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Vortex Excitation in Superfluid “He: A Diffusion Monte Carlo Study

S. Giorgini!? J. Boronat, and J. Casullerds
' Dipartimento di Fisica, Universita di Trento, 1-38050 Povo, Italy
and lIstituto Nazionale di Fisica della Materia, 1-38050 Povo, Italy
’Departament de Bica i Enginyeria Nuclear, Campus Nord B4-B5, Universitat Politécnica de Catalunya,
E-08028 Barcelona, Spain
(Received 14 June 1996

We present a diffusion Monte Carlo study of a single vortex in two-dimensional superfluid figeid
within the fixed-node approximation. We use both the Feynman phase and an improved phase which
includes backflow correlations to model the nodal surface of the vortex wave function. Results for the
particle density, core radius, and excitation energies are presented. [S0031-9007(96)01207-0]
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Diffusion and Green’s function Monte Carlo sim- state was introduced by Feynman [3]:

ulations have become a standard tool in the study of N
ground-state properties of Bose quantum liquids at zero Yr(R) = e'ler l_[f(r,»)(l)o(R), 1)
temperature. However, the development af initio i=1

computational methods to investigate properties of eXCite%heregoF — 3._, v 0; is the Feynman phase with the

. =1, 1
states, such as the phonon-roton branch and vortex exCitgyimythal angle of theth particle, dy(R) describes the
tions in superfluidHe, is still a challenging problem at the round state of the system, anfdr,) is a function of
forefront of present research in the field of computational,o (adial distance of eac’h partlicle from the vortex
techniques applied to condensed matter physics. In thigyjs *\hich models the density near the core. In what
Letter we present results on the microscopic structure ofg|jo\ys we consider only vortices with one quantum of
a single vortex excitation in two-dimensional liquitle  cjrcjation, i.e.¢ = =1. In the recent Letter by Ortiz and
at zero temperature, obtained by employing a fixed-nodgeperiey [6], a systematic method to improve the phase of

diffusion Monte Carlo (DMC) method [1]. _ the wave function is devised. Starting from the Feynman
The idea that circulation in superfluftHe is quantized hase o as zeroth order ansatz, the first correction

is due to Onsager [2], whereas the possibility that vorticey, | des backflow correlations giving an improved phase
might have a core of atomic dimensions was first putyt ihe form

forward by Feynman [3] who also proposed a microscopic
wave function for the vortex state. Gross, Pitaevskii, and
Fetter [4] investigated the structure of vortex states in
a weakly interacting inhomogeneous Bose gas using a : . .
mean field approach. The first attempt to study quantized "€ wave function constructed with the phasgr is
vortices in a strongly interacting system, such as liquidh€ vortex analog of the Feynman-Cohen backflow wave
“He, is due to Chester, Metz, and Reatto [5] whofunction for the phonqn-rpton equtathn branch [11]. _
calculated the energy of a vortex line with the use To go beyond avarlgtlonal estimation of the properties
of a variational approach involving integral equations.Of the vortex state, given by the above model wave
Only quite recently new calculations of the structure offunctions, we have used a DMC method. This method
vortex states in superfluitHe have appeared [6—9]. The ;olves the many—_body Schrddinger equation in imaginary
very recent Letter by Ortiz and Ceperley [6] is the firstime for the functionf (R, ) = ¢ (R)®(R, 7)
attempt to tackle the problem of the vortex core structure  J9f(R, 1)
by en?ploying ab initig computational techniques. Our ~ ~ 5, DVRf(R,1) + DVR[F(R)f(R,1)]
method in the present Letter is. similar to that used by + [EL(R) — E]f(R,1), 3)
these authors, but the approach is different and our results
for the core energy and the particle density near the vortewhere ®(R, ) is the wave function of the system and
axis are significantly different from the ones obtained ingr(R) is a trial function used for importance sampling. In
Ref. [6]. the above equatio, (R) = 7 '(R)Hy7(R) is the local

A vortex excitation is an eigenstate of tieparticle  energy andF(R) = 2¢T_1(R)VR¢T(R) is the so-called
Hamiltonian # and of thez component of the angular quantum drift forceD = %%/2m, with m the mass of the
momentumL, with eigenvalueZiN¢, corresponding to particles, plays the role of a diffusion constaRt,stands
an integer numbef of quanta of circulation [10]. The for the3N-coordinate vector of th& particles of the sys-
simplest microscopic wave function to describe a vortexem, andE is an arbitrary energy shift. Equation (3) is a

r .
®BF = @r + /\Z')’(ri»rj»rij)_ sin(6; — 6;). (2

J
i#) Fi
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diffusion equation for the probability distributiofi(R,f)  system is the calculation of the collective phas&R).
which evolves in time due to diffusion, drift, and branch- For a very large system one expects that the features of
ing processes. Ifb(R) represents the wave function of the vortex state near the core are weakly influenced by the
the lowest energy eigenstate of the system not orthogonakehavior of particles which are far from the vortex axis.
to the trial functiony7, the asymptotic solution of Eq. (3) It is thus reasonable to assume that, if the collective phase
is given by f(R,t — «) = ¢7(R)®(R) and the corre- is decomposed in the sum
sponding energy eigenvalue can be calculated exactly.

In order to deal with a real walker probability distri- PR) =D ¢ + D ;. (7)
bution functionf (R, ¢), we choose as a trial function the i =T it
superposition of two vortex states, one with positive andvhere the first term sums the contributions to the phase
one with negative circulation, which are degenerate in enef all the particles with distance from the vortex axis
ergy. The importance sampling function has therefore thevithin the cutoff length7 and the second term gives the

form contribution coming from all the other particles, the phase
N fluctuations in the second term are irrelevant for the core
Yr(R) = codo(R)] l_[f(ri)tpg(R), (4) structure of the vortex and it can be safely approximated

i=1 by its mean valued., . ¢; = 0. If this prescription

is employed in the calculation of the collective phase
entering the expressions (5) and (6) for the drift force
and the local energy, one expects that for a large enough
the Feynman phasey and the backflow phasesr. The gutoff length7 the properties of the vortex state near the

sign problem associated with the use of the above tri axis are properly simulated. However, the straightforward
wave function in the DMC algorithm has been dealt with. properly : ! 9

in the framework of the fixed-node (FN) approximation mterpretation of the decompositi(_)n (7) would be of no
[1]. This approach, which has been extensively used irpractlcal use because the collective phase would change

the calculation of ground-state properties of fermionicd'Scomlnuous'y by a large amount each time a particle

: ; exits or enters the region delimited by the cutaff
systems, yields an upper bound to the energy elgenvalqﬁ(stead the proceduregwe have adopt)éd is to use the

[1]. The quantum drift force acting on each particle,oIecom sition (7) as a way of tagging the particles
as obtained from the trial wave function (4), can be h po : y ol tagging P
written as the sunF/(R) = Fi(R) + Fy(R). The first that WI!| contribute to the collective phase for a long
term in the sum is independent of the phaseof the simulation run. The dependence of the_ results_ on the
wave function, whereas the second term contains¢he Icutoff length ha_s ttJJIeenhstudled and as W']!l be (Tscussfed
’ ater no appreciable changes are seen for valueg o
dependence and has the form larger than approximateBo (o = 2.556 A). It is worth
FQ(R) = —2tan¢)V;e;, (5) noticing that in the limit7 — 0 the collective phase
) o ) vanishes and all the terms containing explicigy in
where ¢; is the contribution of theith particle to the expressions (5) and (6) for the drift force and the local
collective phasep = >,y ¢;. In the same way, the energy disappear. In this case, the DMC calculation
local energyE, (R) can be decomposed in the sum of acan be shown to be equivalent to the fixed-phase (FP)
phase independent terfy, and a phase dependent termmethod employed by Ortiz and Ceperley in Ref. [6],

where ¢ is the importance sampling function for
the ground state and for the phagewe have used both

Ep, which is given by where the phase of the wave function is fixed and the
N ) ) DMC algorithm is used to solve the equation for the
Ep(R) =D <(Vi€0i) + tan(e)V; @i modulus of the wave function. By taking a finite value

=1 for the cutoff 7, one allows for phase fluctuations in
_ iF{(R) . Fé(R)). (6) the system arpund the.rihase introduced with the trial
2 function, and in the limitr — 0 one recovers the full

Vortex states are characteristic of systems with rotaFN approximation. Our results actually show that a finite
tional invariance, but, at the same time, simulations mustutoff is enough to account completely for the phase
deal with a finite number of particles. A simple choice fluctuations.
is to restrict thelV particles to be inside a cylindrical box  Once established that the contribution of the more
with the vortex at the center and rigid boundary condi-distant particles to the collective phase is irrelevant, there
tions on the walls. This is the geometry chosen for examis no compelling reason for not extending the system
ple in Ref. [6]. By confining the particles some problemsusing periodic boundary conditions. Surface effects exist
arise, such as the choice of the confining potential andlso in this case, in the sense that particles near the
surface effects which can be relevant if the box size is notvalls of the box “see” the artificial density perturbations
large enough. In the present work, we have removed thassociated with the image vortices in the adjacent boxes.
confinement in order to keep surface effects as small aldowever, these effects are negligible for a reasonable size
possible. An important point one needs to solve wherof the simulation cell and are definitely smaller than the
attempting to simulate a vortex excitation in an infinite density oscillations induced by rigid walls.
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T T T T T T T T T the vortex core, we consider two different options:
fi(r)=1—¢e"7/9 and f,(r) = 1. The first func-
03 . tion gives a density in the trial function which decreases

Y = to zero at the vortex axis over a distance of order
/ for which we take the valuex = 1 A, whereas the
/ second one does not contain any parameter associated
[ with the vortex core. For the backflow function en-
02 /’ - tering Eq. (2) we have used the same functional form
: / y(ri,rj rij)) = exd—a(r? + r?) — Bri] and the same

/ values for the parametets, 8, and A as in Ref. [6]. We

p_(r)

; have performed the calculation using three different trial
/ wave functions:y+' and ¢£% which correspond to the
0.1 - / 1 Feynman phaser with the radial termsf; and f», re-
/ spectively, andy£F corresponding to the backflow phase
L/ J ¢pr With f>. In Fig. 1 we show results for the particle
/ density p(r) using y£', ¢£2 and ¢£F. These results
oy . | . have been obtained by means of mixed estimators which
0'00 N 4 6 3 10 are significantly biased by the choice of the trial wave
r(A) function. As apparent from Fig. 1, the behavior near the
) ) ] o e core is strongly affected by the introduction or not of the
FIG. 1. Mixed dngS'ty profiles. Solid line: ‘{V'tg’g » short- yadial termf, (). In order to remove the influence of the
dashed line: withy7", and long-dashed line: with7 " trial wave function in mixed estimators of coordinate op-
erators one can use pure estimators. In the present work
We are now in a position to discuss our results.we have employed the method presented in Ref. [14].
We consider 64 particles in a two-dimensional The results for the pure density profiles do not depend
box of length L = 15.00, which corresponds ap- anymore on the use or not of the radial tefitr) and the
proximately to the equilibrium density of the three cases converge to a single result. The common pure
two-dimensional homogeneous liquid [12]. The atomsprofile is presented in Fig. 2, where it clearly appears
interact through the two-body HFD-B(HE) poten- that a zero particle density is reached on the vortex axis.
tial [13], which is a revised version of the HFDHE2 This result is in contrast with the prediction of a signif-
Aziz potential. The ground-state trial wave functionicant nonzero particle density on the axis obtained with
we have chosen is the McMillan two-body function the backflow phase in Ref. [6]. In our opinion the result
YAR) = [li<; exp(—b5/2ri5i) with » = 1.2050 as Of Ref. [6] can be influenced by the extrapolation tech-
in the ground-state calculation of Ref.[12]. For thenique used by the authors to improve the mixed estimator

radial function f(r), which models the structure of result. In fact, the usual linear extrapolation technique,
which is accurate to the same order as the one employed

I L B . in Ref. [6], would change their result for the particle den-
sity on the vortex axis in an amount comparable to their
03 L - prediction.

In Table | are reported the energies per particle for the
different trial wave functions, together with the energy
per particleEy/N in the ground state. The two results
for the Feynman phase are almost equal, whereas in the
02 - - case of the backflow phase the system is slightly more
bounded in accordance with the improvement of the nodal
surface. The cutoff lengthr for the calculation of the
collective phase has been takenras- 60. In the case
of the Feynman phase reducing the cutoff length does not
01 — give any change in the results down to the FP limit 0.

p (1)

TABLE I. Results for the energies per particleEr;/N,
Er,/N, andEgr/N correspond to the trial functiongs ', 42,
andyr", respectively. Ey/N is the ground-state energy.

1 | ] | L ] \ | 1
0'Oo 2 4 A 6 8 10 Er/N (K) Ery/N (K) Egr/N (K) Eo/N (K)
r(A)

FIG. 2. Pure density profile.

—0.8162(16) —0.8171(18)  —0.8199(18)  —0.8957(25)
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6 T N S— — T T T T Feynman and backflow phases, respectively. These values
coincide with the results obtained by a fit wiih, (r) for

r > 6 A. Our results foiE,. are significantly smaller than

7 the ones obtained in Ref. [6] and the value&bfare close

to the variational results of Ref. [8] based on the Feynman
phase.

In conclusion, we have studied the structure of a vortex
excitation in two-dimensional superflutéie using a DMC
method within the fixed-node approximation. The collec-
tive phase of the vortex has been dealt with by use of a
method that allows for the use of periodic boundary condi-
tions, removing spurious surface effects introduced by the
use of confining geometries. The fixed-phase approxima-
tion is recovered as a limiting case in our approach. The
result for the density profile predicts a zero particle density
on the vortex axis for the two model phases used. On the
other hand, the inclusion of backflow correlations in the
phase gives a slightly smaller upper bound for the excita-
20 tionenergy. Finally, we would mention that the fixed node

r(A) DMC method used in the pregent work permits the study
. - . of other excited states in liquitHe. Work is in progress
:.: IG. 3. Radial dependence of the excitation energy. SoliG, o i our calculations to the phonon-roton branch and
ine: with 7, short-dashed line: with7~, and long-dashed . T . .
line: with 2F. the vortex-antivortex excitation in two dimensions.
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