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Force Distributions in Dense Two-Dimensional Granular Systems
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Relying on contact dynamics simulations, we study the statistical distribution of contact forces
a confined packing of circular rigid disks with solid friction. We find the following: (1) The num
of normal and tangential forces lower than their respective mean value decays as a power law.
number of normal and tangential forces higher than their respective mean value decays expone
(3) The ratio of friction to normal force is uniformly distributed and is uncorrelated with normal fo
(4) When normalized with respect to their mean values, these distributions are independent of
size and particle size distribution. [S0031-9007(96)00589-3]

PACS numbers: 46.10.+z, 83.70.Fn
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Despite the highly uniform density of a random pac
ing of noncohesive particles, photoelastic visualizatio
provide a striking evidence of the heterogeneous distri
tion of contact forces on a scale definitely larger than
typical particle size [1–3]. A quantitative characteriz
tion of these distributions is relevant both to mechani
processing (compression, compaction, flow, grinding) a
fundamental understanding (mesoscopic scales, instab
thresholds) of granular media [4–7].

This Letter is concerned with a numerical study
this problem in confined two-dimensional packings
static equilibrium. We are interested in the statistic
distributionsPN and PT of normal forces and (absolut
values of) friction forcesN and T , independently of
contact orientations. We also study the distributionPh

of the dimensionless variableh  TyN, which is a
measure of friction “mobilization” within the Coulomb
rangef0, mg, wherem is the coefficient of friction between
disks. Scaling with sample size and relation among
three distributions will be considered too.

Numerical results will be presented here for fo
samples of500, 1200, 4025, and1024 particles, referred
to as samples A, B, C, and D, respectively. Parti
radii are uniformly distributed between3.8 and7.5 mm in
samples A and B, and between1.5 and7.5 mm in sample
C. Sample D contains192 particles of radius1.6 mm,320
particles of radius1.05 mm, and512 particles of radius
0.65 mm. Particles are contained in a rectangular fra
composed of one planar base, two immobile walls, a
one horizontal plane (the lid) free to move vertically a
on which a downward force of6600 N is applied. The
acceleration of gravity is set to zero in order to avoid for
gradients in the sample. Particle-particle and particle-b
coefficients of friction are0.2 and 0.5, respectively. All
other coefficients of friction are zero.

For this investigation, we have relied on the conta
dynamics (CD) approach to the dynamics of perfec
rigid particles with unilateral contacts. Since particl
cannot interpenetrate, the allowed configurations of
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system, characterized by a set of inequalities, defi
a region in the configuration space presenting a la
number of edges and corners. Moreover, the ba
Coulomb’s law of friction, relevant to most of the granula
media of interest, is anonsmoothlaw in the sense that
friction force and sliding velocity at a contact are n
related together as a function. Finally, in the case
collisions velocity jumps occur, so that the evolution
not globally governed by differential equations in th
classical sense.

The most commonly used algorithms are based on r
ularization schemes. In this way, impenetrability is a
proximated by a steep repulsive potential and Coulom
law by a viscous friction law, to which smooth compu
tational methods can be applied. The dominant feat
of the CD method is that the conditions ofperfect rigid-
ity and exact Coulombian frictionare implemented, with
no resort to any regularization. At a given step of ev
lution, all kinematic constraints implied by lasting in
terparticular contacts and the possible rolling of som
particles over others aresimultaneouslytaken into ac-
count, together with the equations of dynamics, in ord
to determine all contact forces in the system. The meth
is thus able to deal properly with thenonlocal character
of the momentum transfers—resulting from the perfe
rigidity of particles in contact.

Detailed descriptions of the CD method can be fou
in the literature [8–10]. In relation with the present in
vestigation, we would just like to underline the point th
dynamics is an essential ingredient of this approach. I
well known that a granular system at static equilibrium
hyperstatic;i.e., for given boundary conditions there is
continuous set of possible contact forces. This is due b
to the absence of an internal displacement field (beca
of perfect rigidity) and to the nonsmooth character of t
friction law [11]. In the CD method, the force network a
static equilibrium is determined through thedynamic pro-
cessesfrom which it relaxed. In other words, as in rea
granular systems, the static values of forces are reac
© 1996 The American Physical Society
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asymptotically as the kinematic energy of the system
dissipated in friction and collisions.

Of course, this does not mean that thestatistical dis-
tribution of forces is necessarily dependent on the pre
ration process. The most probable force distribution m
well result from the generic disorder of granular syste
[3]. However, density is a major control parameter of t
mechanical properties of granular materials, and only
the steady state, reached after enough shear-induced
ume change, it acquires a rather well-defined value fo
given confining pressure [12]. That is why we applied t
same procedure to prepare all samples in the same s
Filling the box with particles under gravity, shearing b
moving the base horizontally (dilation occurs then), sto
ping shear and applying the confining load on top of
sample, and, finally, setting the gravity to zero and allo
ing the system to relax to equilibrium under the load. A
though the algorithm is quite efficient compared to oth
available techniques, the whole procedure requires h
dreds of CPU hours on a fast Unix workstation (Sparc
for each sample.

Figure 1 shows the network of normal forces in sam
D. One can observe both large contact-to-contact flu
ations and a subnetwork of “force chains” that seem
carry a significant portion of the applied external stre
Forces range from0.003 to 1127 N, i.e., a range of6 or-
ders of magnitude, which clearly requires a scaling ana
sis. The mean normal force iskNl  249 N and more
than60% of contacts carry a force lower than the mean

Figure 2 displays semilogarithmic plots of probabili
distributions PN of normal forces in the four samples
Forces are normalized with respect to their mean in e
sample. The normalized distributions coincide over
most the whole range, and the data for forces larger t

FIG. 1. Network of normal forces in sample D; se
Table I. Forces are encoded as the widths of intercenter
necting segments.
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the mean are well fitted by an exponential decay. In or
to see the behavior at low forces, we have shown in Fig
the normalized log-log plots of the distribution of th
logarithm of the forces. The data for forces lower th
the mean have a power-law distribution. We conclu
that the normalized distribution of normal forces is ind
pendent of our sample sizes and can be approximate
a power-law decay with a crossover to an exponential c
off,

PN ~

Ω
sNykNlda , N , kNl,
ebs12NykNld, N . kNl. (1)

We finda  20.3 andb  1.4. It is important to notice
the collapse of normalized data on the same distribu
in spite of the fact that the size dispersity of particl
is not the same in all samples. The mean values se
however, to depend on size dispersity since they do
scale with system size as shown in Table I. On the ot
hand, the lack of statistics at low normal forces in sam
D as compared to sample B, giving rise to the fluctuatio
observed in Fig. 3, suggests that the “branching proce
generating low forces from the high applied force on t
system is more efficient in systems with a continuo
distribution of particle sizes.

The semilogarithmic and log-log plots of the probab
ity distributions of theT are displayed in Figs. 4 and 5
The data are normalized with respect to the meankT l in
each sample, and, as we see, they nicely collapse on
same distribution. This is again essentially a power-l
decay with a crossover to an exponential cutoff,

PT ~

Ω
sTykT lda0

T , kT l ,
eb0s12TykTld, T . kT l .

(2)

We finda0  20.5 andb0  1.
We also studied the probability distributionPh of h 

TyN. This is a uniform distribution except for a sma
peak ath  m. The uniformity of this distribution may

FIG. 2. Semilogarithmic plots of the probability distribution
of normalized normal forcesNykNl.
275
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FIG. 3. Log-log plots of the probability distributions of
normalized normal forcesNykNl.

be attributed to the random structure of the contact n
work. On the other hand, it is likely that the rather wea
singularity ath  m is a “signature” of the dynamics of
preparation. Indeed, only atsliding contacts is the fric-
tion force fully mobilized. If a granular assembly relaxe
asymptotically towards static equilibrium, then the set
the last sliding contacts at the equilibrium threshold mig
remain fully mobilized. We checked that when the sy
tem is sheared by the motion of the basal plane, the pe
at h  m can rise to50% of contacts, whereas the dis
tribution remains uniform withinf0, mf. Finally, we note
that the normal forces for whichh  m are much smaller
than the average, so that the peak may well result a
from an imperfect relaxation.

Another important result regarding friction mobilization
is the statistical independence ofh with respect to
N . Whatever the value ofN , friction is indifferently
mobilized within the Coulomb rangef0, mNg (apart from
the above discussed small peak). Such an assump
allows one to relate in a simple wayPN to PT . Let
PsN , Td be the joint probability distribution of normal and
friction forces. Sinceh is statistically independent ofN ,
we may writePsN , Td as a product ofPN and Ph times
the Jacobian of the transformationsN, T d ! sN, hd,

PsN, T d dN dT 
1
N

PN sNdPhshd dN dT . (3)

TABLE I. Number of particlesp, number of contactsc, width
L, mean normal forcekNl, and mean friction forcekT l in our
samples A, B, C, and D.

Sample p c L (mm) kNl sNd kT l sNd

A 500 806 260 592 51
B 1200 1969 389 213 18
C 4025 6293 620 219 21
D 1024 1498 65 249 23
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FIG. 4. Semilogarithmic plots of the probability distribution
of normalized friction forcesTykTl.

One may check that integration of the two membe
of Eq. (3) with respect toN and T over f0, 1`g, with
the substitutionT  hN in the right-hand side togethe
with the constrainth [ f0, mg, implies a normalizedPh

over the Coulomb rangef0, mg. Introducing the uniform
distribution Phshd  1sf0, mgd in Eq. (3) and integrating
with respect toN over f0, 1`g with the substitution
N  Tyh in the right side, we get the following relation
betweenPN andPT :

PT sT d 
1
m

Z 1`

1ym
PN sxT d

dx
x

. (4)

This equation implies that the initial power law of th
two distributionsPN and PT should be the same:a 
a0. Moreover, an exponential upper cutoff of norm
forces yields an exponential-integral cutoff for frictio
forces, i.e., essentially an exponential decay times
slowly varying function. Going back to Figs. 2–5, w
see that such refinements are out of reach within

FIG. 5. Log-log plots of the probability distributions o
normalized friction forcesTykT l.
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statistical precision. On one hand, the cutoff may w
be an exponential-integral function. On the other ha
the equality of exponents is consistent with therough
determination of these exponents.

Equation (4) can, however, be directly checked fro
the data. In Fig. 6 we have plotted bothPT and the
probability distribution obtained fromPN via Eq. (4) for
sample C. They are almost the same with a very go
precision, although we assumed a uniform distribution
h with no additional peak on the edgeh  m. This
validation of Eq. (4) is also an indirect check of th
statistical independence ofh with respect toN.

Finally, integration of Eq. (4) with respect toT yields
the following relation between the mean values:

kT l 
m

2
kNl. (5)

This relation is approximately satisfied for our samples,
can be seen in Table I.

In view of these findings, we would like to underlin
some salient aspects of the problem. One import
point concerns the scale of statistical homogeneity
granular systems. Despite local force fluctuations,
present study shows that for a sample as small
1200 particles the force distributions are clearly defin
over several decades. An increase in sample size d
nothing but improve statistics. Hence, as far as str
is concerned, the linear scale of statistical homogen
in a 2D assembly is a few tens of particle diamete
This is what comes out also from the study of anisotro
in angular distributions of contact forces [13,14]. Th
observation is crucial for a continuum approach to t
mechanics of granular media, needed in most of the us
technological problems.

Another point is that only the exponential tail of th
distribution of normal forces, comprising nearly40%
of contacts in our simulations, has been observed

FIG. 6. Log-log plots of the distributionPT of normalized
friction forces and the one obtained by applying Eq. (4) toPN
in sample C.
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experiments [3]. Weaker forces are technically diffic
to measure, and their distribution has not been obser
The exponential tail has also been obtained through
usual simulation methods [15], and, what is more, a rec
theoretical model provides plausible statistical argume
in favor of it [3]. This statistical model is likely to
apply only to the subnetwork of force chains, whic
carries in effect most of the applied external load a
in our simulations belongs to the exponential tail. T
characteristic force at this scale is essentially imposed
the external load and the ratio of the system size to
largest particle size. On the other hand, the power-
decay of weak forces, if confirmed by other investigato
indicates the self-similar nature ofweakcontacts that do
not belong to the subnetwork of large forces. Inde
such contacts do notfeel the external load, and henc
their distribution can give rise to a power law throug
a self-similar branching process with no intrinsic sca
This observation also suggests that the exponentsa and
a0 depend on the interparticular friction coefficientm.
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