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Anomalous Behavior of Isotropic Raman Line Shapes near Gas-Liquid Critical Points
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Temperature dependencies of Raman linewidths FWHMsT d of the two polarized modes in N2O have
been determined along the coexistence line with mK resolution. Comparing the neat fluid with diluted
states of N2O in Xe (and CO2), quite opposite behaviors of FWHMsT d have been observed when the
liquids approach their respective critical temperaturesTc: While the mixturesN2Od0.05-Xe0.95 shows the
well known l-shaped effect of critical broadening, a unique and sharp density-correlated line narrowing
has been observed in the neat state. The gradual switchoff of intermolecular resonance couplings with
decreasing density is responsible for this narrowing phenomenon. [S0031-9007(96)01274-4]
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Isotropic Raman line shapes (IRLS)Jsvdiso may show
additional (Gaussian) broadening if the liquid-gas c
ical point T

slgd
c is reached [1,2]. This so-called crit

cal line broadening (CLB) results in aTc-peaked and
nearlyl-shaped temperature dependence of the line w
FWHMsT d (full width at half maximum), which is mos
pronounced if the fluid follows a path along the critic
isochore (r  rc) [3]. The common interpretation a
signs CLB, which is also expected to occur near the c
solute pointT

slld
c of a liquid mixture [4,5], to those mode

whose instantaneous frequenciesvstd  kvl 1 d vstd
are modulated by fluctuations of order parameters (den
r, concentrationx) [6,7]. Thus, CLB might reflect the
universal power law behavior of three-dimensional th
modynamic systems nearTc (see [8] for a review). The
most significant example of CLB is given by the width
N2, which increases eightfold compared to its low no
critical background value [9,10]. However, it remains
open question whether CLB is universal or not. In ad
tion to N2 it has also been observed (counting also mi
effects) in O2 [2], HD and H2 [3], CO [9], CO2 (mainly
n1) [11], CH4sn1d [9,12], and H2S (n1) [13], whereas
CLB was undetectable in CF4sn1d [9] and C2H6sn3d
[14]. Furthermore, the CLB searches aroundT

slld
c are

contradictory, i.e., either a null effect (3-methylpenta
nitroethane) [4] or line broadening by concentration fl
tuations (He-N2, H2) [5] were reported. NearTc either
line broadening or a total insensitivity to critical peculia
ities was observed, while line narrowing has never b
presented. To elucidate whether CLB might possibly
overlooked by an insufficient approach toTc, we studied
Jsvdiso of the two polarized modes (n1, n3) in N2O in
closest vicinity toTc (i.e., jDT pj ; jTyTc 2 1j * 1025)
along the critical isochoreryrc 2 1 ; Drp ø 0. In a
dense state of oscillators intermolecular couplings of b
resonant and nonresonant nature contribute to line br
ening [15,16]. We therefore compared the neat fluid w
0031-9007y96y77(13)y2746(4)$10.00
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diluted solutions of N2O in Xe and CO2 [17] in order
to judge the influence of the couplings on CLB. S
lution in a monatomic environment (Xe) removes all
them and additionally narrows the line due to the m
isotropic environment [18], whereas isotopic dilution su
presses the resonant contribution alone (here the ex
sive isotopomers of N2O are surrogated by CO2 [19]).

The Raman line shapes were measured with m
channel detectors on either a 50 cm focal length tr
monochromator Dilor XY (Salzburg, henceforwa
marked with XY) (nneat

3 ) or a 100 cm double instrumen
Jobin Yvon U1000 (Jena, marked with U) (all other e
periments). 180± (XY) and 90± (U) scattering geometrie
were used. In both setups, a kernel-in-shell princ
(e.g., see [14]) was used for temperature stabilization;
a fine tuned and weakly heated copper kernel contai
the sample was surrounded by a more coarsely contro
aluminum shell. Maintenance ofTke 2 Tsh & 200 mK,
rms fluctuationsjdTXY

ke j & 1 mK and jdTU
kej & 50 mK

could be achieved over periods of weeks, as was che
with various Pt 100 resistors and thermistors [20]. T
improved stability in the U experiments came fro
jdTU

shj & 5 mK compared tojdTXY
sh j & 100 mK and a

tenfold greater mass of the kernel (mU
ke  2.8 kg). To

improve heat conduction, the fluid in the U experim
(V U ø 2.1 cm3) was in immediate contact with th
(gold-coated) copper, whereas in the XY experim
a sealed thin-walled glass tube was used as the
mary container (V XY ø 2 cm3), fitted firmly into the
copper. In both experiments the trial-and-error filli
method of [14] was adapted to match the critical den
Drp  0 within 1%. Impurities were,0.3% N2 [21].
Usually, after reaching the nominal temperature wit
jdTj & 1 mK, the samples were allowed to equilibra
for tU

eq * 0.5 h or tXY
eq * 4 h (because of the intermedia

glass wall). Longer equilibration (teq . 12 h in both
cases) did not change our results. Additionally, th
© 1996 The American Physical Society
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FIG. 1. Polarized CCD Raman spectra of neat and dilu
states of liquid N2O. Lower part: Temperature dependence
n1 (neat state) near belowTc, upper part: Solvent dependenc
of n3 near 218 K. Aquisition times up to 30 min.

were not influenced when, duringT adjustment, the lase
beam (l0  514 nm, P & 400 mW) was (horizontally)
directed onto the sample or blocked. Sincen1 andn3 are
strongly polarized (ø103 : 1), it is sufficient to measure
the parallel component for evaluatingJsvdiso. The shapes
(see Fig. 1) were fitted with inverse polynomials, i.e
Jsvdexp  f

P4
n0 ansv 2 v0dng21. Except for the criti-

cal region in thesN2Od0.05-Xe0.95 mixture, theJsvd were
close to ordinary Lorentzians. In thesN2Od0.05-sCO2d0.95

mixture we could only determinen
N2O
3 due to strong over-

lap of n
N2O
1 with the tenfold more intense2n

CO2
2 mode

near1285 cm21. Figure 2 summarizes the dependenc
of FWHM on T in the different chemical environments
When approachingTc from the two-phase region, in th
neat liquid the comparatively broad lines (n1, n3) narrow.
The n3 line in the sN2Od0.05-sCO2d0.95 mixture also
narrows nearTc; however, the overall effect is of smalle
magnitude, whereas the well-known CLB effect becom
clearly evident for both lines in thesN2Od0.05-Xe0.95

mixed fluid.
In Fig. 3, the three data sets showing line narrowing

scaled to their individualTc to examine in greater detai
the behavior in close proximity toTc. In the neat fluid,
any indication of CLB is missed. Our highest quali
data (i.e., those ofn1) limit the T range where such a
broadening might exist to21024 & DTp & 1025 (it is
easier to approachTc from DT . 0). The n1 line (in
Fig. 3) most clearly shows that even minor contributio
of CLB are not present (even an effect as low
0.05 cm21 would be sufficient to smooth the sharp ed
at Tc [22]).

The FWHMsTd resemble the temperature dependen
of the orthobaric liquid densityrsTd nearTc [21], there-
fore the underlying broadening mechanism of the IR
is expected to be highly density correlated. The inset
d
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FIG. 2. Line narrowing vs critical line broadening o
n

N2O
1 sø1285 cm21d and n

N2O
3 sø2220 cm21d in the flu-

ids N2O, sN2Od0.05-sCO2d0.95, and sN2Od0.05-Xe0.95. The
curves are scaled by appropriate factors to allow an e
comparison. Widths are corrected for finite slits (D

XY
slit,

D
U
slit  1.0, 0.5 cm21). The rms fluctuations inT are&1 mK.

If not stated otherwise the critical density has been matc
within 1%. Note, that each data set is obtained over period
weeks in cycles of lowering and raising temperature.

Fig. 3 proves this nearly linear interdependence betw
half-width and density. To account for the crossover fr
critical to noncritical temperature dependence of therm
dynamic properties a power law expansion is usually u
[8], e.g., for the reduced densityD rp along the coexis-
tence line

D rp
cxc  6AjD Tpjb

∑
1 1

nX
k1

a
snd
k jD Tpj2kD

∏
,

whereb  0.326s2d is the order parameter exponent
the three-dimensional Ising model andD  0.51s3d is the
Wegner correction. With FWHM/ r and n  2 this
expansion is sufficient to characterize the dependen
in Fig. 3. Using Tc, A, b, and thea

s2d
k as adjustable

andD  0.51 as fixed, parameters, we obtained a criti
exponent ofbFWHM  0.30s5d from our highest quality
data (nneat

1 ). This result depends somewhat on the cho
of n. Tc could be fixed in this fit within61 mK. The
noisier data sets in Fig. 3 producebFWHM  0.35s10d.
Thus, as should be expected, the power law beha
observed for FWHMsT d is closer to the three-dimension
2747
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FIG. 3. Line narrowing in the rangeTc 2 1.5 K & T &
Tc 1 0.9 K. The full lines are the result of a Wegne
expansion (see the expression inside) with fixedD  0.51. The
highest quality data (n

neat
1 ) result in b  0.30s5d. The inset

shows the direct correlation between width and density.

Ising-like behavior ofrsT d rather than to the classica
mean-field behavior.

What are the reasons for this strong correlation betw
width and density? Considering the nature of the co
paratively broad IRLS of the polarized modes in den
N2O, it was argued [19] that resonant coupling (RC) b
tween adjacent molecules should be the most effectiv
the competing broadening mechanisms [15]. Howe
this conclusion might have been questionable because
authors in [19] were forced to approximate the therm
dynamic state dependencies of the individual mechani
by theoretical expressions which were not well proven
perimentally. To avoid any arbitrariness, we studied
detail thex dependencies ofJsvdn1 andJsvdn3 in liquid
mixtures of N2O with its isotopomers15NNO and N15NO
as well as Xe and CO2 [23]. Fortunately, the prediction
in [19] were completely confirmed; i.e., chemical as w
as isotopic dilution lead to a large line narrowing (s
Fig. 1) which has never been observed before in any o
liquid. The polarized modes in N2O are among the rar
cases where resonance couplingdominatesthe IRLS of a
liquid. Thus, we understand the observed anomalous
narrowing as a switch off of RC, caused by the sign
cant decrease ofrsTd for T # Tc. In other words, when
RC (as a predominantly two-oscillator process [16]) do
2748
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inates line broadening, it becomes insensitive to critic
fluctuations. The line narrowing observed in the mixtu
sN2Od0.05-sCO2d0.95 does not contradict this statement b
cause a residual (nonresonant) interaction between N2O
and CO2 (with a similar density dependence as in the ne
system) cannot be excluded.

In Fig. 4 thel-shaped curves of thesN2Od0.05-Xe0.95
mixed fluid are depicted in a log-log plot to
show that limDT p!60 FWHMsT d  const and
limDTp!60 ≠FWHMsT dy≠T  0. It must be stressed tha
we did not find any indication that FWHMsT d diverges
nearTc. At least several among the thousands of indivi
ual spectra which were measured (with integration tim
of 30 s) in the vicinity ofTc over a period of 1 week
would have matched, by chance, the critical temperat
even better thanjDTpj , 1025. If FWHMsT d diverges
in this very narrow range, a “sudden” and instantaneo
broadeningof individual spectra would have been ob
served. This was never the case. The early results in
gave first hints that CLB may cross over into a consta
width for 1023 & jDT pj & 1022. Mukamel et al. [6]
have made reference to these experimental observation
justify the results of their hydrodynamic mode-couplin
model which predicts limDTp!60 ≠FWHMsTdy≠T  0.
Our data in Fig. 4 confirm this proposed flattening

FIG. 4. Critical line broadening of then1 and then3 mode
in the mixture sN2Od0.05-Xe0.95. Note the log-log plot. The
arrows show the slope resulting from a fitting procedure f
jDT pj . 0.01, i.e., jDT j * 3 K.



VOLUME 77, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER1996

r
e

n
e

n

f
a
a
h

s

y
lt

J

n

e

s

s
y
r

y

t

Y

stic

s.

is
el

S

re

e
ses

as

be
ent
.
d

ture
atic

i-

es

y

%

te

):
e

ing

e.

ding
FWHMsjDT jd as close asjDTpj * 1025, i.e., well inside
the region betweenTc and the crossover.

In conclusion, our measurements show (1) that the c
ical dependencies of the purely environmentally induc
broadening are completely different from those caus
by intermolecular vibrational (resonance) couplings a
(2) that any diverging line broadening can be exclud
for jDT pj * 1025, or more precisely, approachingTc,
the isotropic linewidth of uncoupled vibrational states i
creases regressively up to a finite critical width belo
jDT pj & 1023.
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