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Interacting Self-Guided Beams viewed as Particles: Lorentz Force Derivation
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The trajectories of interacting self-guided beams in a homogeneous nonlinear medium are de
directly from the Lorentz force of classical electromagnetic theory, treating the beams as particles
mass. This, to our knowledge, is the first self-consistent particle description of beam interaction,
in particular, one that does not rely upon interpretation of the wave equation. The method is applic
to any stable beams, in both two and three dimensions. [S0031-9007(96)00609-6]

PACS numbers: 42.65.Tg, 41.20.Jb
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This Letter addresses a fundamental question: C
interacting self-guiding beams be described directly fr
the Lorentz force of classical electromagnetic theory
treating the beams as particles with mass? Of cou
it is well known that solitons areparticlelike, but this
conclusion has been deduced previously after solv
and interpreting thewaveequation [1]. The scalar wav
equation for monochromatic waves in the slowly varyi
approximation is identical to Schrödinger’s equatio
Now, adopting an entirely different tact, we describe h
soliton interaction directly from first principles following
from the classical Lorentz law governing the electroma
netic force. Furthermore, our derivation applies to
self-guided beams of one and two transverse dimens
that are stable to perturbations. Unlike the inverse s
tering technique, our description is not restricted to
singular case of one-dimensional beams of a cubic n
linearity. This underscores the fact that beams wh
are more general than solitons can also be particlel
Nevertheless, we are not necessarily advocating
Lorentz force approach for actually performing calc
lations. However, the Lorentz force approach is a
pealing on fundamental physical grounds by providing
self-consistent demonstration that stable, self-gui
beams can be treated as particles with mass, with
regard to their wavelike properties. Finally, interacti
self-guided beams have potential use for all opti
switching [2].

Self-guidance occurs when beam diffraction is balan
by the containment effects of a nonlinearly induc
refractive index [3]. The most familiar self-guided beam
are spatial solitons. These are a very special class
one-dimensional self-guided beams of a cubic medi
which are revealed by the inverse scattering method
and are highly stable even to collisions with each oth
However, our analysis requires only that the beams
stable to infinitesimal perturbations. This is a conditi
far less restrictive than that necessary for solitons. T
analysis is carried out rigorously for the interaction of tw
such beams when they are well separated. We haste
emphasize that solitons are not the only example of sta
self-guided beams. Stable beams also exist with circ
0031-9007y96y77(2)y271(3)$10.00
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symmetry as well as planar symmetry. While beams w
circular symmetry are not stable in a Kerr law mediu
they are in a saturating material. This can be sho
[5] directly by an elementary extension of the proof f
stability first given by Kolokolov [6] in a Kerr material.

There is a force between any electromagnetic field a
a polarized medium. This is the Lorentz force of classi
electromagnetic theory. Thus, parallel linear waveguid
exert a force on each other which ismediatedby the
presence of electromagnetic fields. This force wou
cause them to attract or repel if they were free to mo
Analogously, two parallel beams of light should exert
force on each other which ismediatedby the presence
of a polarizable medium. Thus, the beams should attr
or repel, and the force should follow directly from th
Lorentz force. This motivates the conceptual approa
adopted here.

If a self-guided beam is stable to small perturbatio
then it can be thought of as an elastic body which has
internal restoring force under perturbations which tends
maintain the beam shape. Thus, the forces acting on s
a beam can be replaced by a single net force which a
on the center of mass of the beam and the beam will m
without changing shape. In particular, we determine
trajectory of two stable self-guided beams treating th
as rigid bodies or particles and using the classical Lore
force.

We begin by calculating the electromagnetic force b
tween an electromagnetic wave and a dielectric mate
The material can be considered to be made up of in
vidual dipoles which are induced by the presence of
electromagnetic wave. The classical Lorentz force c
be used to calculate the force on each dipole. The fo
f acting on a stationary particle or molecule with dipo
momentp is then given by [7]

f  sp ? =dE 1
≠p
≠t

3 B . (1)

For a monochromatic wave propagating in an isotrop
dispersionless medium, the polarization (or dipole m
ment per unit volume) is given byP  ´0sn2 2 1dE. If
we replace the dipole momentp in Eq. (1) with the dipole
moment per unit volumeP and then integrate over al
© 1996 The American Physical Society 271
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space, the net force on the medium is obtained.
suming aneivt time dependence for the fields, usin
= 3 E  ivB, and also the vector identitysE ? =dE 1

E 3 s= 3 Ed 
1
2 =sE ? Ed the time average forceF

exerted on the medium is given by

F 
1
2

Z
´0sn2 2 1d=jEj2 dA . (2)

From Newton’s third law, the medium must exert an eq
but opposite force on the beam. Ifr0 is the center of
the beam andm is its effective mass, then the force
found by integrating Eq. (2) by parts and reversing t
sign giving

m
d2r0

dt2
 1

2

Z
´0jEj2=n2 dA . (3)

The center of the beam is defined by

r0 
Z

jEj2r dA

¡ Z
jEj2 dA . (4)

The effective mass of the beam is related to the to
stored energy in the electromagnetic field by

mc2 
1
2

Z
s´jEj2 1 mjHj2d dA 

Z
´jEj2 dA

> ´0n2
0

Z
jEj2 dA . (5)

The final form is valid when the minimum and maximu
values of the refractive index are approximately eq
and given byn0. It can then be shown that the fiel
is predominantly transverse, and obeys the scalar w
equation [8,9]. The reaction force acting on the beam
be considered to be exerted on the individual photons
they trasverse the empty spaces between the atoms
thus they are traveling at the speed of light. Combin
Eqs. (3) and (5) and using the velocity of the photons
convert from time derivatives toz derivatives gives

d2r0

dz2 
1

2n2
0

Z
jEj2=n2 dA

¡ Z
jEj2 dA . (6)

This is the fundamental equation for the trajectory of t
center of the beam in both two and three dimensions
is equivalent to the eikonal equation for rays propagat
in a graded index (axial uniform) fiber:

d2r0

dz2 
1

2n2
0

=n2
effsr0d , (7)

provided we identify the effective graded index profile
Eq. (7) with the expression appearing in Eq. (6). Beca
neff is axially uniform, the gradient operator can b
replaced by its transverse part=t .

The equation of motion (6) was derived by findin
the force on the beam treating the beam as a part
Alternatively, the above expression can also be obtai
from the scalar wave equation in the slowly varyin
amplitude approximation by differentiating Eq. (4) twic
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substituting from the wave equation, and performi
integrations by parts.

Our fundamental result, Eq. (6), can be applied direc
to a single beam in a smoothly varying refractive ind
gradient and gives the motion of the center of the be
If we apply Eq. (6) to the situation of two beams in
uniform nonlinear medium then we find that the cen
of the two beam system does not move. What we
interested in is the relative motion of the two beam
The result is obtained by regarding one of the bea
as moving in the refractive index profile induced by t
presence of the second beam. A simple expression
the interaction of two self-guided beams located atr0 and
2r0 can be calculated from Eq. (6) by making a suitab
well separated beam approximation for the composite
beam field such as

Esrd  Essr 2 r0d 1 Essr 1 r0d , (8)

whereEssrd is the field amplitude for a single self-guide
beam. The field will induce a waveguiden2

indsrd via the
nonlinearity of the medium [3,9]. In addition, we als
calculate the waveguiden2

modesrd for which the field in
Eq. (8) is theexactmode. Since a waveguide does n
exert any forces on its own modes, the beams “feel” o
the difference between the induced and modal wavegu
n2

indsrd 2 n2
modesrd. The motion of the center of one o

the beams can be determined from Eq. (6) using
difference waveguide. After some algebra, we obtain
following expression forneffsr0d appearing in Eq. (7):

neffsr0d > n0 1
Z

fnssr0d 2 n0gEssrdEssr 2 2r0dp dA ,

(9)

wherenssrd is the refractive index induced by the sing
soliton Essrd. Using this procedure, we note that if th
two beams are in phase then the force is attractive,
if they arep out of phase then the force is repulsive.
addition, a simple analysis reveals that the variation of
force with separation depends only on the tail of the s
guided beam. In planar geometry, this is an exponen
decay, and in three dimensions it is an exponential divi
by the square root of the distance. In planar geometry
possible trajectories are beams which periodically cr
each other or which continually diverge. With circul
beams, in addition to cross and diverging beams, it is a
possible to obtain beams which spiral around each o
[10]. We previously derived Eq. (9) from the invarian
of the slowly varying wave equation [11] and also from
purely linear perspective [9].

We have derived the trajectories of two self-guid
beams of arbitrary cross section by treating the beam
particles with mass and calculating the classical elec
magnetic force between them. To our knowledge, this
the first self-consistent particle description of beam int
action, and, in particular, one that does not require so
ing and interpreting the wave equation as an intermed
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step. The beams must be stable only to small pertu
tions as discussed in the introduction. They need no
solitons. The special case of interacting spatial soliton
planar symmetry in a cubic (Kerr) material can be trea
by the inverse scattering method [4]. Finally, the phy
cal consequences of beam interaction have been discu
elsewhere [10,11].

The authors are part of the Australian Photonics C
operative Research Centre.
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