zcRd

2 hscy
L cR 1 c

y
RcLd 1 2gc

y
L c

y
RcRcLg

2 2NJ'm2
0 . (3)

Here cL,R are standard fermion field operators for le
and right-moving fermions. Equation (3) can be reco
nized as the massive Thirring model for which an ex
Bethe ansatz solution exists [13]. The parametery de-
termines the velocity of the low-lying excitations, and
© 1996 The American Physical Society
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comparing with the exactly known (forh ­ 0) spectrum
of H1 can be fixed asy ­ pJay2 wherea is the lattice
constant. The proper identification ofg is more delicate
because the underlying fermionic lattice model has ra
strong interaction, and a naive transition to the continu
limit therefore is uncontrolled. One can, however, no
that the exact solution ofH2 has a mass gap [13]

D ­ heLs12gd tanpg

psg 2 1d
, (4)

wherepyg ­ 2 arccots2gy2yd parametrizes the intera
tion andL is the “rapidity cutoff” [13]. Requiring furthe
that the total particle number is independent ofm0, one
hasL ~ lns1yhd, i.e., D ~ hg. On the other hand, sta
dard scaling relations for the lattice HamiltonianH1 imply
a mass gap~ h2y3, i.e., we haveg ­ 2y3. Thus the pa
rameters inH2 are

g ­ 2y ­ pJa . (5)

It is now straightforward to obtain the variation of t
ground state energy per site withm0 as

Esm0d 2 Esm0 ­ 0d ­ 22J'm2
0

2
7

5 3
p

4
ayn

2y3
0

µ
h
y

∂4y3

, (6)

where n0 is the fermion density, equal to1ys2ad in the
original lattice model. Minimizing with respect tom0 one
finds immediately the equilibrium value of the stagge
magnetization as

m0 ­
28
15

µ
14

15p

∂1y2µ jJ'j

J

∂1y2

ø 1.017

µ
jJ'j

J

∂1y2

. (7)

The mass gap then is

D ­
56

p
3

5p
jJ'j ø 6.175jJ'j . (8)

The results (7) and (8) will be compared to experim
below.

We now turn to the spin dynamics. The appropr
generalization of the above mean-field approximation t
is an RPA treatment of the interchain interaction.
the ordered phase translational symmetry is broken,
therefore there are umklapp processes coupling mod
wave vectorsq andq 1 Q [whereQ ­ s0, 0, pyad]. The
transverse susceptibility then is a2 3 2 matrix given by

xsq, vd ­
xsqz , vd

1 2 2jJ'jscosqx 1 cosqydxsqz , vd
, (9)

where

xsqz , vd ­

µ
xnsqz, vd xusqz , vd
xusqz , vd xnsqz 1 p , vd

∂
(10)

is the susceptibility matrix of the one-dimensional mo
H1. Explicit expressions forxn,u are not known; howeve
a great deal can be learned from general symmetry p
erties ofH1 andH2: (i) By spin rotational invariance th
magnitude of the staggered magnetization is indepen
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of the orientation of the staggered field inH1; this implies
xnsp , 0d ­ 21ys4J'd and guarantees the existence
a Goldstone mode (spin wave) in the ordered state.
From the equation of motions derived fromH1 one finds
xns0, vd ­ sh2yv2d fxnsp , vd 2 xnsp , 0dg, xus0, vd ­
xusp , vd ­ shyvd fxnsp, vd 2 xnsp , 0dg, at qz ­ 0, p

everything is thus determined byxnsp , vd alone.
(iii) When all relevant energies (v, D, . . .) are much
smaller thanJ the relativistic invariance ofH2 can be
used: The operatorsS 1 sqz ø pd and S 1 sqz ø 0d
are a Lorentz scalar and vector, respectively. Con
quently,xnsp 1 q, vd is a function ofv2 2 y2q2 only,
and xusq, vd ­ fhvysv2 2 y2q2dg fxnsp 1 q, vd 2

xnsp , 0dg. The full three-dimensionalxsq, vd thus is
entirely determined byxnsp 1 q, vd alone, as long asqz

is in the vicinity of0 or p andv ø J.
We can further use the known spectrum ofH2 [13]

to determine the form ofxnsp 1 q, vd: This function
involves intermediate states where thez component of the
magnetization has increased byDSz ­ 1, corresponding
to an added fermion in the Thirring model languag
These excitations have energyD, leading to a pole.
There are of course also multiple-excitation contributio
leading to a continuous spectrum. The lowest su
excitation comes from a combination of the element
DSz ­ 1 excitation with anDSz ­ 0 excitation which
also has energyD (see the discussion of the longitudin
excitations below), thus leading to a threshold atv ­
2D. Notice that the elementary excitations creating t
continuum are thus quite different from the spino
responsible for the lowest continuum of an isolated ch
[1]. Multiple-excitation continua of course also exis
with thresholdsnD, n $ 3. One thus can write

xnsp 1 q, vd ­
z

D2 1 y2q2 2 v2
1 fsv2 2 y2q2d ,

(11)
where the unknown functionfsxd contains contributions
from the many-excitation continua, has a threshold sin
larity at x ­ 4D2, and is real below the threshold. Th
constantz ensures thatxnsp , 0d ­ 21ys4J'd.

The excitation spectrum now is given by the singula
ties of xsq, vd, Eq. (9), and in particular the low-energ
(v , 2D) states are found from poles. One finds t
following: (i) For propagation along the chain there
a spin wave mode withvs0, 0, qzd ­ ysJ'djqzj, where
the spin-wave velocity is only weakly affected by inte
chain coupling: e.g., neglectingf in Eq. (11) (the “single
mode approximation,” SMA),ysJ'd ­ yy

p
1 1 h2yD2.

(ii) For transverse wave vectorsp , 0d and more generally
on the whole line cosqx 1 cosqy ­ 0 the spin wave fre-
quency is entirely determined by the one-dimensional
sult, and therefore from Eq. (11)vsp , 0, pd ­ D, i.e., the
mass gap is directly accessible experimentally and pro
tional to J'. (iii) In the SMA the spin-wave dispersion
is vsqd2 ­ D2f1 2 scosqx 1 cosqydy2g 1 y2q2

z . In the
2791
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relevant casejJ'j ø J the q dependence of the tran
verse part that of standard spin wave theory, taking
accountf will lead to a modified relation in the transver
directions. (iv) In the SMA, the static susceptibility
xs0, 0d ­ 14pys405Jd ø 0.109yJ, taking into accountf
will decrease this value. One can notice that forJ' ! 0
one expects to recover the purely one-dimensional
sult xs0, 0d ­ 1ysp2Jd ø 0.101yJ. This suggests tha
the SMA is a rather good description of low-ener
properties.

There also are longitudinal excitations correspond
to oscillations ofm0 about its mean value. Within th
RPA, the longitudinal susceptibilityxL is given by a
formula analogous to Eq. (9). From Eq. (6)xLsp , 0d ­
21ys12J'd, and the frequency dependence can again
obtained from the excitation spectrum of the mass
Thirring model: Here excitations withDSz ­ 0 intervene,
i.e., particle-hole pairs. Naively, one expects a continu
above a gap2D; however, because of the interaction
H2, the lowest excitation is actually an excitonic bou
state at energyD, [13] i.e., at the same energy as t
lowest DSz ­ 61 excitation [14]. The one-dimension
xL then has the same form asxn, Eq. (11), and in the SMA
there then is a longitudinal mode atv

2
Lsqd ­ D2f1 2

scosqx 1 cosqydy6g 1 y2q2
z . Going beyond the SMA

the already relatively weak dispersion in the transve
directions would be further reduced. Notice that atq' ­
sp , 0d longitudinal and transverse modes are degenera

In this approximation, the longitudinal mode is well d
fined. This is, however, an oversimplification: A lo
gitudinal mode can decay into two spin waves [15].
get a quantitative estimate of this effect I have obtai
an effective Ginzburg-Landau description of the mo
via a Hubbard-Stratonovich transformation of the int
chain interaction in Eq. (1). At the Gaussian level e
pressions like Eq. (10) for the transverse and longitud
susceptibilities are obtained, but higher order correct
can also be studied systematically. In particular, a l
gitudinal excitation can now decay into two spin wav
and there is also important spin-wave–spin-wave s
tering. Spin rotation invariance imposes that the ma
elements for these processes at low energies are give
xLsp , 0dyh andxLsp , 0dyh2, respectively. Taking thes
processes into account in an RPA-like fashion, the lo
tudinal susceptibility takes the form

xLsq, vd

­
xLsqz , vd 1 Ssq, vd

1 2 2jJ'jscosqx 1 cosqyd fxLsqz , vd 1 Ssq, vdg
.

(12)

This form still retains one-dimensional relativistic inva
ance: xLssssq', qzd, vddd ­ xLssssq', 0d, sv2 2 y2q2

z d1y2ddd.
Numerical results for ImfxLg (which determines the
neutron scattering intensity) are shown in Fig. 1. O
notices in particular a very sharp feature very cl
2792
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FIG. 1. Frequency dependence of the imaginary part of
longitudinal susceptibility (in units of1yjJ'j) at q ­ s0, 0, p 1
qzd for qz ­ 0 (full line), yqz ­ Dy2 (dashed),yqz ­ D
(dash-dotted), andyqz ­ 2D (dash-double-dot). Also show
is the two-spin-wave cross section atqz ­ 0, according to
Ref. [7] (double-dash-dot).

to the pole of the unrenormalized (S ­ 0) propagator.
Numerically the width of this peak is found of orde
0.01D, the transverse mode remains thus rather w
defined even when decay into spin waves is taken
account. This can be attributed to the low frequency
the mode and the limited phase space available for de
into spin waves. In addition to the peak, one also noti
an incoherent background which forqz ­ p extends
down to zero energy.

Finally, the Néel temperature can be determined in
approach from the divergence of the static susceptib
at q ­ s0, 0, pd as a function of temperature. The singl
chain susceptibility is given by [16,17]xsp, 0; T d ­
AysJT d ln1y2sLJyT d, where numerical calculations giv
[18] A ø 0.32, L ø 5.8. Equation (9) then implies the
relation

jJ'j ­
TN

4A ln1y2sLJyTN d
. (13)

The above results for staggered magnetization, exc
tion spectrum, and Néel temperature are now compare
experimental results on KCuF3. From the excitation spec
trum aboveTN the exchange constant along the chains
J ­ 34 meV. From the measured [6]m0 ­ 0.25 Eq. (7)
then gives J' ­ 2Jy16 ­ 22.1 meV. From Eq. (8)
then follows the first prediction of the present theo
D ­ 13 meV. From Eqs. (9) and (10)D is the spin wave
frequency atq1 ­ sp , 0, pd. Experimentally [6]vsq1d ­
11.5 meV, in rather good agreement with the predictio
A second nontrivial prediction of the present theory
the existence of a longitudinal mode atvLs0, 0, pd øp

2y3D ø 10 meV. It is then tempting to associate th
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sharp rise in the energy-dependent neutron scattering
tensity (which does not differentiate between transve
and longitudinal modes) observed aroundv ­ 10 [6,7]
with this mode. On the other hand, it is not clear h
the two-spin-wave process proposed in Ref. [7], which
rather featureless aroundv ­ D (see Fig. 1), can accoun
for this result. It would clearly be of interest to study th
point in more detail.

Using the estimated values forJ, J' Eq. (13) gives
an estimate for the Néel temperature:TN ø 60 K, over-
estimating the experimental result (TN ­ 39 K) by about
50%. This discrepancy is in part due to the fact t
logarithmic correction terms, enhancing the tendency
ordering, are included in Eq. (13) but neglected in the
tial fermionic model, Eq. (3). In the fermionic languag
the logarithmic terms come from an extra umklapp
teraction [19]guscy

R c
y
RcLcL 1 H.c.d in Eq. (3). These

terms destroy the solvability of the fermionic model, b
can be taken into account perturbatively [17]. To lo
est order then theh4y3 term in Eq. (6) is multiplied by
a factorf1 1 y0 lnsyyDdg1y3, with y0 ­ guyspyd. With
y0 ø 0.25 [17] the experimental value ofm0 leads to
J' ­ 21.6 meV. From thisD ­ 11.4 meV, very close
to the experimental value, andTN ­ 47 K. The remain-
ing discrepancy between theory and experimental va
of TN may well be related to thermal fluctuation effec
neglected here and which can be estimated to be on
level of 10% [12]. Experiment indeed indicates pers
tence of short-range order well aboveTN [6,7].

It is also interesting to consider the case of Sr2CuO3
[8,9]. From the experimentalTN ø 5 K and the estimated
J ø 220 meV one getsJ' ø 0.12 meV. This then leads
to a predicted spin wave energy atq ­ sp, 0, pd of
D ­ 1.1 meV and m0 ­ 0.036. This last number is
consistent with the experimental upper limitm0 # 0.05
[9]. It should, however, be noticed that in Sr2CuO3

there is considerable structural anisotropy in the directi
perpendicular to the chains, and the value derived forJ'

therefore is an average over transverse directions.
The continuum limit used in the present treatmen

valid if the correlation lengthj ­ yyD ø yyspTN d is
large compared to the lattice constant. For the two co
pounds discussed above one findsj ­ 5a andj ­ 320a,
satisfying this criterion. The mean-field treatment of t
interchain coupling leads toTN ~ J', m0 ~

p
jJ'jyJ, up

to logarithmic corrections. These relations are consis
with general scaling arguments [20]. On the other ha
the frequently used renormalized spin wave theory [
predictsTN ~

p
JjJ'j, m0 ~ 1y lnsJyjJ'jd, in clear con-
in-
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tradiction with scaling. Apart from the quantitatively sa
isfying description of KCuF3, the present theory thus als
seems more satisfactory on grounds of consistency w
generally valid arguments.
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