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Interacting Self-Guided Beams viewed as Particles: Lorentz Force Derivation
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The trajectories of interacting self-guided beams in a homogeneous nonlinear medium are derived
directly from the Lorentz force of classical electromagnetic theory, treating the beams as particles with
mass. This, to our knowledge, is the first self-consistent particle description of beam interaction, and,
in particular, one that does not rely upon interpretation of the wave equation. The method is applicable
to any stable beams, in both two and three dimensions. [S0031-9007(96)00609-6]

PACS numbers: 42.65.Tg, 41.20.Jb

This Letter addresses a fundamental question: Casymmetry as well as planar symmetry. While beams with
interacting self-guiding beams be described directly froncircular symmetry are not stable in a Kerr law medium,
the Lorentz force of classical electromagnetic theory bythey are in a saturating material. This can be shown
treating the beams as particles with mass? Of coursgp] directly by an elementary extension of the proof for
it is well known that solitons argarticlelike, but this  stability first given by Kolokolov [6] in a Kerr material.
conclusion has been deduced previously after solving There is a force between any electromagnetic field and
and interpreting thevaveequation [1]. The scalar wave a polarized medium. This is the Lorentz force of classical
equation for monochromatic waves in the slowly varyingelectromagnetic theory. Thus, parallel linear waveguides
approximation is identical to Schrddinger’s equation.exert a force on each other which isediatedby the
Now, adopting an entirely different tact, we describe hereresence of electromagnetic fields. This force would
soliton interaction directly from first principles following cause them to attract or repel if they were free to move.
from the classical Lorentz law governing the electromag-Analogously, two parallel beams of light should exert a
netic force. Furthermore, our derivation applies to allforce on each other which imediatedby the presence
self-guided beams of one and two transverse dimensiors a polarizable medium. Thus, the beams should attract
that are stable to perturbations. Unlike the inverse scair repel, and the force should follow directly from the
tering technigue, our description is not restricted to the_orentz force. This motivates the conceptual approach
singular case of one-dimensional beams of a cubic noradopted here.
linearity. This underscores the fact that beams which If a self-guided beam is stable to small perturbations
are more general than solitons can also be particlelikehen it can be thought of as an elastic body which has an
Nevertheless, we are not necessarily advocating thmternal restoring force under perturbations which tends to
Lorentz force approach for actually performing calcu-maintain the beam shape. Thus, the forces acting on such
lations. However, the Lorentz force approach is ap-a beam can be replaced by a single net force which acts
pealing on fundamental physical grounds by providing aon the center of mass of the beam and the beam will move
self-consistent demonstration that stable, self-guideavithout changing shape. In particular, we determine the
beams can be treated as particles with mass, withoutajectory of two stable self-guided beams treating them
regard to their wavelike properties. Finally, interactingas rigid bodies or particles and using the classical Lorentz
self-guided beams have potential use for all opticaforce.
switching [2]. We begin by calculating the electromagnetic force be-

Self-guidance occurs when beam diffraction is balancedween an electromagnetic wave and a dielectric material.
by the containment effects of a nonlinearly inducedThe material can be considered to be made up of indi-
refractive index [3]. The most familiar self-guided beamsvidual dipoles which are induced by the presence of the
are spatial solitons. These are a very special class @lectromagnetic wave. The classical Lorentz force can
one-dimensional self-guided beams of a cubic mediunbe used to calculate the force on each dipole. The force
which are revealed by the inverse scattering method [4] acting on a stationary particle or molecule with dipole
and are highly stable even to collisions with each othermomentp is then given by [7]
However, our analysis requires only that the beams be ap
stable to infinitesimal perturbations. This is a condition f=(p- VE+ ot X B. ()
far less restrictive than that necessary for solitons. Thé&or a monochromatic wave propagating in an isotropic,
analysis is carried out rigorously for the interaction of twodispersionless medium, the polarization (or dipole mo-
such beams when they are well separated. We hasten moent per unit volume) is given b = go(n> — 1)E. If
emphasize that solitons are not the only example of stablee replace the dipole momeptin Eqg. (1) with the dipole
self-guided beams. Stable beams also exist with circulamoment per unit volumé® and then integrate over all
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space, the net force on the medium is obtained. Assubstituting from the wave equation, and performing
suming ane'®’ time dependence for the fields, using integrations by parts.

V X E = iwB, and also the vector identifE - V)E + Our fundamental result, Eq. (6), can be applied directly
E X (VXE)= %V(E - E) the time average forc& to a single beam in a smoothly varying refractive index

exerted on the medium is given by gradient and gives the motion of the center of the beam.
If we apply Eg. (6) to the situation of two beams in a

F=1 ] eo(n®> — DVIE|>dA. (2)  uniform nonlinear medium then we find that the center

of the two beam system does not move. What we are
From Newton’s third law, the medium must exert an equainterested in is the relative motion of the two beams.
but opposite force on the beam. ff is the center of The result is obtained by regarding one of the beams
the beam andn is its effective mass, then the force is as moving in the refractive index profile induced by the
found by integrating Eq. (2) by parts and reversing thepresence of the second beam. A simple expression for

sign giving the interaction of two self-guided beams locatedagaand
d’ry —ro can be calculated from Eq. (6) by making a suitable
m-—y =2 [ eolE[*Vn? dA . (3)  well separated beam approximation for the composite two
_ _ beam field such as
The center of the beam is defined by E(r) = E.(r — o) + E,(r + 10). (8)
ro = f |E|*r dA / f |E|*dA. (4)  whereE,(r) is the field amplitude for a single self-guided

_ . beam. The field will induce a waveguidg,,(r) via the
The effective mass of the beam is related to the totahonlinearity of the medium [3,9]. In addition, we also

stored energy in the electromagnetic field by calculate the waveguide?.(r) for which the field in
5 1 ) ) ) Eq. (8) is theexactmode. Since a waveguide does not
me- =73 f(8|E| + plH[Y) dA = f e|E|"dA exert any forces on its own modes, the beams “feel” only
) ) the difference between the induced and modal waveguides
= 80"0[ |E|"dA. (5)  nk4(r) — nioe(r). The motion of the center of one of

the beams can be determined from Eq. (6) using this

The final form is valid when the minimum and maximum difference waveguide. After some algebra, we obtain the
values of the refractive index are approximately equafollowing expression for. (ro) appearing in Eq. (7):
and given byng. It can then be shown that the field
is predominantly transverse, and obeys the scalar wavg.i(ry) = n, + [[ns(ro) — no]Es(r)Es(r — 2ry)* dA,
equation [8,9]. The reaction force acting on the beam can
be considered to be exerted on the individual photons as (©)
they trasverse the empty spaces between the atoms aiheren,(r) is the refractive index induced by the single
thus they are traveling at the speed of light. Combiningsoliton E,(r). Using this procedure, we note that if the
Egs. (3) and (5) and using the velocity of the photons tawo beams are in phase then the force is attractive, and
convert from time derivatives to derivatives gives if they ares out of phase then the force is repulsive. In
d’r 1 e o 5 addition_, a simple _analysis reveals that the vqriation of the
PR [ |E|*Vn* dA / f |EI"dA.  (6) force with separation depends only on the tail of the self-

guided beam. In planar geometry, this is an exponential
This is the fundamental equation for the trajectory of thedecay, and in three dimensions it is an exponential divided
center of the beam in both two and three dimensions anby the square root of the distance. In planar geometry the
is equivalent to the eikonal equation for rays propagatingossible trajectories are beams which periodically cross

in a graded index (axial uniform) fiber: each other or which continually diverge. With circular
d?ry 1 ) beams, in addition to cross and diverging beams, it is also
P Vg (ro) , (7)  possible to obtain beams which spiral around each other
g 0

[10]. We previously derived Eq. (9) from the invariants
provided we identify the effective graded index profile in of the slowly varying wave equation [11] and also from a
Eq. (7) with the expression appearing in Eq. (6). Becauseurely linear perspective [9].
nege IS axially uniform, the gradient operator can be We have derived the trajectories of two self-guided
replaced by its transverse paft. beams of arbitrary cross section by treating the beams as
The equation of motion (6) was derived by finding particles with mass and calculating the classical electro-
the force on the beam treating the beam as a particlenagnetic force between them. To our knowledge, this is
Alternatively, the above expression can also be obtainethe first self-consistent particle description of beam inter-
from the scalar wave equation in the slowly varyingaction, and, in particular, one that does not require solv-
amplitude approximation by differentiating Eq. (4) twice, ing and interpreting the wave equation as an intermediate

272



VOLUME 77, NUMBER 2 PHYSICAL REVIEW LETTERS 8 ULy 1996

step. The beams must be stable only to small perturba{4] D.L. Mills, Nonlinear Optics (Springer-Verlag, Berlin,

tions as discussed in the introduction. They need not be  1991).

solitons. The special case of interacting spatial solitons of[5] D.J. Mitchell and A.W. Snyder, J. Opt. Soc. Am. B),

planar symmetry in a cubic (Kerr) material can be treated 1572 (1993). _ _

by the inverse scattering method [4]. Finally, the physi- (] JAS §°|°|f°|ovczlh- P,“k:- l\élekh. Eekh- F_'Z3{A};;52 (1§73)-

cal consequences of beam interaction have been discussddl J: D: Jackson,Classical ElectrodynamicgWiley, New
York, 1967).

elsewhere [10,11].

. . [8] A.W. Snyder and W. Young, J. Opt. Soc. Ar@8, 297
The_authors are part of the Australian Photonics Co- (1978); A.W. Snyder and J.D. Lov@ptical Waveguide
operative Research Centre.

Theory(Chapman and Hall, London, 1973), Chap. 13.
[9] A.W. Snyder, D.J. Mitchell, and Yu S. Kivshar, Mod.
Phys. Lett. B.9, 1479 (1995). This paper unifies linear

[1] A.M. Kosevich, Physica (Amsterdamd)lD, 253 (1990). and nonlinear wave optics. Section 8 shows that electro-

[2] T. Thwaites, New Scientist, 12 Jan., No. 1751, 4 (1991); magnetic fields are predominantly transverse in nonlinear
Y. Silberberg, Anisotropic and Nonlinear Waveguides optics.
edited by C.G. Somedee and G.l. Stegford (Elsevied10] L. Poladian, A.W. Snyder, and D.J. Mitchell, Opt.
Science Publisher, New York, 1992). Commun.85, 59 (1991).

[3] R.Y. Chiao, E. Garmire, and C.H. Townes, Phys. Rev.[11] D.J. Mitchell, A.W. Snyder, and L. Poladian, Electron.
Lett. 13, 479 (1964). Lett. 27, 848 (1991).

273



