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Hybridization versus Local Exchange Interaction in the Kondo Problem: A Two-Band Model
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The competition between local exchange and hybridization in Kondo systems is investigated
by studying a model in which a localized spin1y2 has an exchange interaction with two
bands with a ferromagnetic couplingJsf . 0 and an antiferromagnetic couplingJhyb , 0, respec-
tively. It is shown that a Kondo effect takes place even for large values of the ratiojJsfyJhyb j.
The results should be applicable to real systems when orbital degeneracy is taken into ac-
count, and indicate that the Kondo effect can occur even in the presence of a strong local ex-
change. Consequences on the picture of the competition between the two effects are discussed.
[S0031-9007(96)01202-1]
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The magnetic interaction in normal rare-earth co
pounds originates from local exchange between thf
shell and conduction electrons through the Ruderm
Kittel-Kasuya-Yosida (RKKY) mechanism. In anom
lous rare-earth compounds (Kondo systems and h
fermions) the electronic hybridization betweenf and
band electrons gives rise to the Kondo effect and te
to produce the nonmagnetic heavy Fermi liquid grou
state [1].

The observation of Kondo-like phenomena sugge
that hybridization dominates over local exchange; thi
usually taken for granted in the study of Kondo syste
and, in fact, local exchange is neglected in the commo
adopted Anderson model. However, electronic struc
calculations suggest that in several Ce compounds
CeTe, CeSe, CeAg) the magnetic interaction is de
mined essentially by local exchange, rather than by
hybridization-induced pair coupling: in fact, the magne
ordering temperature calculated by keeping hybridiza
only is an order of magnitude smaller than the exp
mental value [2,3], while agreement with experimen
obtained when local exchange is accounted for [2].

This behavior cannot be understood within a sim
spin 1y2 one-band model. In such a model the local
change couplingJsf [which is usually ferromagnetic (FM)
Jsf . 0] competes with the antiferromagnetic (AFM) co
pling Jhyb , 0 generated from hybridization through th
Schrieffer-Wolff transformation [4]: the relevant couplin
is Jsf 1 Jhyb, so that the Kondo effect occurs only wh
jJhybj . Jsf [5]. However, more subtle effects can ta
place in the presence of orbital degeneracy. Under
usual assumption that hybridization is spherically symm
ric and local exchange is a spin-only interaction, hybridi
tion couples thef shell with conduction electrons in
partial wavel ­ 3 around the impurity site [6], while loca
exchange couples thef shell to band electrons in al ­ 0
state. Thus the Kondo and local exchange interaction
volve two different conduction electron channels.
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In this Letter we model this situation by studyin
a two-band (or two-channel) Hamiltonian in which
localized spin 1y2 interacts with two distinct bands
with a FM coupling Jsf . 0 and an AFM coupling
Jhyb , 0, respectively. Since a FM coupling is know
to scale to weak coupling for the one-band model
low temperatures, while AFM coupling scales always
strong coupling, it can be expected that the Kondo ef
persists even when the ratiojJsfyJhybj is large. This is
shown explicitly in this paper, and leads to a picture of
competition between Kondo effect and magnetic order
which is quite different from the commonly assumed o

The model Hamiltonian is

H ­
X
ns

ency
nscns 1

X
qs

eqcy
qscqs

2 Jsf $sFs0d ? $Sf 2 Jhyb $sAFs0d ? $Sf , (1)

where en seqd is the energy of an FM-band (AF-ban
conduction electron with wave vector$n s $qd. The FM-
band (AF-band) cutoff isBF (BAF). The exchange
interaction between the localized spin$Sf and the FM-
band (AF-band) spin density at the impurity site,$sFs0d
[ $sAFs0d], is FM [AFM] with a coupling constantJsf . 0
[Jhyb , 0].

We adopt the nonperturbative method developed
Yoshimori and Yosida [7] for the one-band Kondo mod
in which the ground-state wave function is expanded
a many-body basis with electron-hole excitations [
Fig. 1(a)] and Stot ­ 0. An integral equation for the
lowest-order expansion coefficient (dq) is derived by a re-
summation to infinite order inJhyb , keeping only the (log-
arithmically) most divergent terms. The equation can
solved analytically, and its solution describes the form
tion of a many-body singlet ground state. The nonper
bative energy gain is defined to be the Kondo tempera
and is given byT0

K ­ BAF exps1yrJhybd, wherer is the
© 1996 The American Physical Society
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band density of states (assumed to be constant).T 0
K has

the correct exponent, but is higher than the exact Ko

temperature,T exact
K ,

q
jrJhybj BAF exps1yrJhybd [8].

The basis for the two-band model is illustrated
Fig. 1(b). The lowest-order state on the left has one e
tron on the impurity level, one electron with wave vec
$n over the FM-band Fermi sea, and one electron w
wave vector$q over the AF-band Fermi sea. The high
us
a

do

n
c-
r
th

order states on the right have an additional electron-h
excitation in either the FM band or the AF band. T
ground-state wave function is found in the subsp
Stot ­ 1y2, which allows for a singlet state betwee
localized spin and one of the conduction spins. T
integral equations resulting from the Yosida procedure
the two-band Kondo model are given by (settingrJ ! J
for simplicity)
feq 1 en 2 e 1 DEseq, endg
µ
dqn 1

1
2

cqn

∂
­ 2 3

µ
Jhyb

4

∂ Z
deq0

µ
dq0n 1

1
2

cq0n

∂
2

3
2

µ
Jsf

4

∂ Z
den0 cqn0

2 3

µ
Jhyb

4

∂2 Z
deq0 ln

µ
eq0 1 eq 1 en 2 e

BAF

∂ ∑
1 2 Jhyb ln

µ
eq0 1 eq 1 en 2 e

BAF

∂∏21µ
dq0n 1

1
2

cq0n

∂
1 3

µ
Jsf

4

∂2 Z
den0 ln

µ
en0 1 eq 1 en 2 e

BF

∂ ∑
1 2 Jsf ln

µ
en0 1 eq 1 en 2 e

BF

∂∏21µ
dqn0 2

1
2

cqn0

∂
1 6

µ
Jhyb

4

∂3 Z
deq0 IAFseq0 , eq, end

µ
dq0n 1

1
2

cq0n

∂
1 3

µ
Jhyb

4

∂2µJsf

4

∂ Z
den0 IAFsen0 , en , eqdcqn0

1 6

µ
Jsf

4

∂2µJhyb

4

∂ Z
deq0 IFseq0 , eq, end

µ
dq0n 1

1
2

cq0n

∂
1 3

µ
Jsf

4

∂3 Z
den0 IFsen0 , en, eqdcqn0 , (2)
n

(2)
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FIG. 1. Schematic representation of the many-body basis
in the Yosida method for (a) the one-band Kondo problem
(b) the present two-band Kondo model.
ed
d

where

Iasx, y, td ­ 2
hasx 1 td 2 hasy 1 td

x 2 y
,

a ­ AF, FM , (3)

hasxd ­ fasxd 2 2fasx 1 Bad 1 fasx 1 2Bad , (4)

fasxd ­ s2e 1 xd ln

µ
2e 1 x

Ba

∂
, (5)

and by another equation, which can be derived from
with the interchangesJsf $ Jhyb and AF band$ FM
band. DE is the perturbative correction to the groun
state energy, which is the same for theStot ­ 1y2 and
Stot ­ 3y2 states, and to leading order is given by

DE ­ 26

µ
Jsf

4

∂2

hFseq 1 end 2 6

µ
Jhyb

4

∂2

hAFseq 1 end.

(6)

The right-hand side contains two first order terms, f
lowed by two second order terms, which include a resu
mation in the most divergent approximation. The th
order terms are nondivergent and two of them (those
portional toJ2

sfJhyb and toJ2
hybJsf) are crossed. For th

AF band alone, keeping the third order nondivergent te
(which was neglected by Yosida) in the integral equat
for dq can be shown to yield a lowering ofTK towards the
exact valueT exact

K . The integral equations for the two
band model do not seem to admit analytical solutio
2763
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FIG. 2. (a) Kondo temperature as a function ofJsf for
different values ofJhyb (BF ­ BAF ­ 1) and (b) correlation
function k $Sf ? $sAFl (solid line), k $Sf ? $sFl (dotted line), as a
function of Jsf for Jhyb ­ 20.1 from the Yosida method.

we therefore adopt a numerical technique based on l
rithmic discretization of the band energies and Gaus
integration. The equations are then solved by a sc
ning procedure which yields the ground-state energy
great accuracy.TK is defined as the energy gain of th
Stot ­ 1y2 ground state with respect to theStot ­ 3y2
ground state.

In Fig. 2 we show the Kondo temperature and corre
tion functions as a function ofJsf. It can be seen from
Fig. 2(a) thatTK first decreases whenjJsfj is finite and
small (jJsfj ø jJhyb j). WhenJsf is negative (AFM) and
Jsf , Jhyb, TK starts to increase again: this is due to
fact that the role of the two bands is interchanged,
TK is now determined byJsf. The most interesting re
gion for us is whereJsf . 0: hereTK decreases contin
uously. In Fig. 2(b) we plot the ground-state correlat
between thef spin and the total spin in each one of t
two bands forJhyb ­ 20.1. This is calculated by keep
ing the lowest-order basis state in the ground state, w
can be shown to be the dominant one. Figure 2(b) pro
that a (Kondo) singlet is formed with the AF band f
all values ofJsf, except whenJsf is more negative than
Jhyb , in which case the singlet is formed with the F
band. The results of Fig. 2 confirm the expectations
cussed at the beginning: the Kondo effect persists e
when Jsf ¿ jJhyb j (provided, of course, both coupling
are ø1, which is the physically relevant region). Th
behavior is very different from that of a one-band mo
with hybridization and local exchange, where the Kon
effect disappears as soon asJsf . jJhybj [5].
2764
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The decrease ofTK for increasingJsf can be understood
as follows. ForJsf ! `, the hopping in the FM band
becomes negligible, and the localized spin is locked i
triplet state with the FM band at the impurity site. W
call $Seff ­ $Sf 1 $sF this effective spin one. In the limi
Jsf ! ` the two-band model can therefore be mapp
onto the model

H ­
X
qs

eqcy
qscqs 2

Jhyb

2
$sAFs0d ? $Seff . (7)

This is the Hamiltonian of a localized spin 1 interactin
through AFM exchange interaction with a spin 1y2
band. The AFM coupling constant isJhyby2. The model
(7) describes an undercompensated Kondo effect:
related expression ofTK (apart from the prefactor) is
T `

K , BAF exps2yJhybd. Thus the Kondo temperature
expected to decrease monotonically from the valueT 0

K ,
found for Jsf ­ 0, to the valueT`

K , found for Jsf ! `

(T0
K . T`

K ). The impurity susceptibility remains finite fo
all finite values ofJsf and diverges forJsf ! `.

We have studied the two-band model also by pertur
tive scaling [9]. We calculate the change of the effect
coupling constants as the two-band cutoffsBF and BAF

are reduced. The scaling equations up to third order in
coupling constants (which in the one-band case yield
correct expression forTK [1]) are

dJhyb ­ fJ2
hyb 1

1
2 J3

hybgd lnsBAFd 1
1
2 JhybJ2

sfd lnsBFd,

(8)

dJsf ­ fJ2
sf 1

1
2 J3

sfgd lnsBFd 1
1
2 JsfJ2

hyb d lnsBAFd.

(9)

We takeBF ­ BAF and reduce the two cutoffs simulta
neously. There are four fixed points: (1)Jsf ­ Jhyb ­ 0.
This is a trivial, unstable fixed point, which is the end
all trajectories when the starting point of the scaling pro
dure falls in the quadrant (Jsf . 0, Jhyb . 0). (2) Jsf ­
Jhyb ­ 21. This is an unstable, non-Fermi-liquid fixe
point, already discussed in Refs. [10,11] in the cont
of the multichannel Kondo problem. (3)Jsf ­ 0, Jhyb ­
22. This is a stable fixed point of the scaling equ
tions. Of course, the scaling equations are valid only
jJhyb j, jJsfj ø 1: in fact, for the full model the correspond
ing fixed point will be moved tos0, Jhyb ! 2`d, as for the
one-band model [10]. Since the effective interactionJhyb

scales to strong coupling, a Kondo effect must occur
low temperature. This strong coupling fixed point is t
end of all trajectories starting in thesJsf . 0, Jhyb , 0d
quadrant: this shows that a Kondo effect eventually ta
place for all values of the couplings in this quadrant.
Jsf ­ 22, Jhyb ­ 0. This is the obvious counterpart o
s0, 22d discussed above. The resulting scaling trajec
ries for the full model (1) are shown in Fig. 3.
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FIG. 3. Sketch of the scaling trajectories for the two-ban
model (1).

Thus the study of the scaling equations confirms th
a Kondo effect (namely, a crossover to strong couplin
takes place forJsf . 0, Jhyb , 0, irrespective of the
ratio JsfyJhyb. Although the scaling equations are derive
only for jJhyb j, jJsfj ø 1, the conclusions inferred from
the flux diagram should remain valid also beyond th
perturbative procedure, as discussed by Nozières
Blandin [10].

It is interesting to calculate the variation ofTK as a
function of Jsf (at fixed Jhyb) by means of the scaling
trajectories. This can be done by reducing both ba
cutoffs simultaneously starting fromBF ­ BAF ­ 1 and
defining TK as the value of the cutoff at whichJhyb

equals a given value, which we have taken to beJhyb ­
21y2, for a given pair of starting values (Jhyb, Jsf). The
resulting TK are found to be quite similar to those o
Fig. 2(a): the results of the scaling procedure are theref
in fair agreement with those from the Yosida approach.

The main result of the present study is that ev
in the regime jJhybj ø Jsf ø 1 a Kondo effect (i.e.,
a quenching of the impurity moment) takes place
low temperature; the relevant scaleTK decreases on
increasingJsf. This shows that within the present one
impurity model, local exchange is essentially ineffectiv
in eliminating the Kondo effect, which persists for a
physically relevant values of the parameters.

The mechanism for competition between hybridizatio
and local exchange must therefore be studied within a
riodic model. Here an additional effect occurs, namely
d
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pair interaction between localized spins originating fro
both hybridization and local exchange [2]. Compe
tion between Kondo effect and magnetic ordering is w
described by treating the magnetic interaction at a me
field level [12,13]: such a treatment shows that the con
tion for the onset of magnetic ordering is that the magne
coupling be larger thanTK . Therefore the Kondo effec
persists even when local exchange is much larger t
hybridization, provided the pair couplingIRKKY , TK .
Thus it is fully possible that the indirect interaction b
determined by local exchange, while the Kondo eff
still takes place due to the presence of a small hybrid
tion. These conclusions might help in explaining w
rare-earth materials withf-band hybridization are so fre
quently found in a nonmagnetic state, even when lo
exchange is large: basically, the relevant quantities to
compared are not hybridization and local exchange i
single-impurity model, but rather the Kondo temperatu
with the pair coupling in a lattice framework.

The above conclusions are, of course, born out o
simplified spin1y2 model. The next step will be to stud
a realistic model with orbital degeneracy and to look
the effect of the different interactions involving spin an
orbital degrees of freedom.

The authors are indebted to G. Amoretti and P. San
for several helpful discussions and suggestions.
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