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vercoming the Backreaction on Turbulent Motions in the Presence of Magnetic Field
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Standard magnetohydrodynamic theories, such as the mean field dynamo theory, have been
criticized when the backreaction of the magnetic field on turbulent motions is neglected. For the
dynamo, this backreaction has been argued to suppress the turbulent motions required for optima
mean field production. Here it is suggested that if the magnetic field is spatially intermittent, for
example, residing in flux tubes, the backreaction on turbulent flows may be significantly reduced.
[S0031-9007(96)01197-0]

PACS numbers: 52.30.–q, 47.65.+a, 91.25.Cw, 95.30.Qd
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The mean field dynamo (MFD), an elegant theoreti
mechanism that allows a large scale magnetic field to g
exponentially at the expense of shear and small scale
bulent energy, has been studied to explain the origin
magnetic fields in astrophysical bodies such as plan
stars, and galaxies [1–4]. The difficulties with dynam
physics highlight fundamental issues of magnetohydro
namics (MHD) that are still not well understood. In pa
ticular, the effect of magnetic fields on turbulent flows.

In principle, the MFD growth of a large scale magne
field in a differentially rotating system occurs as turbule
motions induce formation of magnetic loops from a se
field [1–3]. As a result of the coriolis and buoyan
forces, the turbulence is cyclonic; the loops in bo
hemispheres twist in the same direction, creating a la
scale loop of poloidal field. The turbulent diffusion
the outer portions of these mean field loops ensures
the net flux of mean field lying in the region of interest
nonvanishing [1]. Differential rotation shears the lar
scale poloidal field, generating a large scale toroi
field. The new field then incurs the same loop formi
process, providing the feedback for exponential grow
The strength of the field is limited by the availab
turbulent energy. Numerical simulations of “kinemati
dynamos in which the backreaction of the field growth
the turbulent eddies is neglected, can produce magn
topologies consistent with observations of stellar a
galactic magnetic fields [5,6].

In reality, the small scale, root mean squared (rms) fi
energy density grows much more rapidly than the m
field [1], violating the kinematic approximation. Thoug
for example, observations of the solar photosphere
the dispersed heavy element distribution in the Gal
indicate the presence of reasonably uninhibited turbu
motions amidst equipartition magnetic fields [1], theore
cal studies [7,8] suggest that the backreaction should
press these motions and thereby inhibit the dynamo.
first discussed by Piddington [9], the argument proce
as follows: As an eddy tries to displace a parcel of fl
threaded by a field loop in equipartition with the turbule
energy density, the loop acts as a rubber band, res
ing further motion and recoiling the parcel to its origi
0031-9007y96y77(13)y2694(4)$10.00
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Statistically, transport of material is significantly reduce
Simulations support this intuition by finding that an in
creasingly large fraction of plasma motions is locked in
oscillating modes rather than zero frequency (diffusiv
modes as the magnitude of the initial ordered field is
creased [8,10].

Here is suggested that turbulent motion may survive
backreaction if the magnetic field is concentrated in fl
tubes. Because the tubes’ Alfvén speeds can be la
than the eddy velocities, reconnection between tubes
be rapid. This would reduce the backreaction for
on the turbulent velocities. The diffusion and helici
coefficients of the MFD equation would be reduced fro
the kinematic theory only by the fraction of a typical tub
thickness which does not reconnect in an eddy turno
time. (In the special case for which the magnetic fie
is totally composed of topologically unlinked loops o
cells, interchange motions between the cells would not
restricted by magnetic forces, and reconnection would
be required for diffusive motions.)

First, the derivation of the dynamo helicity and diffu
sion coefficients is outlined and the specific role of t
kinematic approximation is highlighted. The stages of d
namo growth are discussed, and the formation and rol
flux tubes is then addressed. An estimate of the dyna
coefficients is given based on the physical ideas presen
Finally, a similar role of intermittency for star forming re
gions is mentioned.

Dynamo coefficients and interpretation of approxim
tions.—The magnetic field and velocity are taken to b
B ­ b 1 B andV ­ v 1 V, respectively, whereb and
v are fluctuating quantities with zero mean andB and
V are mean quantities. The Reynolds relations [11]
also required. These are≠t,xkKiHjl ­ k≠t,xsKiHjdl and
kKihjl ­ 0, whereKi ­ Ki 1 ki andHj ­ Hj 1 hj are
components of vector functions of positionx and timet,
the brackets indicate the mean value, and≠t,x is the deriva-
tive with respect tox or t. For ensemble averages, the
relations hold when the turbulence is correlated on ti
scales short relative to the variation time scales of the m
quantities. For the spatial average, defined bykKsx, tdl ­
jz j23

Rx1z

x2z Kss, td d3s, these relations hold when th
© 1996 The American Physical Society
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average is taken over a large enough scale, that is w
l ø jz j ø L, whereL , By=B is the scale of the mea
field variation andl , by=b , yy=y.

The induction equation derived from the nonrelativis
Maxwell equations is [1]

≠sB 1 bdy≠t ­ = 3 fsV 1 vd 3 sB 1 bdg
1 nM=2sB 1 bd , (1)

wherenM is the magnetic viscosity. Astrophysical ma
netic Reynolds numbers are large and the last term in
is unimportant on the energy containing eddy scales
destroying magnetic field energy (but it does provide d
sipation on the smaller scales allowing a turbulent casc
and is important locally at the intersections between
flux tubes.) Taking the average of (1), ignoring the l
term, gives the MFD equation

≠By≠t ­ = 3 fV 3 B 1 kv 3 blg . (2)

The turbulent electromotive force (TEMF) given b
kv 3 bl is written [2]

kv 3 bl ­ ãijBj 1 b̃ijk=jBk , (3)

where ãij is the helicity dynamo coefficient and̃bijk

is the turbulent diffusion dynamo coefficient. Und
the assumption of isotropic turbulence,ãij ­ dijã and
b̃ijk ­ eijkb̃.

Working in a frame for whichV ­ 0, subtracting (2)
from (1) gives

≠by≠t ­ = 3 sv 3 Bd 1 = 3 fv 3 b 2 kv 3 blg
1 b ? =V . (4)

Usually, for simplicity, the third and fourth terms of (4
are neglected straightaway, which is a procedure ca
the “first order smoothing” (FOS) [1,2] approximatio
Instead I will keep these terms and then show w
this approximation means. Plugging (4) into (3), t
dynamo coefficients become expansions of time-ord
exponential series [13] in powers oftcyted, wheretc is
the turbulence correlation time andted , lyy is the eddy
turnover time. Under the assumption of isotropy, tak
the first terms in the series gives the standard forms [1

ã ­ s21y3d
ø

vstd ?
Z t

0
dt0= 3 vst0d

¿
, (5)

b̃ ­ s1y3d
ø

vstd ?
Z t

0
dt0 vst0d

¿
. (6)

Nonvanishingã means nonvanishing helicity, essent
for mean field growth as described above. Thatb̃ acts
as a diffusion coefficient for the mean field is evide
from plugging (6) into the TEMF in (2). For spatial
homogeneous turbulence,̃b becomes the coefficient o
the diffusion term on the right side.

Note that dropping the higher order terms that led
(5) and (6) is essentially the equivalent of the FOS
The inclusion of higher order terms is an addition
complication which is extraneous to, and independ
hen
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of the focus on the backreaction in this paper: T
backreaction reflects the specific effect of the magn
field on the velocity, not the combination of velocities th
appear in the dynamo coefficients.

In the usual kinematic approximation,v is prescribed
independently ofb and B. This motivates the use o
(4) to eliminateb in (3). However, the functional form
of the dynamo coefficients are exactly valid even wh
v ­ vsb, Bd. The specificvsb, Bd will depend on the
application, but the field would always be inhibitive
turbulent motions. Note that because the time scale
growth of the small scale field is much shorter than t
of the mean field [1], the most important backreact
comes from the small scale field. This is the natu
interpretation of studies [7] which show effects of t
backreaction for values of the mean field much less t
equipartition with the turbulence.

Phases of dynamo growth and flux tube formation—
Observations of the Sun [14,15] and simulations of MH
turbulence in lowbave (; PpartyPmag where Ppart and
Pmag are the average particle and magnetic pressu
plasmas [16] indicate that the magnetic field tends
concentrate in flux tubes. Intermittency in magnetic fi
strength in the galactic interstellar medium is seen as
[17]. Determining the size of flux tubes and the role
bave will be addressed later, but how such intermitte
structures form is addressed first.

A working mean field dynamo would incur phas
given an initial seed [13]. In the first phase, turbule
energy stirs up the rms random magnetic field to equip
tition. In the second phase, in principle, the mean fi
also nears equipartition with the turbulence and/or sh
while the small scale field remains at or near equipartiti
In the third phase, the dynamo works to sustain the m
field. The backreaction is straightforwardly unimporta
only during the first phase which lasts for a time,ted.

Flux tubes can form in phase 1 and Ref. [18] is re
vant. There the evolution of a seed magnetic field in
mogeneous, isotropic turbulence is studied. An impor
result of [18] is that the field tends to concentrate loca
into flux tubes or ropes. The field grows only in a l
cal region when turbulence conspires to produce to pro
stretching, twisting, and folding [19]. Assuming that t
mean field is constant over an eddy turnover time sc
dBydt , dbydt so that the induction equation for the t
tal field can be used to explore the growth of the rand
field for phase 1. In Lagrangian form

dBiydt ­ Bi=iyj . (7)

As in [1], consider the initialBis0d to be aligned with
a line segmentdxis0d. Then at all later timesdxistd is
aligned with Bistd. Equation (8) then implies that th
length of a line segment parallel to the field satisfies

dlsx, tdydt ­ fsx, tdlsx, td , (8)

where fsx, td is a random function of the turbulen
velocities. Althoughklsx, tdl can be shown to increas
2695
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exponentially [1],lsx, td is equally likely to decrease o
increase at a positionx. Similarly the field would be
equally likely to increase or decrease there, and thu
natural spatial intermittency would result. The rms fie
in this picture grows nearly to equipartition with th
volume averaged turbulent flow energy density, wh
likely happens in only of order a time,ted [1] for a
modest seed field. The backreaction is most inhibit
after equipartition ensues, and this is therefore the cas
interest for this paper.

The growth of field in a particular localized regio
results from stretching and dragging of seed flux by
turbulent flow. As the bundle or tube is dragged favora
for exponential growth, material will be inhibited from
seeping into the tube from the ends since there the fie
weak, and the force on particles opposes the directio
field line convergence [20]. The amount of mass in a tu
should thus remain the same, or decrease. Assuming
it remains the same, incompressibility implies a const
volume. Thus the cross sectional area of the tubepr2

t ~

l21, and from flux freezingBt ~ l. The edge of the tube
is a current sheet, with no flow normal to it, and th
pressure is balanced across it:

bt 1 1 ­ sbext 1 1d sbextyBt d2, (9)

where bt ; 8pPpart,tyB2
t and bext ; 8pPpart,extyB2

ext
with Bext is of order the initial seed field,Ppart,t is the
tube particle pressure, andPpart,ext is the external particle
pressure. Equation (9) shows thatbt ø bext sinceBt ¿

Bext in equilibrium.
Since the tube pressure is balanced by the exte

pressure, the magnetic energy density can be higher
the turbulent energy density at the tube locations w
bt is small, and then the volume filling fraction o
the tubes would necessarily be small. To see this n
that the average magnetic and particle pressures sa
Pmag , fPmag,t andPpart , s1 2 fdPpart,ext, wheref is
the fraction of volume occupied by magnetic flux tub
Pmag,t is the magnetic pressure in the flux tubes, a
Ppart,ext is the particle pressure external to the tub
Thus bave , fs1 2 fdyfgPpart,extyPmag,t ­ s1 1 btd 3

s1 2 fdyf. Thusfys1 2 fd ­ s1 1 btdybave.
Each energy containing (outer) scale eddy of wa

length l stretches a tube to lengthl and radiusrt . The
thickness of each tube,rt , can be estimated by balancin
the magnetic and turbulent eddy drag forces [12,21]. T
gives

sB2
t y4prcdpr2

t , Cdrexty
2
l 2rt , (10)

where Bt is the magnitude of the field in the flux tub
rext is the density outside the flux tube, andCd is the
coefficient of turbulent drag. Sincel is a wavelength,
the radius of curvaturerc can be estimated byly4
when the tube maximally responds to the turbulence.
equilibrium, B2

t y8p , Ppart,exts1 1 btd21, so that (10)
gives, for1 2 f , 1,

rtyl ­ CdGM2
l s1 1 btdy4p , 0.06M2

l s1 1 btd , (11)
2696
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where G is the adiabatic index andM2
l ; y

2
l y

sGPextyrextd , b21
ave , fs1 1 btd21, when equipar-

tition between turbulent and magnetic energy is assum
For the last similarity in (11),Cd was estimated from
the “drag” crisis [21] which reducesCd , 1 at large
turbulent Reynolds numberRl. Assuming Rl * 1000,
Cd , 0.4.

Role of flux tubes.—Once dynamo growth enters th
second and third phases, the backreaction of the field
the turbulent eddy becomes important with respect to
net transport of magnetic field. In particular, the rap
growth in magnetic tension inhibits it from traveling mu
more than,l. Unless reconnection with another tube c
happen before the tension response, the tube will r
back. Both the diffusion and helicity coefficients requ
inhibited motions of the turbulent velocity. For examp
inhibited turbulent diffusion would mean that an ink ma
on some tube statistically incurs zero net displacem
from its initial location (i.e., oscillating motions) instead
increasing its separation from the initial point with time

No inhibition of motions would mean that a tube cou
reconnect with a partner in the time it takes to move
distancert , namely a timertyyl. After a reconnection
the tube would change one of its ends, and would t
move in a different random direction from whence
came, before impacting another tube. The process w
continue, enabling, for example, an effective diffusio
The reconnection time scale isrtFsRM,tdyyA,t, where
FsRM,td is the function of the magnetic Reynolds numb
associated with the length scalert , and yA,t is the tube
Alfvén speed. There would be no inhibition to turbule
motions when

yA,tyy1 , M21
l s1 1 btd21y2

, b1y2
ave ys1 1 btd21y2 . FsRM,td , (12)

where the second similarity follows from equipartitio
For Sweet-Parker (SP) reconnection,FsRM,td , R

1y2
M,t

while for Petschek (PK) reconnectionFsRM,td , ln RM,t

[1]. Note that RM,t , srtyldRM,l ­ 0.06RM,lM
2
l s1 1

btd , 0.06RM,ls1 1 btdybave from [11], whereRM,l is
the standard magnetic Reynolds number associated
l. For the more stringent SP case, (12) then beco
baveys1 1 btd . 0.25R

1y2
M,l , which is likely satisfied in

or above the solar convection zone of the Sun [1]. N
that if the field were diffuse and not concentrated in fl
tubes, thenbave , bt and the inequality in (12) could
not be satisfied.

Note that (11) and the line following it imply tha
rtyL & f. But each tube fills a fraction,r2

t yL2 & f2

of an eddy volume. Thus there are*1yf tubes per eddy
volume when1 2 f , 1.

Application to the dynamo coefficients.—The simplest
way to describe the effect of flux tubes is to say that f
reconnection significantly reduces the backreaction te
of the Lorentz force on the velocity field in the equati
of motion. Thus the velocities in the dynamo coefficie
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would approach their kinematic values the more effici
the reconnection. In the presence of equipartition m
netic flux tubes, the reduction from their kinematic lim
would be determined by the fraction of tube Lorentz fo
that contributes to the back reaction, namely the frac
that cannot reconnect duringted. Equivalently, using (13
and noting that dynamo coefficients depend on two p
ers of the velocity, we have

ãbr , Minfãkin, baves1 1 btd21ãkinyFsRM,td2g (13)

and

b̃br , Minfb̃kin, baves1 1 btd21b̃kinyFsRM,td2g , (14)

where the subscripts kin and br refer to the kinem
values and the values including the backreaction, res
tively. The right sides of (13) and (14) are the minima
the quantities brackets.

It can be useful to think of the diffusion coefficie
b̃br , as measuring the fraction of eddy energy per m
contained in motions which random walk rather th
oscillate. For a given amount of total eddy energy
stronger backreaction means a higher fraction of non
frequency modes [8]. To see this, note that when the
locity is given by a stationary random field,kvstd ? vst 1

tdl ­ Cstd. Then the Fourier transform givesCsvd ­R`

2` dt expfivtg kvstd ? vst 1 tdl. The zero frequenc
component by comparison with (6) then satisfiesb̃ ­
s1y4dC̃s0d, where C̃s0d is the Fourier transform of th
velocity correlation (i.e., the power spectrum of the
locity field) evaluated at zero frequency. The amoun
eddy energy per mass in the zero frequency modes
the fraction contributing to the diffusion coefficient) is t
nonzero contribution to the diffusion coefficient.

Rapid reconnection resulting from a concentration
magnetic fields into lowbt regions may overcome th
backreaction on turbulent motions. Diffusion of t
mean field and helicity would be enabled not necessa
by removing a large amount of field energy on t
outer scale, but by allowing individual flux tubes
avoid recoiling back to their points of origin. The mo
important motions would be enabled on the energetic
dominant scales. However, a steady forcing of
turbulence on these outer scales would give a cas
to small scales as in, e.g., [22], maintaining a cons
magnetic and turbulent energy density on the outer sc
The irreversible dissipation would occur on the smal
scales. Equations (13) and (14) apply most effectiv
when bave ¿ Maxf1, btg. The value ofbt determines
how effectively flux tubes evacuate and there may b
nonlinear dependence onbave. Actual values will have to
await future simulations.

If the shear energy were much larger than the turbu
energy and could be dumped into the field fast enough
magnetic energy may exceed the turbulent energy. T
the first similarity in the line following (11) would becom
& and the inequality condition between the last terms
(12) would be stricter than required, since the third te
would be& the first two.
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Finally, note that a similar rapid reconnection betwe
evacuated tubes in lowbave star forming molecular cloud
regions of the ISM may remove material from field lin
and initiate collapse [23]. In an initially uniformbave ø
1 plasma, nonlinear compressional Alfvén waves clu
material on the scale of the energy containing eddie
density enhancements of order1ybave. The Alfvén speed
associated with the sparse regions is large, allowing ra
reconnection, closed loops formation, and dissipat
Thus intermittency can also lead to fast reconnection
plasmas withbave ø 1.

Thanks to G. Field for discussion.
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