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Dynamics of Coupled Quantum Spin Chains
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Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using
a mean-field approximation for the interchain coupling and exact results for the resulting effective
one-dimensional problem. Results for staggered magnetization, Néel temperature, and spin wave
excitations are in agreement with experiments on KLCuFhe existence of a narrow longitudinal mode
is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory.
[S0031-9007(96)01025-3]
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One-dimensional quantum spin chains are interestingdeisenberg model for parallel chains forming a square
objects to study for a number of reasons. On the onéattice (i.e., the lattice has tetragonal symmetry):
hand, experimental systems are generally very well de-
scribed by simple yet nontrivial Hamiltonians involving H = lesi’r CSivir T Z Sir* Sirvs- (1)
very few unknown parameters. The standard example is br ird
the Heisenberg model, with only one free parameter, th&lere i andr label lattice sites along the chain)(and
exchange constant. Comparison between theory and eRerpendicular X, y) directions,é is summed over the
periment then becomes a particularly stringent test, as &vo nearest neighbor vectors in the transverse directions,
variety of data have to be explained by one single paramand S;, is a spin-¥2 operator at lattice sité,r). The
eter. Moreover, both a large number of exact theoretilongitudinal and transverse exchange constants Jare
cal results and powerful analytical and numerical method§>0) and J, < 0, where in order to be close to the
are available, making this comparison particularly interestsituation in KCuk a ferromagnetic interchain coupling is
ing. On the other hand, in spite of their simplicity, modelsused (but all of the subsequent results apply with minor
of quantum spin chains have lead to a number of unexmnodifications also to'; > 0).
pected and unconventional predictions. For example, the | now treat antiferromagnetic order using a mean-field
exact solution of the antiferromagnetic spif2lHeisen- treatment of the interchain coupling. Assuming the order
berg chain shows that the low-lying excitations are spini0 be oriented along the direction in spin space, the
1/2 objects [1] (now called spinons), quite different from Hamiltonian (1) transforms into an effective single-chain
standard spin waves. This prediction has been confirme@roblem described by
experimentally quite recently in KCyH2]. Another ex- ;
ample is Haldane’s prediction of a gap in the excitation Hy = JZ,S" " Sivr — hz(‘l)'sf — 2NJimg. (2)
spectrum for intege§ antiferromagnets [3], which again ’ l

has found experimental confirmation [4,5]. RENTAEN . _
Strictly one-dimensional models of course do not ex-(_ 411) (87) l\?VethtiusSti%?ge; Or:;%?r?]téznagilggél ergiaarro-
hibit phase transitions into states with a broken symme- L.

try. Itis nevertheless clear that in any real compound, ”kemagnet in an effective staggered field with the order

KCUF; [2,6,7], S5CUO; [8,9], or Yh,As; [10] some form parametern, to be determined by minimizing the energy.

of interchain coupling is present. Then three-dimension The next step is to transform (2) into a fermionic model

magnetic long-range order can appear below a Néel te )y a Jordan-Wigner transformation and to go to the

peratureTy. In the present paper | show that in this continuum limit. The resulting fermionic model then is

case a conceptually simple approach, namely treating th%escribed by

Here N is the number of sites in the chaimgy =

interchain coupling in the mean-field approximation and g, — dZ[—iv(lﬂZazlﬁL - lﬂ;azlﬂR)

treating the resulting effective one-dimensional problem

as exactly as possible [11,12], gives a coherent descrip- _ h(¢Z¢R + M;%) + 2g¢Z¢J/1Jer¢//R¢!fL]
tion of the ordered state and produces nontrivial quantita- 5

tive predictions for static and dynamic quantities that can — 2NJ . my. 3)

be successfully compared to experiments, in particular oRlere ¢, x are standard fermion field operators for left-
KCuF; where detailed neutron scattering results are availand right-moving fermions. Equation (3) can be recog-
able [2,6]. nized as the massive Thirring model for which an exact
| start with the natural model for coupled spifi2l Bethe ansatz solution exists [13]. The parametede-
antiferromagnetic chains, namely, a spatially anisotropi¢ermines the velocity of the low-lying excitations, and by
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comparing with the exactly known (far = 0) spectrum of the orientation of the staggered field&h ; this implies
of H, can be fixed a¥ = 7Ja/2 wherea is the lattice  y,(7,0) = —1/(4J,) and guarantees the existence of
constant. The proper identification @fis more delicate a Goldstone mode (spin wave) in the ordered state. (ii)
because the underlying fermionic lattice model has rathelfrom the equation of motions derived frofh one finds
strong interaction, and a naive transition to the continuumy,,(0, ) = (h%/w?) [xn(7, @) — xu(7,0)], xu(0, w) =
limit therefore is uncontrolled. One can, however, noticey, (7, w) = (h/w) [ xa(7, ) — x.(7,0)], atg, = 0,7
that the exact solution dff, has a mass gap [13] everything is thus determined by, (7, ») alone.
A tanmy (i) When all reIevant_ g:-n_ergieSa(,A,...) are much
A= he™ 7 Ty = 1)’ (4)  smaller thanJ the relativistic invariance off, can be
Y used: The operator§ + (¢, = ) and S + (g, = 0)
wheres/y = 2arccof—g/2v) parametrizes the interac- are a Lorentz scalar and vector, respectively. Conse-
tion andA is the “rapidity cutoff” [13]. Requiring further quently, v, (7 + ¢, ) is a function ofw?> — v2¢? only,
that the total particle number is independentaf, one  and y.(q, w) = [hw /(0> — vV?¢*)][xa(7 + g, ) —
hasA o In(1/h), i.e., A = h?. On the other hand, stan- y,(,0)]. The full three-dimensiona(g, w) thus is
dard scaling relations for the lattice Hamiltoni&h imply entirely determined by, (7 + ¢, w) alone, as long ag.
a mass gapc h*3, i.e., we havey = 2/3. Thus the pa- s in the vicinity of0 or 7 andew < J.
rameters inf, are We can further use the known spectrum i [13]
¢=2v=rmla. (5) to determine the form of,(m + ¢,w): This function
involves intermediate states where theomponent of the
magnetization has increased B$* = 1, corresponding
to an added fermion in the Thirring model language.
E(mo) — E(mg = 0) = —2J ,m} These excitations have energy, leading to a pole.
7 PN There are of course also multiple-excitation contributions,
2/3 . L
— —=avng < ) , (6) leading to a continuous spectrum. The lowest such
5V4 excitation comes from a combination of the elementary
where ng is the fermion density, equal tb/(2a) in the  AS? = 1 excitation with anAS* = 0 excitation which
original lattice model. Minimizing with respect e, one  also has energy (see the discussion of the longitudinal
finds immediately the equilibrium value of the staggeredexcitations below), thus leading to a threshold«at=
magnetization as 2A. Notice that the elementary excitations creating this
28( 14 )1/2<|J¢|>1/2 1017<|J¢|>1/2 - continuum are thus quite different from the spinons

It is now straightforward to obtain the variation of the
ground state energy per site with) as

v

"o = 15\ 57 7 — responsib}e for th_e Ic_>west co_ntinuum of an isolated c_hain
) [1]. Multiple-excitation continua of course also exist,
The mass gap then is with thresholds:A, n = 3. One thus can write
563
A= 10] = 6751 @ lm + q.0) = s W V),
The results (7) and (8) will be compared to experiment (11)
below.

We now turn to the spin dynamics. The appropriateWhere the unknown functiorf(x) contains contributions

generalization of the above mean-field approximation thertlro.m the many-gzxcnatl(_)n continua, has a threshold singu-
is an RPA treatment of the interchain interaction. Inlamy atx = 4A% and is real below the threshold. The
the ordered phase translational symmetry is broken, angPnstant ensures thak, (7, 0) :._1./(4JL)' . .
therefore there are umklapp processes coupling modes atThe excitation spectrum now Is given by the singulari-
wave vectorg andg + Q [whereQ = (0,0, 7/a)]. The ties of x(¢q, ), EQ. (9), and in particular the low-energy

transverse susceptibility then i2ax 2 matrix given by (0 < .ZA) states are foundn from poles. Ont_e finds the
following: (i) For propagation along the chain there is

v(g. w) = X(g:, w) @ 2 spin wave mode withw (0,0, g,) = v(J1)|g.|, where
' 1 — 2|/ |(cosg, + cosgy)x(g:, w)’ the spin-wave velocity is only weakly affected by inter-
where chain coupling: e.g., neglectingin Eg. (11) (the “single

mode approximation,” SMA)p(J,) = v/+/1 + h?/A%.
¥ (g, @) = <Xn(qz, ) Xu(qz ) ) (10) (i) For transverse wave vectdrr, 0) and more generally
Xu(qz, @) xulq, + 7, 0) on the whole line cog, + cosq, = 0 the spin wave fre-
is the susceptibility matrix of the one-dimensional modelquency is entirely determined by the one-dimensional re-
H,. Explicit expressions fox, , are not known; however, sult, and therefore from Eq. (13)(7,0,7) = A, i.e., the
a great deal can be learned from general symmetry propnass gap is directly accessible experimentally and propor-
erties ofH; andH,: (i) By spin rotational invariance the tional toJ,. (iii) In the SMA the spin-wave dispersion
magnitude of the staggered magnetization is independeig o (¢q)* = A%[1 — (cosq, + c0sq,)/2] + v2¢2. Inthe
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relevant casdJ/,| < J the g dependence of the trans- 0.4
verse part that of standard spin wave theory, taking intc
accountf will lead to a modified relation in the transverse
directions. (iv) In the SMA, the static susceptibility is
x(0,0) = 147 /(405J) = 0.109/J, taking into accounf

0.3

)]

)

will decrease this value. One can notice thatJfor— 0
one expects to recover the purely one-dimensional re <
sult x(0,0) = 1/(72J) = 0.101/J. This suggests that

the SMA is a rather good description of low-energy <

@)
S 0.2
pe
g

properties. e
There also are longitudinal excitations corresponding.S ¢ 1
to oscillations ofmg about its mean value. Within the
RPA, the longitudinal susceptibilityy; is given by a
formula analogous to Eqg. (9). From Eq. (§)(7,0) =
—1/(12J ), and the frequency dependence can again b
obtained from the excitation spectrum of the massive

Thirring model: Herg excitqtions WIthS® = 0 intervene, IG. 1. Frequency dependence of the imaginary part of the
I.e., particle-hole pairs. Naively, one expects a continuuniy, i qinal susceptibility (in units of /|J. ) atg = (0,0, 7 +
above a gaj2A; however, because of the interaction in , y tor 4. = 0 (full line), vg, = A/2 (dashed),vg. = A
H,, the lowest excitation is actually an excitonic bound(dash-dotted), and¢. = 2A (dash-double-dot). Also shown
state at energy\, [13] i.e., at the same energy as theis the two-spin-wave cross section gt = 0, according to
lowestAS? = +1 excitation [14]. The one-dimensional Ref. [7] (double-dash-dof).
xt then has the same form gs, Eq. (11), and in the SMA,
there then is a longitudinal mode at?(q) = A2[1 —
(cosg, + €o0sq,)/6] + v2q2. Going beyond the SMA, to the pole of the unrenormalize (= 0) propagator.
the already relatively weak dispersion in the transversé&umerically the width of this peak is found of order
directions would be further reduced. Notice thayat=  0.01A, the transverse mode remains thus rather well
(a7, 0) longitudinal and transverse modes are degeneratedefined even when decay into spin waves is taken into
In this approximation, the longitudinal mode is well de- account. This can be attributed to the low frequency of
fined. This is, however, an oversimplification: A lon- the mode and the limited phase space available for decay
gitudinal mode can decay into two spin waves [15]. Tointo spin waves. In addition to the peak, one also notices
get a quantitative estimate of this effect | have obtainedin incoherent background which far, = 7 extends
an effective Ginzburg-Landau description of the modeldown to zero energy.
via a Hubbard-Stratonovich transformation of the inter- Finally, the Néel temperature can be determined in this
chain interaction in Eq. (1). At the Gaussian level ex-approach from the divergence of the static susceptibility
pressions like Eq. (10) for the transverse and longitudinaftg = (0,0, 77) as a function of temperature. The single-
susceptibilities are obtained, but higher order correctionshain susceptibility is given by [16,17k(7,0;T) =
can also be studied systematically. In particular, a lonA/(JT)In'/2(AJ/T), where numerical calculations give
gitudinal excitation can now decay into two spin waves,[18] A = 0.32, A = 5.8. Equation (9) then implies the
and there is also important spin-wave—spin-wave scatrelation
tering. Spin rotation invariance imposes that the matrix Ty
elements for these processes at low energies are given by |/ | = 172 .
x.(7,0)/h and y.(7,0)/h?, respectively. Taking these 4AInYH(AJ/Ty)
processes into account in an RPA-like fashion, the longi- The above results for staggered magnetization, excita-
tudinal susceptibility takes the form tion spectrum, and Néel temperature are now compared to
experimental results on KCyF From the excitation spec-
trum aboveTy the exchange constant along the chains is
_ xL(g:, @) + 3(gq, ®) J = 34meV. From the measured [6}, = 0.25 Eq. (7)
1 — 2|J,|(cosq, + cosqy)[xi(q:, @) + 2(q,w)]~  then givesJ, = —J/16 = —2.1meV. From Eqg. (8)
(12) then follows the first prediction of the present theory:
A = 13meV. From Egs. (9) and (1Q) is the spin wave
This form still retains one-dimensional relativistic invari- frequency ag; = (7,0, 7). Experimentally [6lw(g;) =
ance:  xr((g1,q.), ®) = x((g1,0), (w? — v?¢?)"?).  11.5meV, in rather good agreement with the prediction.
Numerical results for Ify;] (which determines the A second nontrivial prediction of the present theory is
neutron scattering intensity) are shown in Fig. 1. Onehe existence of a longitudinal mode at; (0,0, 7) ~
notices in particular a very sharp feature very close/2/3A = 10meV. It is then tempting to associate the

0.0

(13)

xL(q, o)
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sharp rise in the energy-dependent neutron scattering itradiction with scaling. Apart from the quantitatively sat-

tensity (which does not differentiate between transverseésfying description of KCuk;, the present theory thus also

and longitudinal modes) observed around= 10 [6,7] seems more satisfactory on grounds of consistency with

with this mode. On the other hand, it is not clear howgenerally valid arguments.
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