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Dynamical Phases of Driven Vortex Systems
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We study numerically the motion of vortices in dirty type II superconductors. In two dimens
at strong driving currents, vortices form highly correlated “static channels.” The static structure f
exhibits convincing scaling behavior, demonstrating quasi-long-range translational order in the
verse direction. However, order in the longitudinal direction is only short range. We clearly esta
the existence of a finite transverse critical current, suggesting strong barriers against transverse
forces. We discuss these results in terms of recently proposed theories of the moving vortex sy
[S0031-9007(96)01255-0]
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Many condensed matter systems reach higher le
of organization by forming periodic media. Exampl
range from crystalline solids to Wigner crystals, cha
density waves, and vortex lattices in type II superc
ductors. A central issue is the effect of disorder on
stability of such systems. Flux lattices, for weak disor
and short distances, are properly described by the s
dard elastic theory [1,2]. Topological excitations such
dislocation loops become relevant only for stronger d
order and longer length scales [3], possibly giving rise
a vortex glass phase. Concerning the behavior of we
disordered systems at asymptotically long length sca
modifications of the elastic approaches were propo
Following the early work of Nattermann [4], an extensi
analysis was carried out in this regime by Giamarchi a
Le Doussal, who concluded that density correlations
cay according to a power law when the periodicity of t
lattice is properly taken into account. They christened
phase a “Bragg glass” [5]. A recent analysis sugges
that the elastic approach is self-consistent, as topolog
excitations were found irrelevant in three dimensions,
marginal in two dimensions [6]. However, a comprehe
sive picture is yet to be agreed upon. While numer
additional scenarios have been proposed [2], there
growing experimental evidence supporting the basic
ture of two types of glasses as the disorder or the magn
field is increased [7,8].

When these ordered media are exposed to an e
nal force beyond a certain critical depinning streng
they become mobile. Early work developed perturbat
studies at high velocitiesy in powers of1yy [1,9]. A
qualitatively new picture has been proposed recently
Koshelev and Vinokur, who argued that at large dr
ing forces the effect of disorder can be adequately re
sented by a “shaking temperature”Tsh , 1yy [10]. Thus
by increasing the velocity beyond some critical value
genuinedynamic phase transitionmay occur to a more
ordered vortex state, characterized by a change from
coherent to coherent vortex motion. The nature of
ordered phase has been elucidated by Giamarchi an
Doussal, who pointed out that some components of
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disorder remainstatic [11]. These prevent the formation
of a true solid order and stabilize a “moving glass” pha
instead with quasi-long-range order (QLRO) only. In r
lated charge density wave systems it is also found that
moving phase possesses only QLRO [12]. The phys
of the moving glass phase is [11] that the vortices mo
along highly correlatedstatic channels. This picture leads
to a power law decay of the density correlations at lar
distances. Furthermore, it is characterized by diverg
potential barriers against a transverse drive and, con
quently, a finite transverse critical current.

In this Letter, we report a numerical study of th
dynamical phases of driven vortex systems. We fi
that vortices indeed move along “static channels.” W
demonstrate the existence of translational QLRO in
transverse direction. However, we find only short-ran
order in the longitudinal direction, giving rise to a “mov
ing transverse glass.” We identify phase slips betwe
neighboring elastic domains as a possible source of
breakdown of the elastic theory along the longitudinal d
rection. As a direct consequence the absence of a nar
band noise is predicted in driven 2D vortex systems.
nally, we measure the response to a transverse drive
observe a finite critical current.

We employ overdamped molecular dynamics (MD
simulations at zero temperature to study two dimensio
interacting vortices in the presence of point disorder,

g
dri

dt
­

X
jfii

Fysri 2 rjd 1
X

j

Fpinsri 2 Rjd 1 FL .

(1)
Hereg is the damping parameter,Rj specifies the pinning
center positions,ri denotes the location of theith vortex,
and FL is the Lorentz force, exerted by the extern
driving current. The force between vortices is given by

Fysrd ­ F0s1 2 r̃2d2 r̃
r̃2

, (2)

wherer̃ ­ ryRcut, F0 ­ V0yRcut, and we chooseRcut ­
3.6a0, where a0 is the mean vortex spacing. Her
a0, V0 fø 2sF

2
0ys4pld2g, andga2

0yV0 define the units of
© 1996 The American Physical Society
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length, energy, and time, respectively, ands is the sample
thickness. The pinning force is taken as

Fpinsr̄d ­ 24Fps1 2 r̄2dr . (3)

Here r̄ ­ ryRpin andRpin ­ 0.25a0. We worked with a
fixed pin density ofrpin ­ 5rvortex.

Now we construct the phase diagram in the drivi
force-pinning strength plane, at zero temperature. W
increasing driving currents three phases emerge: a pin
glass, a plastic flow regime, and some kind of an orde
phase. At low drive the vortices remain pinned, formin
a glassy phase. As the Lorentz force is increased bey
a critical valueFd, the vortices depin. This transition
and in particular the value ofFd , can be well captured
by studying the current-voltage (IV) characteristics. The
resulting values ofFd were used to construct the lowe
phase boundary in Fig. 1. AboveFd the vortices form a
pattern of pinned and unpinned regions, often describe
an incoherent, or “plastic flow” [2]. For strong disorde
Fd scales linearly with the pinning strength, where
for weak disorder the relation is quadratic. The ne
linearity of the phase boundary in Fig. 1 indicates that
concentrated on the regime of strong disorder.

Upon further increase of the driving force, Koshele
and Vinokur proposed [10] that at someFL ­ Fg a
dynamic phase transition occurs from the incoher
plastic flow to a regime with coherent vortex motio
Concerning the nature of this phase, Giamarchi and
Doussal suggested [11] that the vortex system form
moving glass. We now explore these propositions. T
phase boundaryFg can be established by measuring t
static structure factorSskd. In the plastic flow regime
the absence of ordering manifests itself in a central p
and a structureless ring (lower panel in Fig. 2). In t
high velocity phaseFL . Fg, one expects to see sixfol
coordinated Bragg peaks representing some sort of s

FIG. 1. The dynamic phase diagram.Fp is the pinning
strength,FL is the Lorentz force. Open circles representFg,
solid circles representFd .
g
th
ed

ed
g
nd

as
,
s
r-
e

v

nt
.
Le

a
e

e

ak
e

lid

ordering. We do indeed observe a sharp transition in
phase with well developed peaks (upper panel in Fig. 2

The upper phase boundary in Fig. 1 was determin
by mapping outFg for several disorder strengths. On
can see that for strong disorder indeed all three expe
phases are observed, whereas for weak disorder there
evidence for an intervening plastic flow regime. Eith
that phase occupies a very slim region in the param
space or there is a direct pinned Bragg glass-to-mov
glass transition. This transition is much harder to ident
because both phases exhibit quasi-long-range order,
thus the structure factors are very similar.

The central goal of our paper is to elucidate the nat
of the high velocity phase. To address this issue we fi
analyzeSskd,

Sskd ­
1

Ld

X
i,j

eik?fristd2rjstdg. (4)

The pinning strengthFp is fixed to be 0.16 and the applie
force FL ­ 0.6 is well above the corresponding critica
forceFg ø 0.35. We simulate five different system size
with fixed vortex density and number of vortices rangi
from 240 to 1500. The initial configurations are chos
randomly. We let the MD simulations evolve with tim
make sure that the system reaches its steady state,
freeze the vortex configuration and measureSskd. In
the steady state the vortices form an orderly array.

FIG. 2. The static structure factorSskd. FL ­ 0.6 in the
upper panel and0.2 in the lower panel. The number of vortice
is 960 and the disorder strengthFp ­ 0.16. The critical force
is Fg ø 0.35.
2779
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principal lattice vector in most cases is aligned with t
direction of motion. It was argued that the system choo
such an orientation to minimize the power-dissipation [
However, the details of this alignment have yet to
understood.

To study the peaks ofSskd at the reciprocal lattice
vectorG0 ­ s0, 64py

p
3d, we write down the following

finite size scaling form fork k G0:

Ssdk, Ld ­ Ld2ns GLsdk Ld , (5)

with dk ­ jk 2 G0j. The peaks ofSskd are anisotropic
and the half-width in the directionk k G0 is considerably
smaller thank ' G0. In Fig. 3 the scaling function
GLsxd is plotted with respect to the dimensionless scali
variable x ­ dkL for the five system sizes. The pea
amplitudes scale with the system size asL22ns with
ns ­ 0.53 6 0.1, as shown in the inset of Fig. 3. Usin
this value ofns the normalized structure factors collaps
onto a single curve, confirming the scaling behav
Sskd > jk 2 G0j

21.47 around the peaks. We find tha
the exponentns is not independent ofFL and Fp [13].
The moving glass picture predicts a power-law dec
of density correlations with a universal exponent in 3
but possibly a nonuniversal one in 2D, thus providi
a natural description of our results in the transve
directions. In contrast, the peak heights at mome
with nonzero longitudinal components decay rapidly w
system size. To understand the underlying physi
mechanism we studied a large number of snapshots
vortices. We identified all of the lattice defects an
determined the corresponding Burgers’ vectors. T
overwhelming majority points in the direction of th
velocity, suggesting thatphase slipsbetween longitudinal
boundaries of elastic domains are present in a fin

FIG. 3. Finite size scaling of the static structure factorSskd.
The driving forceFL ­ 0.6 is well above the critical force
Fg , 0.35. The inset shows power law dependence of t
peak heights with varying system size;SpsLd , L22ns with
ns , 0.53 6 0.1.
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density and should be incorporated in a full theory. Th
observation is not consistent with an elastic approa
for the longitudinal direction. Clearly, a more detaile
understanding is needed on this issue, especially in
dimensions [14]. A measurable consequence of t
absence of translational order in the longitudinal directi
should be the corresponding absence of narrow b
noise. It is noteworthy that the experimental search
narrow band noise in moving vortex systems so far h
been fruitless [15]. The same conclusion was reached
the analogous CDW models in 2D [12].

The proposition of the moving glass phase rests on
argument that certain components of the disorderdo not
average out, but present astatic perturbation. If so, the
moving vortices should form static channels, which
not change their shape with time. To study this we m
out the trajectories of the vortices. Making sure that t
flow reached its steady state, we take a large numbe
consecutive snap shots, which are then displayed on to
each other. We display only a small portion of the res
in Fig. 4 to show how vortices retrace each other’s path
a remarkable degree, clearly demonstrating the forma
of static channels. One observes that the transve
wandering of most channels is at best comparable
the lattice spacing. The fact that we nevertheless
power law decay of the density correlations implies eith
that the crossover to the glassy asymptotics occurs
anomalously short distances, or that additional phys
such as phase slips, may play a role.

The moving glass picture also implies the existen
of diverging barriers against small transverse curren
leading to a finite transverse critical current. This
critical current is the largest when one of the princip
lattice vectors is parallel to the motion [11]. We sele
50 disorder realizations which lead to a steady st
with one of its primitive lattice vectors parallel to th
direction of the velocity. After the system reaches t
steady state, a small additional transverse force is app
and the transverse velocityyy is measured. Figure 5

FIG. 4. The static channels in the steady state.
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FIG. 5. I-V characteristics showing transverse velocityyy as a
function of transverse forceFy. HereFL ­ 0.6. The straight
line represents a free flux flow response.

clearly exhibits a finite critical transverse forceF
y
d ø

0.006 6 0.001. Simulations for several different syste
sizes result in identical critical currents, indicating th
this threshold behavior is not a finite size effect [13]. T
absence of a threshold current forFp ­ 0 verifies that
this phenomenonis not a resultof the periodic boundary
conditions or the alignment of the driving force with t
sides of the simulation box.

Our simulations are consistent with the following a
pects of the moving glass scenario: power law deca
density correlations; existence of static channels; and
nite transverse critical current. However, the manife
short-range longitudinal correlations clearly call for fu
ther studies. Our real space snapshots point toward
possible importance of phase slips between the long
dinal boundaries of elastic domains. Finally, the tr
glassy nature of the transverse fluctuations remains t
verified, since the divergent nature of the barrier heig
would be proven only by identifyingnonlinearI-V char-
acteristics atfinite temperatures [3,16] or by analyzing t
statistics of the barrier heights. Both of these tests are
merically very demanding.

In summary, we explored the dynamic phases of dri
vortex systems. We measured theI-V characteristics to
determine the critical depinning forceFd, establishing
the phase boundary between the pinned glass and
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plastic flow regime. Next we studied the structure fac
Sskd, which exhibited a sharp transition from its rin
shape in the plastic flow regime into a phase with
anisotropic peak pattern. The Bragg peaks establish
existence of power law order in the transverse directio
but only short-range longitudinal order. Corresponding
we also expect the absence of a narrow band no
We demonstrated the formation of static channels
found a finite critical transverse current. We sugges
that longitudinal phase slips might be responsible for
discrepancies between the moving glass picture and
numerical results. Thus this new phase might be m
accurately called a moving transverse glass.
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