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Relying on contact dynamics simulations, we study the statistical distribution of contact forces inside
a confined packing of circular rigid disks with solid friction. We find the following: (1) The number
of normal and tangential forces lower than their respective mean value decays as a power law. (2) The
number of normal and tangential forces higher than their respective mean value decays exponentially.
(3) The ratio of friction to normal force is uniformly distributed and is uncorrelated with normal force.
(4) When normalized with respect to their mean values, these distributions are independent of sample
size and particle size distribution. [S0031-9007(96)00589-3]

PACS numbers: 46.10.+z, 83.70.Fn

Despite the highly uniform density of a random pack-system, characterized by a set of inequalities, define
ing of noncohesive particles, photoelastic visualizations region in the configuration space presenting a large
provide a striking evidence of the heterogeneous distriburumber of edges and corners. Moreover, the basic
tion of contact forces on a scale definitely larger than theCoulomb’s law of friction, relevant to most of the granular
typical particle size [1-3]. A quantitative characteriza-media of interest, is amonsmoothlaw in the sense that
tion of these distributions is relevant both to mechanicafriction force and sliding velocity at a contact are not
processing (compression, compaction, flow, grinding) andelated together as a function. Finally, in the case of
fundamental understanding (mesoscopic scales, instabiligollisions velocity jumps occur, so that the evolution is
thresholds) of granular media [4-7]. not globally governed by differential equations in the

This Letter is concerned with a numerical study of classical sense.
this problem in confined two-dimensional packings at The most commonly used algorithms are based on reg-
static equilibrium. We are interested in the statisticalularization schemes. In this way, impenetrability is ap-
distributions Py and Py of normal forces and (absolute proximated by a steep repulsive potential and Coulomb’s
values of) friction forcesN and T, independently of law by a viscous friction law, to which smooth compu-
contact orientations. We also study the distributi®p  tational methods can be applied. The dominant feature
of the dimensionless variabley = T/N, which is a of the CD method is that the conditions pérfect rigid-
measure of friction “mobilization” within the Coulomb ity andexact Coulombian frictiorare implemented, with
rangef0, ], whereu is the coefficient of friction between no resort to any regularization. At a given step of evo-
disks. Scaling with sample size and relation among thdution, all kinematic constraints implied by lasting in-
three distributions will be considered too. terparticular contacts and the possible rolling of some

Numerical results will be presented here for fourparticles over others aresimultaneouslyaken into ac-
samples 0500, 1200, 4025, and 1024 particles, referred count, together with the equations of dynamics, in order
to as samples A, B, C, and D, respectively. Particleto determine all contact forces in the system. The method
radii are uniformly distributed between8 and7.5 mmin is thus able to deal properly with th@nlocal character
samples A and B, and betweérs and7.5 mm in sample of the momentum transfers—resulting from the perfect
C. Sample D contains92 particles of radiud.6 mm,320  rigidity of particles in contact.
particles of radiusl.05 mm, and512 particles of radius Detailed descriptions of the CD method can be found
0.65 mm. Particles are contained in a rectangular framén the literature [8—10]. In relation with the present in-
composed of one planar base, two immobile walls, andestigation, we would just like to underline the point that
one horizontal plane (the lid) free to move vertically anddynamics is an essential ingredient of this approach. ltis
on which a downward force a600 N is applied. The well known that a granular system at static equilibrium is
acceleration of gravity is set to zero in order to avoid forcehyperstatic;i.e., for given boundary conditions there is a
gradients in the sample. Particle-particle and particle-baseontinuous set of possible contact forces. This is due both
coefficients of friction are).2 and0.5, respectively. All to the absence of an internal displacement field (because
other coefficients of friction are zero. of perfect rigidity) and to the nonsmooth character of the

For this investigation, we have relied on the contacffriction law [11]. In the CD method, the force network at
dynamics (CD) approach to the dynamics of perfectlystatic equilibrium is determined through tbgnamic pro-
rigid particles with unilateral contacts. Since particlescessedrom which it relaxed. In other words, as in real
cannot interpenetrate, the allowed configurations of thgranular systems, the static values of forces are reached
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asymptotically as the kinematic energy of the system ishe mean are well fitted by an exponential decay. In order
dissipated in friction and collisions. to see the behavior at low forces, we have shown in Fig. 3
Of course, this does not mean that tistatisticaldis-  the normalized log-log plots of the distribution of the
tribution of forces is necessarily dependent on the prepdegarithm of the forces. The data for forces lower than
ration process. The most probable force distribution mayhe mean have a power-law distribution. We conclude
well result from the generic disorder of granular systemghat the normalized distribution of normal forces is inde-
[3]. However, density is a major control parameter of thependent of our sample sizes and can be approximated by
mechanical properties of granular materials, and only ira power-law decay with a crossover to an exponential cut-
the steady state, reached after enough shear-induced vaoiff,
ume change_\, it acquires a rather W_eII-deflned vaIL_Je for a (NJ(NDE, N < (N,
given confining pressure [12]. That is why we applied the Py x {eﬁ(l_N/<N>) N > (N) Q)
same procedure to prepare all samples in the same state: ’ ’
Filling the box with particles under gravity, shearing by We finda = —0.3 andg8 = 1.4. Itis important to notice
moving the base horizontally (dilation occurs then), stopthe collapse of normalized data on the same distribution
ping shear and applying the confining load on top of thein spite of the fact that the size dispersity of particles
sample, and, finally, setting the gravity to zero and allow4s not the same in all samples. The mean values seem,
ing the system to relax to equilibrium under the load. Al-however, to depend on size dispersity since they do not
though the algorithm is quite efficient compared to otherscale with system size as shown in Table I. On the other
available techniques, the whole procedure requires hurkand, the lack of statistics at low normal forces in sample
dreds of CPU hours on a fast Unix workstation (Sparc 20D as compared to sample B, giving rise to the fluctuations
for each sample. observed in Fig. 3, suggests that the “branching process”
Figure 1 shows the network of normal forces in samplegenerating low forces from the high applied force on the
D. One can observe both large contact-to-contact fluctusystem is more efficient in systems with a continuous
ations and a subnetwork of “force chains” that seem talistribution of particle sizes.
carry a significant portion of the applied external stress. The semilogarithmic and log-log plots of the probabil-
Forces range from.003 to 1127 N, i.e., a range o6 or- ity distributions of theT are displayed in Figs. 4 and 5.
ders of magnitude, which clearly requires a scaling analyThe data are normalized with respect to the mé&&nin
sis. The mean normal force i&V) = 249 N and more each sample, and, as we see, they nicely collapse on the
than60% of contacts carry a force lower than the mean. same distribution. This is again essentially a power-law
Figure 2 displays semilogarithmic plots of probability decay with a crossover to an exponential cutoff,
distributions Py of normal forces in the four samples.

Forces are normalized with respect to their mean in each P {(gégg)/?m T <AT), (2)
sample. The normalized distributions coincide over al- ¢ . T >AT).
most the whole range, and the data for forces larger thawe finda’ = —0.5 andg’ = 1.

We also studied the probability distributidh, of n =
T/N. This is a uniform distribution except for a small
peak aty = u. The uniformity of this distribution may
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FIG. 1. Network of normal forces in sample D; see
Table I. Forces are encoded as the widths of intercenter corFIG. 2.  Semilogarithmic plots of the probability distributions
necting segments. of normalized normal force® /(N).
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¢ FIG. 4. Semilogarithmic plots of the probability distributions

FIG. 3. Log-log plots of the probability distributions o of normalized friction forced” (T,

normalized normal force& /{N).

One may check that integration of the two members
be attributed to the random structure of the contact netef Eq. (3) with respect tav and T over [0, +o°], with
work. On the other hand, it is likely that the rather weakthe substitution” = 5N in the right-hand side together
singularity atn = u is a “signature” of the dynamics of with the constrainty € [0, u], implies a normalized®,,
preparation. Indeed, only aliding contacts is the fric- over the Coulomb rangg, «]. Introducing the uniform
tion force fully mobilized. If a granular assembly relaxes distribution P,,(n) = 1([0, »]) in Eq. (3) and integrating
asymptotically towards static equilibrium, then the set ofwith respect toN over [0, +%] with the substitution
the last sliding contacts at the equilibrium threshold mighty = 7 /% in the right side, we get the following relation
remain fully mobilized. We checked that when the sys-betweenPy andPr:
tem is sheared by the motion of the basal plane, the peak T dx
at n = u can rise t050% of contacts, whereas the dis- Py(T) = —f Py(xT) —. 4
tribution remains uniform withif0, «[. Finally, we note A X
that the normal forces for which = w are much smaller  This equation implies that the initial power law of the
than the average, so that the peak may well result alsewo distributionsPy and Py should be the samer =
from an imperfect relaxation. a’. Moreover, an exponential upper cutoff of normal

Another important result regarding friction mobilization forces yields an exponential-integral cutoff for friction
is the statistical independence of with respect to forces, i.e., essentially an exponential decay times a
N. Whatever the value ofV, friction is indifferently  slowly varying function. Going back to Figs. 2—-5, we
mobilized within the Coulomb rand®, uN] (apart from  see that such refinements are out of reach within the
the above discussed small peak). Such an assumption
allows one to relate in a simple wafy to Pr. Let ' '
P(N,T) be the joint probability distribution of normal and
friction forces. Sincey is statistically independent a¥,
we may writeP(N,T) as a product oy and P,, times
the Jacobian of the transformati@N, 7) — (N, 1),

P(N.T)dN dT — %PN(N)P,,(n)dN ar. ()

Log, (P, <T>/T)

TABLE I. Number of particleg, number of contacts, width
L, mean normal forc€N), and mean friction forcéT’) in our
samples A, B, C, and D.

Sample  p ¢ L(mm) (NM)N) (T)N) —4 :
A 500 806 260 592 51 - 3 2 - 0 1
B 1200 1969 389 213 18 Log10 (T/<T>)
C 4025 6293 620 219 21 - o
D 1024 1498 65 249 23 FIG. 5. Log-log plots of the probability distributions of

normalized friction forceg /(T).
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statistical precision. On one hand, the cutoff may wellexperiments [3]. Weaker forces are technically difficult
be an exponential-integral function. On the other handio measure, and their distribution has not been observed.
the equality of exponents is consistent with tteigh  The exponential tail has also been obtained through the
determination of these exponents. usual simulation methods [15], and, what is more, a recent
Equation (4) can, however, be directly checked fromtheoretical model provides plausible statistical arguments
the data. In Fig. 6 we have plotted bofty and the in favor of it [3]. This statistical model is likely to
probability distribution obtained fron®y via Eq. (4) for apply only to the subnetwork of force chains, which
sample C. They are almost the same with a very goodarries in effect most of the applied external load and
precision, although we assumed a uniform distribution oin our simulations belongs to the exponential tail. The
n with no additional peak on the edge = u. This  characteristic force at this scale is essentially imposed by
validation of Eg. (4) is also an indirect check of thethe external load and the ratio of the system size to the

statistical independence af with respect tav. largest particle size. On the other hand, the power-law
Finally, integration of Eq. (4) with respect @ yields  decay of weak forces, if confirmed by other investigators,
the following relation between the mean values: indicates the self-similar nature @feak contacts that do
not belong to the subnetwork of large forces. Indeed,
(T) = %(N}. (5) such contacts do ndeel the external load, and hence

their distribution can give rise to a power law through
This relation is approximately satisfied for our samples, aa self-similar branching process with no intrinsic scale.
can be seenin Table I. This observation also suggests that the exponengnd

In view of these findings, we would like to underline «’ depend on the interparticular friction coefficignt
some salient aspects of the problem. One important We gratefully acknowledge many fruitful conversations
point concerns the scale of statistical homogeneity ofvith D.E. Wolf. This work has been supported by
granular systems. Despite local force fluctuations, thehe Groupement de Recherche “Physique des Milieux
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