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Rigidity and Dynamics of Random Spring Networks

M. Kellomaki, J. Astrém, and J. Timonen
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The static and dynamic elastic properties of two-dimensional random networks composed of Hookean
springs are analyzed. These networks are proved to be nonrigid with respect to small deformations, and
the floppy mode ratio is calculated exactly. The vibrational spectrum is shown to consist only of zero-
frequency and localized modes. The exponential decay of the amplitude and velocity of the transient
wave front are shown to be exactly described by a quasi-one-dimensional model of noninteracting paths
of propagation. [S0031-9007(96)01268-9]

PACS numbers: 61.43.Bn, 46.30.Lx, 62.30.+d

The inherent structural randomness of many materialsne pair of lines can cross at any single point because
of practical interest, and the new phenomena whichthey have zero width. As the dangling ends of lines are
appear in irregular structures, have given rise to growingemoved for simplicity, the coordination number of each
research of both the static and the dynamic phenomena imode is two, three, or four. In this work the segments of
disordered systems. Theoretical studies on static elastimes between two neighboring nodes are assumed to be
properties of these systems have usually been concernedially rigid, linear Hookean springs with stiffness given
with their elastic moduli [1,2] and rigidity [3,4], while by an apparent Young’s modulus, and cross section
those on dynamic properties have mainly dealt withS (usually we setS = 1). Thus the spring constant of
mobility edge, anomalous diffusion, and other featuresa line segment of lengtl, is k, = E;S/l;. The mass
related to localization of (classical) waves [5,6]. Diffusive distribution of lines is simplified by placing equal masses
transport of energy in localized systems appears as & on every node and assuming the segments themselves
long time behavior, but, as we shall show here, there iso be massless (Fig. 1). This kind of network will be
interesting dynamics in these systems related to decayingplled in the following the “random spring network”
transient modes. We report results for the dynamics ofRSN). The dynamics of the network can be described
two-dimensional random networks whose structure is thalby the Hamiltonian
of a network formed by randomly placed and oriented 1 1
straight lines. The segments of lines between any two H= EMZI'I? + Ezkij(Alij)z, 1)
crossing points are treated as Hookean springs. We have i i.j
chosen to consider this kind of structure with randomwhere u; is the displacement of node from its place
geometry since it appears to describe many aspects 8f the undeformed networlk;; is the spring constant of
fibrous materials, e.g., the geometrical [7] and mechanicdhe segment connecting nodésand j, and Al;; is the
[8] properties of thin polymer films or paper sheets.deviation of spring length from its unstressed value (no
We have also considered random networks composed of
elastic beams [9]. There was an indication in this case S AN - 7 e AV =i
of a very interesting transient mode. It turns out that ? \ /‘\"'.Sm.'.‘ '
this mode, which describes a decaying wave propagating \“ iz ‘
along effectively one-dimensional random paths, exactly
explains the dynamics of the random network of Hookean
springs. We shall show below that this network is a
nontrivial example of networks in which the Maxwellian
approximation [10] of the constraint-counting method
[3,4] is exact, and that the network is nonrigid.

The random geometry of the network is constructed
by placing Ny one-dimensional straight lines of length
Il on a rectangle whose areads= L.L, (Fig. 1). The
distributions of the line centers and of the orientation of
the lines are both random. The density of the network is
defined ayy = Nfl}/A, which is the average number of
lines on an areal%. Densities are typically expressed in

terms of the percolation threshadd =~ 5.71 [11]. Lines FIG. 1. A random spring networkd(= 51, X 5, g = 4q.).
are bonded together at their crossing points (nodes). Onli portion of the network is magnified to show the details.
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linearization is made). The boundary conditions are such : : —!
that they direction is periodic and the right boundary
(x = L,) is free. The network is initially undeformed and
at rest. At timer = 0 the x displacements of the nodes “-
at the left boundary (at = 0) are made time dependent £
and theiry displacements are forced to be zero. Further
evolution of all node displacements is calculated using _35]
the Verlet algorithm, which is widely used in classical . .
molecular dynamics (MD) [12] and is well suited for the 10 ,n(;?q )
. ; LT ) o
dynamics of thenonlinearHamiltonian equation (1).

The rigidness of the RSN has not been considere®!G. 2. Floppy mode ratigf(¢/q.). The squares denote the
before: It consists of both rigid (triangles) and nonrigid PebPle game resuilt and the solid line is a plot of Eq. (2).
substructures (other polygons). The problem can be
attacked by applying, e.g., the constraint-counting method
[3,4]. The number of floppy (or zero-frequency) modestained by the recently introduced topological pebble game
per degree of freedonf in a two-dimensional central- algorithm [4,15]. The two results agree perfectly. The
force system can be written g6= 1 — (z)/z* + n,, fact thatn, = 0 exactly was also directly confirmed by
where (z) is the average node coordinatiori; = 4 is  the pebble game.
the mean coordination number at the rigidity threshold, The existence of zero-frequency modes in RSN was nu-
and n, is the number of redundant bonds per degreénerically confirmed by computing the density of vibra-
of freedom. We can immediately deduce a couple ofional states as a Fourier transform of the velocity time
properties of the network. The coordinationof every series [16]. Moreover, the lack of acoustic modes was
nodei is alwaysz; = z*, which means that there are no confirmed by computing the frequency response to a sinu-
overconstrained nodes. This ensures that the Maxwelliagoidal displacement imposed on the left boundary of the
approximation [10] £, = 0) is exactfor RSN. Using network. In Fig. 3 we show the logarithmically averaged
results from statistical geometry [7] we can then showesponsesg(w)) for both RSN and a similar network

2.0

that in RSN composed of elastic beams. In both cases the parame-
4 tersq = 4q., E =10, Iy = 1.0, § = 0.01, M = 0.01,
f= 7o L(i) >0. (2)  and two driving frequencies, were used. It is evident
2g 2 X571\¢q. that there is a clear responsedatin the random network

This result suggests that RSN may not be rigid. Rigidof elastic beams, caused by driven acoustic modes, which
clusters are locally composed of triangles [13] with adoes not appear in RSN. We can again conclude that RSN
common side. If two triangles had a common side, therds not rigid and cannot support propagating elastic waves.
would be intersections of three different lines, whichAll wave modes are thus floppy or localized.
contradicts the definition of our geometrical network

model. Hence in RSN triangles are always elastically

isolated from each other and rigidity cannot percolate at - .

any finite densityy of the network. RSN is qualitatively i
similar to a diluted central-force square lattice. Both have

the samez) in the highg or perfect lattice limit, and lack

a finite rigidity threshold.

We confirmed the lack of rigidity of RSN by MD-like
simulations (cf. Ref. [14]) which were done kdynam-
ically applying a 1% uniaxial strain in the direction.
After allowing the network to stabilize for a long time
(500 times the time of flight of a wave front), the kinetic
energy of the nodes was quenched by depleting the veloc-
ities of the nodes each time they passed a local potential
minimum. This procedure also removed the elastic en- i
ergy, thus indicating that it was stored only in the vibra- m
tions, and the final state of the network was unstressed, o o5 '10 5
although it underwent a macroscopic deformation. The ™)

convergence criteria used in Refs. [1,2] could also be useflG_ 3. Averaged frequency responée()) for a random

in this nonlinear case even thOUQh the methods of [1,2 etwork composed of springs (solid line) and elastic beams
were not applicable. The analytically calculated floppy(dotted line) ¢ = 4¢., E = 1.0, I, =10, S =001, M =

mode ratio [Eq. (2)] is compared in Fig. 2 with that ob- 0.01) and two driving frequencies: (a), = 0.1, (b) w, = 1.0.
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We expect that the effectively 1D transient modes ob-contains all geometrical effects of the random 2D network
served [9] in random beam networks also exist in RSNof straight lines, including the effective crossing angle
We looked for these modes by considering the leadingf lines and weak couplings between the quasi-1D paths.
edge of a semi-infinite signal generated by a longitudinalUsing Eq. (3) ang'(6) = ag, we find that, forg > ¢, =
(or transverse) wave souragt) = Asin(wst) imposed 5.71, the average decay constant of a wave front in RSN
on the left boundary of the network. The leading edges given by
or wave frontis defined such that, at each nodeit is o
the first maximum of the node displacement veaigr iron = T gy (4)

To avoid beating, we concentrated on the case in which 4 1

w, is much larger than the eigenfrequencies of the sysThis expression was found to be in excellent agreement
tem. The times of arrivalf; 1 max, and the amplitudes, with simulation results. In Fig. 4 (a) we show the wave-
Aitmax = 0il1max = [u;(r = #; 1 max)|, Of the first maxi- front amplitude as a function of distance for three different
mum were recorded in the simulations. Thereby both théine lengths. The dependenag.n = 1/ is obvious,/;
average velocity and amplitude of the wave front were debeing the only length scale in the problem. The density
termined. In the analysis the data of five networks, withdependence okon Shown in Fig. 4 (b) agrees well with
approximately 37 000 nodes, were included for each set dfd. (4). Within statistical errorsyon is independent of
the parameters, which means that the network area rang@dl other parameterss;, S, M, andw,). We can conclude
from A = 61 X 150l; atq = 2¢q. to A = 61; x 6/, at that the exponential decay arises from gemetryof the

g = 10g.. network. A least squares fit gawgy = 1.98 and 8 =

To better understand the observed attenuation of thé.52. The value ofg indicates that the wave front travels
wave-front amplitude, we first consider a spring chainnearly all of the available length along an individual line
of sawtooth geometry as a model for typical propagatiorpefore transferring to a crossing line. The decay constant
paths in nonrigid two-dimensional networks. This systemfront @pproaches a nonzero Va'“ﬁ)lfl as g — .
forms a chain with an angléd between two adjacent Even in this limit the penetration depth of a signal is
springs of lengthl and massed/ placed on the pivot only d = %lf. Notice thatd is not necessarily related
joints. The first mass is forced to oscillate harmoni-to the localization length [6] which refers to the long-time
cally. We can consider the chain as “piecewise elastic,behavior.
the amplitude of a signal being conserved along the We have also considered [9] elastic waves in random
springs, and decay being caused by the joints. Fobeam networks. In this case a signal is always divided
20 = 1r/2 the motion of a mass is not affected much
by the second order force exerted by the following mass,
and the amplitude at node+ 1 approximately satisfies
A;+1 = A; c0s20. There aren = x/1cosf nodes within
a distancex, and in the continuum limit we end up with
a decay lawA(x) = Age **, wherea = [~ f(#) with
f(8) = —Incos26/ cosh in this simple case. This decay
constant was checked by numerical simulations [17] on
sawtooth chains. The dependengex 1/! is evidently
exact: The# dependence was found to be qualitatively
correct, and it becomes exact in the lind9 — 7 /2
wherea diverges.

In RSN the maximum length of an axially rigid
subpath is the line lengtlty. We can neglect the elastic
diode effects [4] caused by buckling of the collinear
segments because we consider only the leading wave ]
front. Also, the dangling ends of the lines do not transport 3.01 3
deformations. Taking this into account, the length of a s 251 a
typical elastic path (the bonded part of a line) is ]

(1) 204 ® '
L= lf<1 - 23?)’ (3) 15+
! 123456
where(l,) = ml;/2q [7] is the average segment (spring) a/49,
length andgB(l,) is the effective length of the dangling FIG. 4. (a) Amplitude decay for line lengthls = 1.0, 1.5

end; B is a constant. The angular pgite) of the decay and 2.0. (b) Decay constant,,,, as a function of the network

constant of sawtooth chain is replaced by an averagegensityq (I; = 1.0). Squares denote the simulated points and
quantity which is denoted by a constant. This constant solid line is a fit by Eq. (4) ¢o = 1.98, 8 = 1.52).
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into a part described by effective medium theory (acouseontains only zero-frequency and localized modes. The
tic modes) and another described by an ensemble of inesulting exponential decay of the wave front was found to
dependent segment chains (transient mode). In the limhe exactly described by a model of noninteracting quasi-
of slender beams or high frequencies, transient mode b@ne-dimensional paths of propagation. This model was
comes more dominant. In the case of RSN, for whichalso found to correctly describe the velocity of the wave
Young’s modulus vanishes, this effectively 1D mode isfront.

the only remaining mode. For the related paths of propa- We would like to thank D. J. Jacobs and M. F. Thorpe
gation with a broken line geometry, we can express théor providing the pebble game code and for useful
wave-front velocity [9] in the form discussions. We are also indebted to M. Kataja for

valuable comments and criticism.
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