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Phase Transition between Coherent and Incoherent Three-Wave Interaction
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The transition from coherent to incoherent three-wave interactions with increasing bandwid
studied. It is demonstrated analytically and numerically that this transition is sudden if the spec
the three waves are relatively flat. The transition point, degree of coherence, and other quantiti
estimated analytically and compared with numerical results. [S0031-9007(96)01280-X]

PACS numbers: 52.35.Mw, 42.65.Sf
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Interactions between waves in nonlinear media h
been studied for decades, notably in the contexts
plasma physics and nonlinear optics, where wave-w
interactions are involved in three- and four-wave mixi
harmonic generation, and nonlinear emission proce
[1–4]. Three-wave interactions involving coalescence
two waves to produce a third, or the inverse proces
decay of one wave into two others, have been am
the most heavily studied. Two alternative approximati
are usually made to render analysis tractable:
phase-coherent approximation in which the waves
assumed to be monochromatic and phase relation
are significant to the physics, and the random-ph
approximation (RPA) in which phase is irrelevant a
is averaged over [1–8]. The transition between th
two key regimes is the focus of this Letter. The res
are relevant both to three-wave interactions and to
wider question of nonlinear coupled oscillator system
physics, biology, chemistry, and medicine [1–13].

For waves of bandwidthDv (defined here to be th
half-width of the spectrum), a number of authors h
obtained the qualitative criterionTDv ¿ 1 for the ap-
plicability of the RPA, whereT is a characteristic non
linear interaction time (e.g., a nonlinear growth time
period of oscillation); the reverse inequality justifies u
of a phase-coherent analysis [1,2,5–8]. Subsequent
was consistent with this prediction [1,5–7]. Numer
showed that the variance of the relative phase of
modes rapidly approached its RPA value forTDv ¿ 1
[1]. Also, projection-operator methods enabled appr
mate evolution equations to be derived for moderateDv

[5,7], showing a smooth decrease of coherence with
creasingDv. Similarly, analyses of three-wave instab
ities in plasmas imply a steady reduction of cohere
with increasingDv, at least when one of the modes is e
ergetically dominant [6]. However, these analyses w
inconclusive as to the nature of the transition in the lo
time limit: Early numerical work was restricted by t
available computing power, approximations inheren
the projection technique do not permit largeDv to be
treated, and instability analyses did not consider long t
interactions.

In this Letter, we show analytically and numerica
that the breakdown of coherence of three-wave interac
0031-9007y96y77(13)y2698(4)$10.00
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can occursuddenlyvia a transition akin to first-order
thermodynamic phase transitions. This sudden transit
is completely unexpected and contrary to expectatio
based on the existing literature, which contains no hint
such behavior. Below a critical bandwidthDvc, exchange
of energy between the waves remains coherent indefinite
but the degree of coherence decreases somewhat w
increasingDv; for Dv . Dvc, coherence decays after a
initial transient. In addition to showing the existence of
transition, we calculateDvc, explore its dependence on
various parameters, and study the behavior of observab
asDv is varied.

Our analysis begins with the equations for the cohere
decay of a wave 0 into waves 1 and 2, all with th
same sign of energy (implicitly incorporating the invers
process of coalescence) [1,11]:

dA0ydt ­ A1A2 sinQ , (1)

dA1,2ydt ­ 2A0A2,1 sinQ , (2)

dQ

dt
­ V 2

µ
A0A2

A1
1

A0A1

A2
2

A1A2

A0

∂
cosQ , (3)

whereAn andvn denote the real amplitude and frequenc
of the nth wave,V ­ v0 2 v1 2 v2 is the frequency
mismatch,Q ­ u0 2 u1 2 u2 in terms of the individual
phasesun, and damping is neglected. (Note that wav
dispersion linksV and Dv to the wave-number mis-
match and spread, more often used in nonlinear optic
Neutrally stable periodic solutions of (1)–(3) in terms o
elliptic functions exist [1,11]; forV ­ 0 these satisfy
A0A1A2 cosQ ­ A0s0dA1s0dA2s0d cosQs0d ; G where
the argument 0 denotes an initial value.

When a finite bandwidth is introduced, one can approx
mate the resulting spectra by combs ofN modes of am-
plitudes Anj and frequenciesvnj, with n ­ 0, 1, 2 and
j ­ 1, . . . , N. This yields thediscrete triad equations,
suitable for numerical use, in which coherent interactio
between every triad of modes are followed, then summ
to obtain the overall evolution of the spectra [1,5,7]:

dA0j

dt
­

1
N

X
k0l0

A1k0 A2l0 sinQjk0l0 , (4)
© 1996 The American Physical Society
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dQjkl

dt
­ Vjkl 2

1
N

√ X
j0l0

A0j0 A2l0

A1k
cosQj0kl0

1
X
j0k0

A0j0A1k0

A2l
cosQj0k0l

2
X
k0l0

A1k0 A2l0

A0j
cosQjk0l0

!
, (5)

with j, k, l ­ 1, . . . , N, Vjkl ­ v0j 2 v1k 2 v2l , and
with equations analogous to (4) forA1k andA2l.

Breakdown of coherence with increasing bandwi
can be studied using (4) and (5). We assume that
spectra are symmetric about central frequencies that
zero mismatchVjkl , and measure all frequencies in
comb relative to its center in what follows. The fir
modes to lose coherence will be those with the larg
offset frequenciesvnm from the center of their comb
(henceforth, the “outermost” modes). An estimate of
transition frequency at which coherence is lost can t
be obtained by treating the outermost modes as test m
that interact with coherent modes havingkvmnl ­ 0, but
have no effect on them. The resulting test mode equat
for a mode in comb 0 are

dA0T

dt
ø kGyA0l sinDQ0T , (6)

dDQ0T

dt
ø v0T 2

*
G

A2
0

+
1

*
G

A0

+
cosDQ0T

A0T
, (7)

where the subscriptnT denotes a test mode in thenth
comb, DQ0T is the phase of the test mode relative
the mean phase of its comb, some small terms have
neglected, and a mean-field interaction with the cohe
modes has been assumed (i.e., an average, denote
k· · ·l, is taken over their evolution).

Analytic solution of (6) and (7) for small oscilla
tions shows thatDQ0T is bounded forjv0T j , GkA22

0 l ;
Dv0c. Similar reasoning holds forn ­ 1, 2, so un-
bounded DQnT , and consequent loss of coherence
some modes, first occurs at the offset frequencyDvc ­
minhDvncj,

Dvc ø A0s0dA1s0dA2s0dj cosQs0dj minhkA22
n lj , (8)

with n ­ 0, 1, 2, and where the averages can be de
mined from the analytic solution of (1)–(3). This resu
also holds approximately for cases where some mo
have large fractional oscillations inkA2

nml1y2 (averaged
over modes, not time), provided the largest mode is
ergetically dominant and has only small oscillations.
general, however, the average quantities in (8) will
give a good estimate ofDvc when all modes have larg
fractional oscillations inkA2

nml1y2 and further analysis, in
cluding the effect of correlations, is necessary.

The above arguments yield an estimate of when
relative phaseDQnT of an outermost mode first becom
unbounded. Beyond this point, the interaction of t
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mode with the others will be seriously weakened, a
can be approximated using the RPA [1,10]. To sh
that coherence is then lost for the whole comb,
approximate each spectrum by a flat spectrum (i.e., w
equal mode amplitudes) of half-widthDv and treat the
modes as test modes. If the modes start in ph
but some lose coherence with the rest of their com
leaving fN of the N modes in the comb cohere
(those with the smallest offsetsvnT ), the number of
coherently interacting triads isfN2. This reduces the
critical frequency by a factor off from the estimate (8
because fewer modes contribute coherently to the sum
(4) and (5) (incoherent contributions average to zero).
a flat spectrum,fDvc is also the critical offset frequenc
for the outermost of the remainingfN coherent modes
to lose coherence. Hence once the outermost mod
the comb decoheres, successive modes also decohe
effect that is enhanced by the increasing noise aris
from the incoherent modes. Thus for relatively fl
spectra, we predict a rapid transition to a state in wh
no modes in the comb act coherently; near this end po
modes in the other combs also lose coherence.

An order parameter measuring the degree of cohere
of three-wave interactions is the third-order correlator

Ec ­ 2
X
jkl

A0jA1kA2l cosQjkl . (9)

ForDv , Dvc, we can estimatekEcl crudely by approxi-
mating all the modes as independent test modes of con
amplitude and averaging (9) over time and modes.
Qijks0d ­ 0, this giveskEcl ø 2

Q2
n­0 Ans0dkcossQnT dl.

Before coherence is lost, analytic solution of (6) and (
or their analogs forn ­ 1, 2, implies the angular am
plitude cn of a test mode in thenth comb is cn ø
sin21svnT yDvncd. If we average over time, assuming ha
monic oscillations of the test-mode angle, and over
modes in each comb, we find

kEcsDvdl
kEcs0dl

ø 1 2 b

2X
n­0

µ
Dv

Dvnc

∂2

, (10)

with b ­ 1y12; inclusion of amplitude variations an
correlations in an improved analysis would changeb,
but not the quadratic form of (10), which is require
by symmetry. ForDv . Dvc, we find analytically
kEcsDvdlykEcs0dl ! 0 asN ! `, assuming the terms i
(9) add incoherently. We thus predict a discontinuo
first-order change inkEcl at the transition, provided an
more general analysis yieldsb & 1y3.

The reduction in coherence implies a reduction in
nonlinear coupling terms in (4) and (5) relative to tho
in (1)–(3) and, hence, an increase in the periodT of the
oscillations of the system, with

kEcsDvdlTsDvd ø kEcs0dlTs0d . (11)
2699
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For Dv . Dvc, modes that start in phase will eve
tually lose coherence after a timeTb of the same orde
as the coherence time. ForDv ¿ Dvc, Tb , sDvd21

since nonlinear effects are small. NearDvc a critical ex-
ponenta should exist if a phase transition occurs [1
with

Tb , sDv 2 Dvcd2a. (12)

To test the above predictions, we numerically solv
the discrete triad equations using a Bulirsch-Stoer i
grator [15] and flat initial spectra with modes all initial
in phase in each comb. Analytically conserved qua
ties were tracked to monitor the accuracy of integrat
and the output was checked against analytic results
Dv ­ 0 with and without a mismatchV [1,11].

Extensive sets of runs confirm the predicted existe
of a sudden transition from coherence to incohere
as Dv increases. Figure 1 shows a typical time se
of kA2

njl1y2 for Dv . Dvc, A0s0d ­ 0.8, A1s0d ­ 0.3,
and A2s0d ­ 0.1. Initial rapid, near-periodic coheren
oscillations break down after a timeTb ­ 2 6 0.5, after
which the amplitudes fluctuate about their random-ph
values [1,8]. ForDv , Dvc, the coherent oscillation
continue, apparently indefinitely, but reduced in amplitu
relative to theDv ­ 0 case.

Figure 2 shows numerical values ofDvc vs results
from (8) for 14 sets of initial conditions withQjkls0d ­ 0.
The numerical results scatter around the predicted
with small-amplitude cases always agreeing well.

Equation (8) implies Dvc ~ j cosQs0dj. Figure 3
shows numerical and analytic values ofDvc vs
cosQs0d for A0s0d ­ 0.5, A1s0d ­ 1, and A2s0d ­ 2,
showing good agreement for0.1 & cosQs0d # 1. As
cosQs0d ! 0, coherent oscillations become large, w
Q ranging from nearly2py2 to nearly py2 even for
Dv ­ 0. Our averaging procedures break down in t
limit and Dvc seems to exceed our estimate, poss
because fluctuations shift the system to a more st
nearby configuration.

FIG. 1. Time series ofkA2
nml1y2 for Dv . Dvc, n ­ 0, 1, 2.

The curves are most easily distinguished at right.
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Numerical results forkEcl, T , and kEclT are shown
in Fig. 4 as functions ofDvyDvc for A0s0d ­ A1s0d ­
0.9, A2s0d ­ 2.0, andQjkls0d ­ 0, giving &10% oscilla-
tions for Dv ­ 0. Equation (11) is accurate forDv &

0.5Dvc, with kEclT falling by only 10% beyond this
point. The form (10) adequately approximateskEcl and
[via (11)] T , but the numerical valueb ø 0.25 is larger
than the crude estimateb ­ 1y12 above. BeyondDvc,
kEcl is found to drop to a lower value (not shown), whic
decreases monotonically withN, as predicted, whereas th
values shown forDv , Dvc are almost independent o
N for N ­ 7 2 21. For the system of Fig. 1, for ex
ample,kEclykEcs0dl drops sharply from 0.67 to,0.2 for
N ­ 21, consistent with the predicted first-order pha
transition. ForDv . Dvc, there are no stable periodi
oscillations, in agreement with our theory, soT is unde-
fined. We have investigated the effective coherence t
Tb for Dv . Dvc in two different systems, finding re
sults consistent with a phase transition with critical exp
nenta ­ 1.0 6 0.2 in (12) in both cases.

The above analytical and numerical results demo
strate the existence of a previously unexpected first-or
phase transition between coherent and incoherent th
wave interactions as the bandwidth is increased. O
estimates ofDvc are reasonably accurate, except f
systems with large-amplitude oscillations, where cor
lations must be better accounted for. After multipl
ing by the coherent oscillation periodT , py maxhAnj,
we find a form similar to those of previous analys
(which, however, assumed a smooth transition):TDvc ,
pk

Q2
n­0fAny maxhAnjgl. This transition is different from

the smooth reduction in oscillation amplitude with in
creasingV in (3), discussed previously [1,3,11]; in tha
case, small coherent oscillations remain forTV ¿ 1. We
argue that systems with centrally peaked spectra will te
to have higher transition frequencies than ones with
spectra, because of their smaller typical frequency offs
A smooth transition is even conceivable if the peak is
sharp that its core remains coherent even when the o

FIG. 2. Numerical vs predicted (solid line) values ofDvc for
various cases withQs0d ­ 0. Fractional oscillation amplitudes
under 50% are indicated by squares, others by triangles.
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FIG. 3. Numerical values ofDvcfQs0dgyDvcs0d vs cosQs0d,
with all modes initially in phase in each comb. Theoreti
values are given by the line.

modes decohere, a case existing in some quite diffe
systems of coupled oscillators [10].

In practical terms, the existence of a sharp breakd
of coherence for relatively flat spectra implies that,
many semiquantitative purposes, the coherent and
approximations are collectively adequate to treat the en
range of bandwidths; there is no broad transition regio
which neither is appropriate. Recognition of this po
is important in applications of wave-wave processes
plasmas and nonlinear optics. Arguments along the l
of those in this Letter imply thatN-wave interactions with
N . 3 can also exhibit a sudden loss of coherence as
bandwidth is increased.

Nonlinear optical systems present perhaps the bes
portunities to test our predictions quantitatively. For
ample, frequency up-conversion via three-wave mixing
a nonlinear crystal leads to periodic “sloshing” of ene
between the input and output signals driven by an inte
pump [3,4,11]. The present work implies that long-te
sloshing will suddenly give way to random fluctuatio
above some critical bandwidth (or, equivalently, below
critical intensity), although there will be a coherent tra
sient if the initial conditions are coherent. Likewise, c

FIG. 4. Numerical values ofkEclykEcs0dl (squares),TyT s0d
(triangles), andkEclTykEcs0dlTs0d (diamonds) vsDvyDvc.
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herent interactions between modes trapped in a ca
filled with nonlinear material (e.g., plasma or nonline
crystal) should decohere suddenly if the bandwidth
ceeds a critical value.

Equations (4) and (5) can be viewed as evolution eq
tions for three distinct populations of nonlinearly coupl
oscillators whose members interact in triads, one fr
each population. Another nonlinear oscillator system
which a phase transition has been observed, despite its
ferent physics, is one in which every oscillator is iden
cal and is coupled to every other one. This system w
originally introduced to model coupled biological osc
lators (e.g., groups of luminous insects, neurons, car
cells, etc.) [9,10,13]. It has been shown to have asecond-
orderphase transition from coherence to incoherence.
present work shows that new types of phase transitions
occur if the oscillators are nonidentical and the form of t
nonlinear interactions is modified. Other types of pha
transitions have been seen recently in identical-oscilla
systems, depending on the forms of the couplings and s
tra [12]. This raises the possibility of similar variety her
depending on spectral structure.
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