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Phase Transition between Coherent and Incoherent Three-Wave Interactions

P. A. Robinson* and P. M. Drysdale

School of Physics, University of Sydney, New South Wales 2006, Australia
(Received 24 May 1996

The transition from coherent to incoherent three-wave interactions with increasing bandwidth is
studied. It is demonstrated analytically and numerically that this transition is sudden if the spectra of
the three waves are relatively flat. The transition point, degree of coherence, and other quantities are
estimated analytically and compared with numerical results. [S0031-9007(96)01280-X]
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Interactions between waves in nonlinear media havean occursuddenlyvia a transition akin to first-order
been studied for decades, notably in the contexts othermodynamic phase transitions. This sudden transition
plasma physics and nonlinear optics, where wave-wavies completely unexpected and contrary to expectations
interactions are involved in three- and four-wave mixing,based on the existing literature, which contains no hint of
harmonic generation, and nonlinear emission processesich behavior. Below a critical bandwidtw ., exchange
[1-4]. Three-wave interactions involving coalescence obf energy between the waves remains coherent indefinitely,
two waves to produce a third, or the inverse process abut the degree of coherence decreases somewhat with
decay of one wave into two others, have been amon@creasindAw; for Aw > Aw., coherence decays after an
the most heavily studied. Two alternative approximationsgnitial transient. In addition to showing the existence of a
are usually made to render analysis tractable: Théeransition, we calculatdw., explore its dependence on
phase-coherent approximation in which the waves argarious parameters, and study the behavior of observables
assumed to be monochromatic and phase relationshigs Aw is varied.
are significant to the physics, and the random-phase Our analysis begins with the equations for the coherent
approximation (RPA) in which phase is irrelevant anddecay of a wave O into waves 1 and 2, all with the
is averaged over [1-8]. The transition between thessame sign of energy (implicitly incorporating the inverse
two key regimes is the focus of this Letter. The resultsprocess of coalescence) [1,11]:
are relevant both to three-wave interactions and to the

wider question of nonlinear coupled oscillator systems in dAo/dt = A1A2Sin® (1)
physics, biology, chemistry, and medicine [1-13].

For waves of bandwidtiAw (defined here to be the dAia/dt = —ApAz;SINO, 2)
half-width of the spectrum), a number of authors have
obtained the qualitative criteriofAw > 1 for the ap- de AvAy  AA;  AAs
plicability of the RPA, whereT is a characteristic non- - - < A + o A >COS@, 3)

linear interaction time (e.g., a nonlinear growth time or

period of oscillation); the reverse inequality justifies usewhereA, andw, denote the real amplitude and frequency
of a phase-coherent analysis [1,2,5-8]. Subsequent wogg the nth wave,Q = wy — @w; — w, is the frequency
was consistent with this prediction [1,5-7]. NumericSmismatch,® = 6, — 6, — 6, in terms of the individual
showed that the variance of the relative phase of thghasess,, and damping is neglected. (Note that wave
modes rapidly approached its RPA value foAw > 1 dispersion linksQ) and Aw to the wave-number mis-
[1]. Also, projection-operator methods enabled approXimatch and spread, more often used in nonlinear optics.)
mate evolution equations to be derived for moderat®  Neutrally stable periodic solutions of (1)—(3) in terms of
[5,7], showing a smooth decrease of coherence with inelliptic functions exist [1,11]; forQ = 0 these satisfy
creasingAw. Similarly, analyses of three-wave instabil- 44,4, cos® = Ay(0)A;(0)A,(0)cos®(0) = " where
ities in plasmas imply a steady reduction of coherencehe argument 0 denotes an initial value.

with increasingA w, at least when one of the modes is en-  \When a finite bandwidth is introduced, one can approxi-

ergetically dominant [6]. However, these analyses wergnate the resulting spectra by combsMfmodes of am-
inconclusive as to the nature of the transition in the longplitudes A,; and frequencieso,;, with n = 0,1,2 and

time limit: Early numerical work was restricted by the ; = 1, ... N. This yields thediscrete triad equations,
available computing power, approximations inherent insuitable for numerical use, in which coherent interactions
the projection technique do not permit lardeo to be  petween every triad of modes are followed, then summed

treated, and instability analyses did not consider long ternfp obtain the overall evolution of the spectra [1,5,7]:
interactions.

In this Letter, we show analytically and numerically dAoj _ 1 ZAlk’AZI’ Sin® (4)
J B

that the breakdown of coherence of three-wave interactions dt N &7
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dO;y 1 AgjrAap mode with the others will be seriously weakened, and
dr Qju = N ,Zl/ A €os® can be approximated using the RPA [1,10]. To show
! ‘ that coherence is then lost for the whole comb, we
AgjrArg x . .
+ A cos® i approximate each spectrum by a flat spectrum (i.e., with
'K 2 equal mode amplitudes) of half-widthe and treat the

_ AAgyp oS0 . ) (5) modes as test modes. If the modes start in phase,
JK'U | . .
o 0j but some lose coherence with the rest of their comb,
leaving fN of the N modes in the comb coherent
with j,k,l =1,....N, Qju = wy; — w;x — wy, and  (those with the smallest offsets,;), the number of
with equations analogous to (4) fdi, andAy;. coherently interacting triads igN2. This reduces the
Breakdown of coherence with increasing bandwidthcritical frequency by a factor of from the estimate (8)
can be studied using (4) and (5). We assume that thgecause fewer modes contribute coherently to the sums in
spectra are symmetric about central frequencies that hayg) and (5) (incoherent contributions average to zero). For
zero mismatch(},;, and measure all frequencies in aa flat spectrumfAw., is also the critical offset frequency
comb relative to its center in what follows. The first for the outermost of the remainingV coherent modes
modes to lose coherence will be those with the largesfo lose coherence. Hence once the outermost mode of
offset frequenciesw,,, from the center of their comb the comb decoheres, successive modes also decohere, an
(henceforth, the “outermost” modes). An estimate of theeffect that is enhanced by the increasing noise arising
transition frequency at which coherence is lost can thefrom the incoherent modes. Thus for relatively flat
be obtained by treating the outermost modes as test modgpectra, we predict a rapid transition to a state in which

that interact with coherent modes havifw,,,) = 0, but  no modes in the comb act coherently; near this end point,
have no effect on them. The resulting test mode equationgiodes in the other combs also lose coherence.

for a mode in comb 0O are An order parameter measuring the degree of coherence
dAg of three-wave interactions is the third-order correlator
= = (T/Ag)sinAOqr , (6)
dA Oy P\, /I\cost0y T Z%AOjAlkAﬂ s ©
— = — —_— _ ) —
di o\ A2 Ao/ A

. . ForAw < Aw., we can estimatéE,) crudely by approxi-
where the subscriptT denotes a test mode in thah mating all the modes as independent test modes of constant

comb, ABy is the _phase of the test mode relative toamplitude and averaging (9) over time and modes. For
the mean phase of its comb, some small terms have be’g

. . 2

P . : iix(0) = 0, this gives(E.) = 2[],_,A,(0){co0,71)).
neglected, and a mean-field interaction with the cohere efore coherence is lost, analytic solution of (6) and (7),
modes has been assumed (i.e., an average, denoted

y . _ . . _
(-, is taken over their evolution). their analogs fom = 1,2, implies the angular am

. ; . plitude ¢, of a test mode in the:th comb is ¢, =
Analytic solution of (6) and (7) for small oscilla- _; —; . . 5
tions shows thah @y is bounded folwor| < F<A52> _ sin"Y(w,r/Aw,.). If we average overtime, assuming har

L . monic oscillations of the test-mode angle, and over the
Awg.. Similar reasoning holds form = 1,2, so un- 9

bounded A®,7, and consequent loss of coherence omedeS in each comb, we find
some modes, first occurs at the offset frequeney, = (E.(Aw)) Aw
wnc

2
minfAw,.}, Eoy T ﬁ,;)<A

Aw. = Ap(0)A;(0)4(0)| cos® (0)| min{(A, >},  (8)

)2, (10)

with 8 = 1/12; inclusion of amplitude variations and
correlations in an improved analysis would change
but not the quadratic form of (10), which is required
symmetry. ForAw > Aw., we find analytically
E.(Aw))/{E.(0)) — 0 asN — o, assuming the terms in

over modes, not time), provided the largest mode is en(.g) add incoherent'ly. We thus pred[ct a discpntinuous,

ergetically dominant and has only small oscillations. |nfirst-order chlangel 'm.EC>.a|t thi transition, provided any

general, however, the average quantities in (8) will notO'® general analysis yielgs < 1/3. .

give a good estimate ckw, when all modes have large The reduction in coherence implies a reduction in the
c

fractional oscillations ifA2, )'/2 and further analysis, in- nonlinear coupling terms in (4) and (5) relative to those

cluding the effect of correlations, is necessary. in (.l)__(S) and, hence, an in_crease in the peffodf the
é)scnlatlons of the system, with

The above arguments yield an estimate of when th
relative phasé\ 0,7 of an outermost mode first becomes
unbounded. Beyond this point, the interaction of this (E.(Aw))T(Aw) = (E.(0))T(0). (11)
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with n = 0,1,2, and where the averages can be deter
mined from the analytic solution of (1)—(3). This result
also holds approximately for cases where some mod
have large fractional oscillations it2, )/ (averaged
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For Aw > Aw., modes that start in phase will even- Numerical results fokE.), T, and (E.)T are shown
tually lose coherence after a tin¥g of the same order in Fig. 4 as functions oAw/Aw. for Ax(0) = A;(0) =
as the coherence time. FAw > Aw., T, ~ (Aw)"! 0.9, A,(0) = 2.0, and® j;(0) = 0, giving =10% oscilla-
since nonlinear effects are small. Ne%®,. a critical ex-  tions for Aw = 0. Equation (11) is accurate f&kw =<
ponenta should exist if a phase transition occurs [14],0.5Aw., with (E.)T falling by only 10% beyond this
with point. The form (10) adequately approximatgs) and

i _ —a [via (11)] T, but the numerical valu@ = 0.25 is larger
Qo = Awd) . (12) than the crude estimatg = 1/12 above. Beyond\w,,

To test the above predictions, we numerically solvedE,) is found to drop to a lower value (not shown), which
the discrete triad equations using a Bulirsch-Stoer intedecreases monotonically with, as predicted, whereas the
grator [15] and flat initial spectra with modes all initially values shown fohw < Aw,. are almost independent of
in phase in each comb. Analytically conserved quantiv for N = 7 — 21. For the system of Fig. 1, for ex-
ties were tracked to monitor the accuracy of integrationample,(E.)/{E.(0)) drops sharply from 0.67 tec0.2 for
and the output was checked against analytic results fa§ = 21, consistent with the predicted first-order phase
Aw = 0 with and without a mismatck [1,11]. transition. ForAw > Aw., there are no stable periodic

Extensive sets of runs confirm the predicted existencescillations, in agreement with our theory, ais unde-
of a sudden transition from coherence to incoherencéined. We have investigated the effective coherence time
as Aw increases. Figure 1 shows a typical time serieg), for Aw > Aw, in two different systems, finding re-
of (A;)'/? for Aw > Aw,, Ag(0) = 0.8, A1(0) = 0.3,  sults consistent with a phase transition with critical expo-
and AZ(O) = 0.1. Initial rapid, near-periodic coherent nenta = 1.0 = 0.2 in (12) in both cases.
oscillations break down after a tinlg, = 2 = 0.5, after The above analytical and numerical results demon-
which the amplitudes fluctuate about their random-phasstrate the existence of a previously unexpected first-order
values [1,8]. ForAw < Aw., the coherent oscillations phase transition between coherent and incoherent three-
continue, apparently indefinitely, but reduced in amplitudeyave interactions as the bandwidth is increased. Our

relative to theAw = 0 case. estimates ofAw. are reasonably accurate, except for
Figure 2 shows numerical values &fw. vs results systems with large-amplitude oscillations, where corre-
from (8) for 14 sets of initial conditions wit® ;;;(0) = 0.  lations must be better accounted for. After multiply-
The numerical results scatter around the predicted linéing by the coherent oscillation peridtl ~ 77/ maxA,},
with small-amplitude cases always agreeing well. we find a form similar to those of previous analyses

Equation (8) implies Aw. > |cos®(0)|. Figure 3 (WhICh however, assumed a smooth transitid)w,. ~
shows numerical and analytic values afw. vs  7([[2_,[A,/maxXA,}]). This transition is different from
cos@(0) for Ag(0) = 0.5, A;(0) = 1, and A>(0) =2, the smooth reduction in oscillation amplitude with in-
showing good agreement fdr.l < cos®(0) = 1. As  creasing( in (3), discussed previously [1,3,11]; in that
cos®(0) — 0, coherent oscillations become large, with case, small coherent oscillations remainfd > 1. We
O ranging from nearly—w/2 to nearly 7/2 even for argue that systems with centrally peaked spectra will tend
Aw = 0. Our averaging procedures break down in thisto have higher transition frequencies than ones with flat
limit and Aw. seems to exceed our estimate, possiblyspectra, because of their smaller typical frequency offsets.
because fluctuations shift the system to a more stabla smooth transition is even conceivable if the peak is so

nearby configuration. sharp that its core remains coherent even when the outer
9
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t FIG. 2. Numerical vs predicted (solid line) values®&, for
FIG. 1. Time series ofA2 /2 for Aw > Aw., n = 0,1,2. various cases wit) (0) = 0. Fractional oscillation amplitudes
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The curves are most easily distinguished at right. under 50% are indicated by squares, others by triangles.
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10 : , . . . herent interactions between modes trapped in a cavity
s filled with nonlinear material (e.g., plasma or nonlinear
~ 0.8} ] crystal) should decohere suddenly if the bandwidth ex-
3 ceeds a critical value.
>~ 0.6} ] Equations (4) and (5) can be viewed as evolution equa-
= ] tions for three distinct populations of nonlinearly coupled
S 04} ] . ; S
o) [ ] oscillators whose members interact in triads, one from

S 02 m ] each population. Another nonlinear oscillator system in
' ] which a phase transition has been observed, despite its dif-
0.0 . . ) s ferent physics, is one in which every oscillator is identi-
00 02 04 06 08 1.0 cal and is coupled to every other one. This system was
c0s0(0) originally introduced to quel cpupled biological oscn_—
lators (e.g., groups of luminous insects, neurons, cardiac
FIG. 3. Numerical values cfw.[0(0)]/Aw,.(0) vs cosB(0),  Cells, etc.) [9,10,13]. It has been shown to haweeond-
with all modes initially in phase in each comb. Theoretical orderphase transition from coherence to incoherence. The
values are given by the line. present work shows that new types of phase transitions can
occur if the oscillators are nonidentical and the form of the
onlinear interactions is modified. Other types of phase
ansitions have been seen recently in identical-oscillator
systems, depending on the forms of the couplings and spec-
ta [12]. This raises the possibility of similar variety here,
g\epending on spectral structure.
We thank A. C.-L. Chian for pointing out some impor-
nt references. This work was supported by the Aus-
alian Research Council.
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modes decohere, a case existing in some quite differerE
systems of coupled oscillators [10].

In practical terms, the existence of a sharp breakdow
of coherence for relatively flat spectra implies that, for
many semiquantitative purposes, the coherent and RP
approximations are collectively adequate to treat the entir?a
range of bandwidths; there is no broad transition region iqr
which neither is appropriate. Recognition of this point
is important in applications of wave-wave processes in
plasmas and nonlinear optics. Arguments along the lines
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