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Dynamical Phases of Driven Vortex Systems
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We study numerically the motion of vortices in dirty type Il superconductors. In two dimensions
at strong driving currents, vortices form highly correlated “static channels.” The static structure factor
exhibits convincing scaling behavior, demonstrating quasi-long-range translational order in the trans-
verse direction. However, order in the longitudinal direction is only short range. We clearly establish
the existence of a finite transverse critical current, suggesting strong barriers against transverse driving
forces. We discuss these results in terms of recently proposed theories of the moving vortex systems.
[S0031-9007(96)01255-0]
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Many condensed matter systems reach higher levedisorder remairstatic[11]. These prevent the formation
of organization by forming periodic media. Examplesof a true solid order and stabilize a “moving glass” phase
range from crystalline solids to Wigner crystals, chargenstead with quasi-long-range order (QLRO) only. In re-
density waves, and vortex lattices in type Il supercondated charge density wave systems it is also found that the
ductors. A central issue is the effect of disorder on themoving phase possesses only QLRO [12]. The physics
stability of such systems. Flux lattices, for weak disorderof the moving glass phase is [11] that the vortices move
and short distances, are properly described by the staadong highly correlatedtatic channels This picture leads
dard elastic theory [1,2]. Topological excitations such aso a power law decay of the density correlations at large
dislocation loops become relevant only for stronger disdistances. Furthermore, it is characterized by diverging
order and longer length scales [3], possibly giving rise tgpotential barriers against a transverse drive and, conse-
a vortex glass phase. Concerning the behavior of weaklguently, a finite transverse critical current.
disordered systems at asymptotically long length scales, In this Letter, we report a numerical study of the
modifications of the elastic approaches were proposedlynamical phases of driven vortex systems. We find
Following the early work of Nattermann [4], an extensivethat vortices indeed move along “static channels.” We
analysis was carried out in this regime by Giamarchi andlemonstrate the existence of translational QLRO in the
Le Doussal, who concluded that density correlations detransverse direction. However, we find only short-range
cay according to a power law when the periodicity of theorder in the longitudinal direction, giving rise to a “mov-
lattice is properly taken into account. They christened thisng transverse glass.” We identify phase slips between
phase a “Bragg glass” [5]. A recent analysis suggestedeighboring elastic domains as a possible source of the
that the elastic approach is self-consistent, as topologicédreakdown of the elastic theory along the longitudinal di-
excitations were found irrelevant in three dimensions, andection. As a direct consequence the absence of a narrow
marginal in two dimensions [6]. However, a comprehen-band noise is predicted in driven 2D vortex systems. Fi-
sive picture is yet to be agreed upon. While numerousally, we measure the response to a transverse drive and
additional scenarios have been proposed [2], there isbserve a finite critical current.
growing experimental evidence supporting the basic pic- We employ overdamped molecular dynamics (MD)
ture of two types of glasses as the disorder or the magnetgimulations at zero temperature to study two dimensional
field is increased [7,8]. interacting vortices in the presence of point disorder,

When these ordered media are exposed to an exter- ;.
nal force beyond a certain critical depinning strength, yd—t’ = ZFU(ri —rj) + ZFpin(ri - Rj) + F..
they become mobile. Early work developed perturbation J#i j
studies at high velocities in powers of1/v [1,9]. A @
qualitatively new picture has been proposed recently byierey is the damping parameteR,; specifies the pinning
Koshelev and Vinokur, who argued that at large driv-center positionsy; denotes the location of thiéh vortex,
ing forces the effect of disorder can be adequately repreand F, is the Lorentz force, exerted by the external

sented by a “shaking temperaturg}, ~ 1/v [10]. Thus  driving current. The force between vortices is given by
by increasing the velocity beyond some critical value a

genuinedynamic phase transitiomay occur to a more F,(r) = Fo(l — 72)2;, (2)
ordered vortex state, characterized by a change from in- r

coherent to coherent vortex motion. The nature of thevhere? = r/Reu, Fo = Vo/Reur, and we choos® ., =
ordered phase has been elucidated by Giamarchi and 364, where ay is the mean vortex spacing. Here
Doussal, who pointed out that some components of theo, Vy [~ 2s®3 /(47 A)?], andyad/V, define the units of
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length, energy, and time, respectively, and the sample ordering. We do indeed observe a sharp transition into a
thickness. The pinning force is taken as phase with well developed peaks (upper panel in Fig. 2).
Fpin(F) = —4F,(1 — F)F. 3) The upper phase boundary in Fig. 1 was determined
by mapping outF, for several disorder strengths. One
fixed bin densit PR can see that for strong disorder indeed all three expected
'Xle\l pin densi ytOfpptmth_ pﬁ"’“e"' di in the drivi phases are observed, whereas for weak disorder there is no
ow we construct Iheé pnase diagram In h€ drvingg, ;qence for an intervening plastic flow regime. Either
force—pl_nnlng_ gtrength plane, at zero temperature. \.N'tq at phase occupies a very slim region in the parameter
increasing drl_vlng currents three phases_emerge: apinn %ace or there is a direct pinned Bragg glass-to-moving
glass, a plastic ﬂQW regime, and some km.d of an ordt_ere lass transition. This transition is much harder to identify
phase. At low drive the vortices rema_ln.plnned, formlngb cause both phases exhibit quasi-long-range order, and
a glassy phase. As the Lorentz force is increased beyoq us the structure factors are very similar ’
a critical valueF,, the vortices depin. This transition, The central goal of our paper is to elucidate the nature

and in particular the value of;, can be well captured : . A :
by studying the current-voltagé\{) characteristics. The g;;?izgﬁi)v elocity phase. To address this issue we first

resulting values ofF, were used to construct the lower
phase boundary in Fig. 1. Abovg; the vortices form a S(k) = ﬁ Zeik'[rf(’)’rf(’)].
i

Here7 = r/Ryin andRpin = 0.25a9. We worked with a

(4)

pattern of pinned and unpinned regions, often described as
an incoherent, or “plastic flow” [2]. For strong disorder,
F, scales linearly with the pinning strength, whereaslhe pinning strengtlt, is fixed to be 0.16 and the applied
for weak disorder the relation is quadratic. The nearforce F, = 0.6 is well above the corresponding critical
linearity of the phase boundary in Fig. 1 indicates that weforce F; = 0.35. We simulate five different system sizes
concentrated on the regime of strong disorder. with fixed vortex density and number of vortices ranging
Upon further increase of the driving force, Koshelevfrom 240 to 1500. The initial configurations are chosen
and Vinokur proposed [10] that at somE, = F, a randomly. We let the MD simulations evolve with time,
dynamic phase transition occurs from the incoherentnake sure that the system reaches its steady state, then
plastic flow to a regime with coherent vortex motion. freeze the vortex configuration and measui). In
Concerning the nature of this phase, Giamarchi and Lée steady state the vortices form an orderly array. Its
Doussal suggested [11] that the vortex system forms a
moving glass. We now explore these propositions. The
phase boundary, can be established by measuring the
static structure factoS(k). In the plastic flow regime
the absence of ordering manifests itself in a central peak
and a structureless ring (lower panel in Fig. 2). In the
high velocity phase; > F,, one expects to see sixfold
coordinated Bragg peaks representing some sort of solid
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principal lattice vector in most cases is aligned with thedensity and should be incorporated in a full theory. This
direction of motion. It was argued that the system choosesbservation is not consistent with an elastic approach
such an orientation to minimize the power-dissipation [9].for the longitudinal direction. Clearly, a more detailed
However, the details of this alignment have yet to beunderstanding is needed on this issue, especially in two
understood. dimensions [14]. A measurable consequence of this
To study the peaks of (k) at the reciprocal lattice absence of translational order in the longitudinal direction
vectorGy = (0, =4 /~/3), we write down the following should be the corresponding absence of narrow band
finite size scaling form fok || Gy: noise. It is noteworthy that the experimental search for
_ rd—v, narrow band noise in moving vortex systems so far has
Sk L) = LT GL(3k L), ®) been fruitless [15]. The samg conclusign was reached for
with §k = |k — Gy|. The peaks off(k) are anisotropic the analogous CDW models in 2D [12].
and the half-width in the directiok || G() is COﬂSIderab|y The proposition Of the moving glass phase rests on the
smaller thank L Go. In Fig. 3 the scaling function argument that certain components of the disomimot
G.(x) is plotted with respect to the dimensionless scalingaverage out, but presentszatic perturbation. If so, the
variable x = SkL for the five system sizes. The peak moying vortices should form static channels, which do
amplitudes scale with the system size BS ™ with  not change their shape with time. To study this we map
v; = 0.53 = 0.1, as shown in the inset of Fig. 3. Using oyt the trajectories of the vortices. Making sure that the
this value ofv; the normalized structure factors collapsefiow reached its steady state, we take a large number of
onto a single curve, confirming the scaling behaviorconsecutive snap shots, which are then displayed on top of
S(k) = |k — Go|™'*" around the peaks. We find that each other. We display only a small portion of the result
the exponenty; is not independent of, and F), [13].  in Fig. 4 to show how vortices retrace each other’s path to
The moving glass picture predicts a power-law decay, remarkable degree, clearly demonstrating the formation
of density correlations with a universal exponent in 3Dof static channels. One observes that the transverse
but possibly a nonuniversal one in 2D, thus providingwandering of most channels is at best comparable to
a natural description of our results in the transversgne |attice spacing. The fact that we nevertheless see
directions. In contrast, the peak heights at momentgower law decay of the density correlations implies either
with nonzero longitudinal components decay rapidly withthat the crossover to the glassy asymptotics occurs at
system size. To understand the underlying physicahnomalously short distances, or that additional physics,
mechanism we studied a large number of snapshots @f,ch as phase slips, may play a role.
determined the corresponding Burgers’ vectors. Thef diverging barriers against small transverse currents,
overwhelming majority points in the direction of the |eading to afinite transverse critical current This
velocity, suggesting thaihase slipdetween longitudinal critical current is the largest when one of the principal
boundaries of elastic domains are present in a finit¢attice vectors is parallel to the motion [11]. We select

50 disorder realizations which lead to a steady state
T T T T T with one of its primitive lattice vectors parallel to the
direction of the velocity. After the system reaches the
1 steady state, a small additional transverse force is applied
and the transverse velocity, is measured. Figure 5
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FIG. 3. Finite size scaling of the static structure facfdk).

The driving force F; = 0.6 is well above the critical force NMWM"‘W/"

F, ~0.35. The inset shows power law dependence of the
peak heights with varying system siz§; (L) ~ L**" with
v, ~ 0.53 = 0.1. FIG. 4. The static channels in the steady state.
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' plastic flow regime. Next we studied the structure factor
S(k), which exhibited a sharp transition from its ring
shape in the plastic flow regime into a phase with an
anisotropic peak pattern. The Bragg peaks establish the
existence of power law order in the transverse directions,
but only short-range longitudinal order. Correspondingly,
> we also expect the absence of a narrow band noise.
We demonstrated the formation of static channels and
found a finite critical transverse current. We suggested
that longitudinal phase slips might be responsible for the
discrepancies between the moving glass picture and our
numerical results. Thus this new phase might be more
accurately called a moving transverse glass.
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