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Rigidity and Dynamics of Random Spring Networks
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The static and dynamic elastic properties of two-dimensional random networks composed of Ho
springs are analyzed. These networks are proved to be nonrigid with respect to small deformatio
the floppy mode ratio is calculated exactly. The vibrational spectrum is shown to consist only of
frequency and localized modes. The exponential decay of the amplitude and velocity of the tra
wave front are shown to be exactly described by a quasi-one-dimensional model of noninteracting
of propagation. [S0031-9007(96)01268-9]

PACS numbers: 61.43.Bn, 46.30.Lx, 62.30.+d
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The inherent structural randomness of many mater
of practical interest, and the new phenomena wh
appear in irregular structures, have given rise to grow
research of both the static and the dynamic phenomen
disordered systems. Theoretical studies on static ela
properties of these systems have usually been conce
with their elastic moduli [1,2] and rigidity [3,4], while
those on dynamic properties have mainly dealt w
mobility edge, anomalous diffusion, and other featu
related to localization of (classical) waves [5,6]. Diffusi
transport of energy in localized systems appears a
long time behavior, but, as we shall show here, ther
interesting dynamics in these systems related to deca
transient modes. We report results for the dynamics
two-dimensional random networks whose structure is
of a network formed by randomly placed and orien
straight lines. The segments of lines between any
crossing points are treated as Hookean springs. We
chosen to consider this kind of structure with rand
geometry since it appears to describe many aspect
fibrous materials, e.g., the geometrical [7] and mechan
[8] properties of thin polymer films or paper shee
We have also considered random networks compose
elastic beams [9]. There was an indication in this c
of a very interesting transient mode. It turns out th
this mode, which describes a decaying wave propaga
along effectively one-dimensional random paths, exa
explains the dynamics of the random network of Hooke
springs. We shall show below that this network is
nontrivial example of networks in which the Maxwellia
approximation [10] of the constraint-counting meth
[3,4] is exact, and that the network is nonrigid.

The random geometry of the network is construc
by placing Nf one-dimensional straight lines of leng
lf on a rectangle whose area isA ­ LxLy (Fig. 1). The
distributions of the line centers and of the orientation
the lines are both random. The density of the networ
defined asq ­ Nfl2

fyA, which is the average number o
lines on an areal2

f . Densities are typically expressed
terms of the percolation thresholdqc ø 5.71 [11]. Lines
are bonded together at their crossing points (nodes). O
0031-9007y96y77(13)y2730(4)$10.00
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one pair of lines can cross at any single point beca
they have zero width. As the dangling ends of lines
removed for simplicity, the coordination number of ea
node is two, three, or four. In this work the segments
lines between two neighboring nodes are assumed to
axially rigid, linear Hookean springs with stiffness give
by an apparent Young’s modulusEf and cross section
S (usually we setS ­ 1). Thus the spring constant o
a line segment of lengthls is ks ­ EfSyls. The mass
distribution of lines is simplified by placing equal mass
M on every node and assuming the segments themse
to be massless (Fig. 1). This kind of network will b
called in the following the “random spring network
(RSN). The dynamics of the network can be describ
by the Hamiltonian

H ­
1
2

M
X

i

Ùu2
i 1

1
2

X
i,j

kijsDlijd2 , (1)

where ui is the displacement of nodei from its place
in the undeformed network,kij is the spring constant o
the segment connecting nodesi and j, and Dlij is the
deviation of spring length from its unstressed value (

FIG. 1. A random spring network (A ­ 5lf 3 5lf , q ­ 4qc).
A portion of the network is magnified to show the details.
© 1996 The American Physical Society
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linearization is made). The boundary conditions are s
that the y direction is periodic and the right bounda
(x ­ Lx) is free. The network is initially undeformed an
at rest. At timet ­ 0 the x displacements of the node
at the left boundary (atx ­ 0) are made time depende
and theiry displacements are forced to be zero. Furt
evolution of all node displacements is calculated us
the Verlet algorithm, which is widely used in classic
molecular dynamics (MD) [12] and is well suited for th
dynamics of thenonlinearHamiltonian equation (1).

The rigidness of the RSN has not been conside
before: It consists of both rigid (triangles) and nonrig
substructures (other polygons). The problem can
attacked by applying, e.g., the constraint-counting met
[3,4]. The number of floppy (or zero-frequency) mod
per degree of freedomf in a two-dimensional central
force system can be written asf ­ 1 2 kzlyzp 1 nr ,
where kzl is the average node coordination,zp ­ 4 is
the mean coordination number at the rigidity thresho
and nr is the number of redundant bonds per deg
of freedom. We can immediately deduce a couple
properties of the network. The coordinationzi of every
nodei is alwayszi # zp, which means that there are n
overconstrained nodes. This ensures that the Maxwe
approximation [10] (nr ­ 0) is exact for RSN. Using
results from statistical geometry [7] we can then sh
that in RSN

f ­
p

2q
­

p

2 3 5.71

µ
q
qc

∂21

. 0 . (2)

This result suggests that RSN may not be rigid. Ri
clusters are locally composed of triangles [13] with
common side. If two triangles had a common side, th
would be intersections of three different lines, whi
contradicts the definition of our geometrical netwo
model. Hence in RSN triangles are always elastica
isolated from each other and rigidity cannot percolate
any finite densityq of the network. RSN is qualitatively
similar to a diluted central-force square lattice. Both ha
the samekzl in the highq or perfect lattice limit, and lack
a finite rigidity threshold.

We confirmed the lack of rigidity of RSN by MD-like
simulations (cf. Ref. [14]) which were done bydynam-
ically applying a 1% uniaxial strain in thex direction.
After allowing the network to stabilize for a long tim
(500 times the time of flight of a wave front), the kinet
energy of the nodes was quenched by depleting the ve
ities of the nodes each time they passed a local pote
minimum. This procedure also removed the elastic
ergy, thus indicating that it was stored only in the vib
tions, and the final state of the network was unstres
although it underwent a macroscopic deformation. T
convergence criteria used in Refs. [1,2] could also be u
in this nonlinear case even though the methods of [1
were not applicable. The analytically calculated flop
mode ratio [Eq. (2)] is compared in Fig. 2 with that o
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FIG. 2. Floppy mode ratiofsqyqcd. The squares denote th
pebble game result and the solid line is a plot of Eq. (2).

tained by the recently introduced topological pebble ga
algorithm [4,15]. The two results agree perfectly. T
fact that nr ­ 0 exactly was also directly confirmed b
the pebble game.

The existence of zero-frequency modes in RSN was
merically confirmed by computing the density of vibr
tional states as a Fourier transform of the velocity ti
series [16]. Moreover, the lack of acoustic modes w
confirmed by computing the frequency response to a s
soidal displacement imposed on the left boundary of
network. In Fig. 3 we show the logarithmically averag
responseskgsvdl for both RSN and a similar networ
composed of elastic beams. In both cases the para
ters q ­ 4qc, E ­ 1.0, lf ­ 1.0, S ­ 0.01, M ­ 0.01,
and two driving frequenciesvs were used. It is eviden
that there is a clear response atvs in the random network
of elastic beams, caused by driven acoustic modes, w
does not appear in RSN. We can again conclude that R
is not rigid and cannot support propagating elastic wav
All wave modes are thus floppy or localized.

FIG. 3. Averaged frequency responsekgsvdl for a random
network composed of springs (solid line) and elastic bea
(dotted line) (q ­ 4qc, E ­ 1.0, lf ­ 1.0, S ­ 0.01, M ­
0.01) and two driving frequencies: (a)vs ­ 0.1, (b) vs ­ 1.0.
2731
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We expect that the effectively 1D transient modes
served [9] in random beam networks also exist in RS
We looked for these modes by considering the lead
edge of a semi-infinite signal generated by a longitud
(or transverse) wave sourceustd ­ A sinsvstd imposed
on the left boundary of the network. The leading ed
or wave front is defined such that, at each nodei, it is
the first maximum of the node displacement vectorui .
To avoid beating, we concentrated on the case in w
vs is much larger than the eigenfrequencies of the s
tem. The times of arrival,ti,1 max, and the amplitudes
Ai,1 max :­ juij1 max ­ juist ­ ti,1 maxdj, of the first maxi-
mum were recorded in the simulations. Thereby both
average velocity and amplitude of the wave front were
termined. In the analysis the data of five networks, w
approximately 37 000 nodes, were included for each se
the parameters, which means that the network area ra
from A ­ 6lf 3 150lf at q ­ 2qc to A ­ 6lf 3 6lf at
q ­ 10qc.

To better understand the observed attenuation of
wave-front amplitude, we first consider a spring ch
of sawtooth geometry as a model for typical propaga
paths in nonrigid two-dimensional networks. This syst
forms a chain with an angle2u between two adjacen
springs of lengthl and massesM placed on the pivo
joints. The first mass is forced to oscillate harmo
cally. We can consider the chain as “piecewise elas
the amplitude of a signal being conserved along
springs, and decay being caused by the joints.
2u ø py2 the motion of a mass is not affected mu
by the second order force exerted by the following ma
and the amplitude at nodei 1 1 approximately satisfie
Ai11 ­ Ai cos2u. There aren ­ xyl cosu nodes within
a distancex, and in the continuum limit we end up wit
a decay lawAsxd ­ A0e2ax, where a ­ l21fsud with
fsud ­ 2 ln cos2uy cosu in this simple case. This deca
constant was checked by numerical simulations [17]
sawtooth chains. The dependencea ~ 1yl is evidently
exact: Theu dependence was found to be qualitativ
correct, and it becomes exact in the limit2u ! py2
wherea diverges.

In RSN the maximum length of an axially rigi
subpath is the line lengthlf . We can neglect the elast
diode effects [4] caused by buckling of the colline
segments because we consider only the leading w
front. Also, the dangling ends of the lines do not transp
deformations. Taking this into account, the length o
typical elastic path (the bonded part of a line) is

l ­ lf

µ
1 2 2b

klsl
lf

∂
, (3)

whereklsl ­ plfy2q [7] is the average segment (sprin
length andbklsl is the effective length of the danglin
end;b is a constant. The angular partfsud of the decay
constant of sawtooth chain is replaced by an avera
quantity which is denoted by a constanta0. This constan
2732
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contains all geometrical effects of the random 2D netw
of straight lines, including the effective crossing ang
of lines and weak couplings between the quasi-1D pa
Using Eq. (3) andfsud ; a0, we find that, forq . qc ø
5.71, the average decay constant of a wave front in R
is given by

afront ­
a0

lfs1 2 bpyqd
. (4)

This expression was found to be in excellent agreem
with simulation results. In Fig. 4 (a) we show the wav
front amplitude as a function of distance for three differ
line lengths. The dependenceafront ~ 1ylf is obvious,lf

being the only length scale in the problem. The den
dependence ofafront shown in Fig. 4 (b) agrees well wit
Eq. (4). Within statistical errors,afront is independent o
all other parameters (Ef , S, M, andvs). We can conclude
that the exponential decay arises from thegeometryof the
network. A least squares fit gavea0 ­ 1.98 and b ­
1.52. The value ofb indicates that the wave front trave
nearly all of the available length along an individual li
before transferring to a crossing line. The decay cons
afront approaches a nonzero valuea0l21

f as q °! `.
Even in this limit the penetration depth of a signal
only d ø 1

2 lf . Notice thatd is not necessarily relate
to the localization length [6] which refers to the long-tim
behavior.

We have also considered [9] elastic waves in rand
beam networks. In this case a signal is always divid

FIG. 4. (a) Amplitude decay for line lengthslf ­ 1.0, 1.5,
and 2.0. (b) Decay constantafront as a function of the network
densityq (lf ­ 1.0). Squares denote the simulated points a
solid line is a fit by Eq. (4) (a0 ­ 1.98, b ­ 1.52).
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into a part described by effective medium theory (aco
tic modes) and another described by an ensemble of
dependent segment chains (transient mode). In the l
of slender beams or high frequencies, transient mode
comes more dominant. In the case of RSN, for whi
Young’s modulus vanishes, this effectively 1D mode
the only remaining mode. For the related paths of pro
gation with a broken line geometry, we can express
wave-front velocity [9] in the form

yfront ­ fgl

s
pEfSlf

2qM
, (5)

where fgl is a geometrical factor, and the rest of th
expression is the velocity for a straight path. T
factor fgl reflects the influence of mainly the pat
geometry. Simulations of RSN were found to ve
accurately produce the wave-front velocity of Eq. (5
A fit to the simulated velocities gavefgl ø 0.97 in
the density interval fromq ­ 3qc to q ­ 10qc. It is
evident from Table I that the introduced model predic
the velocity with a relative error less than 1% for
wide range of parameters. Notice that the parame
describing the geometry of the propagation paths seem
satisfyfgl ­

1
2 a0.

In conclusion, we have analyzed the static and dyna
properties of two-dimensional central-force networks w
a random geometry. The network was shown to
nonrigid at any finite density with respect to sma
deformations, and the number of zero-frequency mo
was calculated exactly. The vibrational spectrum a
the dynamic response of the network were found to
produced by nonpropagating modes only, i.e., the R

TABLE I. The dependence of wave-front velocity on param
tersEf , lf , andM (S ­ 1.0). The value of the parameter is 1.
if not explicitly given. The fitted valuefgl ø 0.97 was used to
calculateyfront [Eq. (5)].

Parameter Value yfront Simulation

Ef , M, lf 1.0 0.254 0.255
Ef 0.5 0.180 0.180

5.0 0.568 0.573
M 0.5 0.359 0.356

5.0 0.114 0.114
lf 1.5 0.311 0.310

2.0 0.359 0.361
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contains only zero-frequency and localized modes. T
resulting exponential decay of the wave front was found
be exactly described by a model of noninteracting qua
one-dimensional paths of propagation. This model w
also found to correctly describe the velocity of the wa
front.
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