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Overcoming the Backreaction on Turbulent Motions in the Presence of Magnetic Fields
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Standard magnetohydrodynamic theories, such as the mean field dynamo theory, have been
criticized when the backreaction of the magnetic field on turbulent motions is neglected. For the
dynamo, this backreaction has been argued to suppress the turbulent motions required for optimal
mean field production. Here it is suggested that if the magnetic field is spatially intermittent, for
example, residing in flux tubes, the backreaction on turbulent flows may be significantly reduced.
[S0031-9007(96)01197-0]

PACS numbers: 52.30.—q, 47.65.+a, 91.25.Cw, 95.30.Qd

The mean field dynamo (MFD), an elegant theoreticalStatistically, transport of material is significantly reduced.
mechanism that allows a large scale magnetic field to groimulations support this intuition by finding that an in-
exponentially at the expense of shear and small scale tucreasingly large fraction of plasma motions is locked into
bulent energy, has been studied to explain the origin obscillating modes rather than zero frequency (diffusive)
magnetic fields in astrophysical bodies such as planetsnodes as the magnitude of the initial ordered field is in-
stars, and galaxies [1-4]. The difficulties with dynamocreased [8,10].
physics highlight fundamental issues of magnetohydrody- Here is suggested that turbulent motion may survive the
namics (MHD) that are still not well understood. In par- backreaction if the magnetic field is concentrated in flux
ticular, the effect of magnetic fields on turbulent flows. tubes. Because the tubes’ Alfvén speeds can be larger

In principle, the MFD growth of a large scale magneticthan the eddy velocities, reconnection between tubes can
field in a differentially rotating system occurs as turbulentbe rapid. This would reduce the backreaction force
motions induce formation of magnetic loops from a seedn the turbulent velocities. The diffusion and helicity
field [1-3]. As a result of the coriolis and buoyancy coefficients of the MFD equation would be reduced from
forces, the turbulence is cyclonic; the loops in boththe kinematic theory only by the fraction of a typical tube
hemispheres twist in the same direction, creating a largthickness which does not reconnect in an eddy turnover
scale loop of poloidal field. The turbulent diffusion of time. (In the special case for which the magnetic field
the outer portions of these mean field loops ensures thé totally composed of topologically unlinked loops or
the net flux of mean field lying in the region of interest is cells, interchange motions between the cells would not be
nonvanishing [1]. Differential rotation shears the largerestricted by magnetic forces, and reconnection would not
scale poloidal field, generating a large scale toroidabe required for diffusive motions.)
field. The new field then incurs the same loop forming First, the derivation of the dynamo helicity and diffu-
process, providing the feedback for exponential growthsion coefficients is outlined and the specific role of the
The strength of the field is limited by the available kinematic approximation is highlighted. The stages of dy-
turbulent energy. Numerical simulations of “kinematic” namo growth are discussed, and the formation and role of
dynamos in which the backreaction of the field growth onflux tubes is then addressed. An estimate of the dynamo
the turbulent eddies is neglected, can produce magnetmefficients is given based on the physical ideas presented.
topologies consistent with observations of stellar and-inally, a similar role of intermittency for star forming re-
galactic magnetic fields [5,6]. gions is mentioned.

In reality, the small scale, root mean squared (rms) field Dynamo coefficients and interpretation of approxima-
energy density grows much more rapidly than the meations—The magnetic field and velocity are taken to be
field [1], violating the kinematic approximation. Though, B =b + B andV = v + V, respectively, wherd and
for example, observations of the solar photosphere and are fluctuating quantities with zero mean aBdand
the dispersed heavy element distribution in the GalaxyV are mean quantities. The Reynolds relations [11] are
indicate the presence of reasonably uninhibited turbulerdlso required. These aw .(K;H;) = (9,.(K;H,)) and
motions amidst equipartition magnetic fields [1], theoreti-(K;/;) = 0, whereK; = K; + k; andH; = H; + h; are
cal studies [7,8] suggest that the backreaction should sumomponents of vector functions of posmcmand tlmet
press these motions and thereby inhibit the dynamo. Athe brackets indicate the mean value, apgdis the deriva-
first discussed by Piddington [9], the argument proceedtve with respect tax or . For ensemble averages, these
as follows: As an eddy tries to displace a parcel of fluidrelations hold when the turbulence is correlated on time
threaded by a field loop in equipartition with the turbulentscales short relative to the variation time scales of the mean
energy density, the loop acts as a rubber band, restrlchantltles For the spatial average, definedKyx, 1)) =
ing further motion and recoiling the parcel to its origin. || 3 fx gK(s t)d’s, these relations hold when the
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average is taken over a large enough scale, that is whest the focus on the backreaction in this paper: The
| < || < L, whereL ~ B/VB is the scale of the mean backreaction reflects the specific effect of the magnetic

field variation and ~ 5/Vb ~ v/Vuv. field on the velocity, not the combination of velocities that
The induction equation derived from the nonrelativisticappear in the dynamo coefficients.
Maxwell equations is [1] In the usual kinematic approximatiom, is prescribed
AB 4+ b)/or =V X[(V+v)X(@B+b mdepen_de_ntly oﬂp and B. This motivates .the use of
( )/ L )= V) XA ] (4) to eliminateb in (3). However, the functional forms
+ vuV°(B + b), (1) of the dynamo coefficients are exactly valid even when

where vy, is the magnetic viscosity. Astrophysical mag-v = v(b,B). The specificv(b, B) will depend on the
netic Reynolds numbers are large and the last term in (13pplication, but the field would always be inhibitive to
is unimportant on the energy containing eddy scales foturbulent motions. Note that because the time scale for
destroying magnetic field energy (but it does provide disgrowth of the small scale field is much shorter than that
sipation on the smaller scales allowing a turbulent cascadef the mean field [1], the most important backreaction
and is important locally at the intersections between thircomes from the small scale field. This is the natural
flux tubes.) Taking the average of (1), ignoring the lastinterpretation of studies [7] which show effects of the

term, gives the MFD equation backreaction for values of the mean field much less than
=, N — equipartition with the turbulence.
0B/or = VX[V X B + (v X b)]. (2) Phases of dynamo growth and flux tube formatien.
The turbulent electromotive force (TEMF) given by Observations of the Sun [14,15] and simulations of MHD
(v X b) is written [2] turbulence in lowBave (= Ppart/Pmag Where Pp, and
(v X b) = &;B; + BiuV,By. 3) Pm,, are the average particle and magnetic pressures)

. plasmas [16] indicate that the magnetic field tends to
where &;; is the helicity dynamo coefficient an8;x  concentrate in flux tubes. Intermittency in magnetic field
is the turbulent diffusion dynamo coefficient. Under strength in the galactic interstellar medium is seen as well
the assumption of isotropic turbulence;; = 6;;& and  [17]. Determining the size of flux tubes and the role of

Bijk = €ijiB. o Bave Will be addressed later, but how such intermittent
Working in a frame for whichV = 0, subtracting (2) structures form is addressed first.

from (1) gives A working mean field dynamo would incur phases
9b/at =V X (v X B) + VX [v X b — (v X b)] given an initial seed [13]. In the first phase, turbulent

— energy stirs up the rms random magnetic field to equipar-
+b-VV. (4)  tition. In the second phase, in principle, the mean field
Usually, for simplicity, the third and fourth terms of (4) also nears equipartition with the turbulence and/or shear
are neglected straightaway, which is a procedure calledhile the small scale field remains at or near equipartition.
the “first order smoothing” (FOS) [1,2] approximation. In the third phase, the dynamo works to sustain the mean
Instead | will keep these terms and then show whafield. The backreaction is straightforwardly unimportant
this approximation means. Plugging (4) into (3), theonly during the first phase which lasts for a timereq.
dynamo coefficients become expansions of time-ordered Flux tubes can form in phase 1 and Ref. [18] is rele-
exponential series [13] in powers @f/7.q, Wherer. is  vant. There the evolution of a seed magnetic field in ho-
the turbulence correlation time amgy ~ /v is the eddy mogeneous, isotropic turbulence is studied. An important
turnover time. Under the assumption of isotropy, takingresult of [18] is that the field tends to concentrate locally
the first terms in the series gives the standard forms [1,2]into flux tubes or ropes. The field grows only in a lo-
p cal region when turbulence conspires to produce to proper
a@ = (—1/3) <V(t) . [ dt'Vv x V(t/)>, (5) stretching, twisting, and folding [19]. Assuming that the
0 mean field is constant over an eddy turnover time scale,
' dB/dt ~ db/dt so that the induction equation for the to-
B = (1/3) <v(t) . ] dt’v(t’)>. (6) tal field can be used to explore the growth of the random
0 field for phase 1. In Lagrangian form
Nonvanishinga@ means nonvanishing helicity, essential .
for mean field growth as described above. Tancts dBi/dt = BiViv;. (7)
as a diffusion coefficient for the mean field is evidentAs in [1], consider the initialB;(0) to be aligned with
from plugging (6) into the TEMF in (2). For spatially a line segmen®x;(0). Then at all later time®x;(z) is
homogeneous turbulenc@ becomes the coefficient of aligned with B;(r). Equation (8) then implies that the
the diffusion term on the right side. length of a line segment parallel to the field satisfies
Note that dropping the higher order terms that led to _
(5) and (6) is essentially the equivalent of the FOSA. di(x,)/dt = flx, )l(x,1), (8)
The inclusion of higher order terms is an additionalwhere f(x,7) is a random function of the turbulent
complication which is extraneous to, and independenvelocities. Although({l(x,t)) can be shown to increase
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exponentially [1],/(x, ) is equally likely to decrease or where T' is the adiabatic index andM} = v}/
increase at a position. Similarly the field would be (I Pey/pext) ~ Bk ~ f(1 + B,)7', when equipar-
equally likely to increase or decrease there, and thus #ition between turbulent and magnetic energy is assumed.
natural spatial intermittency would result. The rms fieldFor the last similarity in (11),C, was estimated from
in this picture grows nearly to equipartition with the the “drag” crisis [21] which reduce€; < 1 at large
volume averaged turbulent flow energy density, whichturbulent Reynolds numbeR;. AssumingR; = 1000,
likely happens in only of order a time-74 [1] fora Cy; ~ 0.4.
modest seed field. The backreaction is most inhibitive Role of flux tubes—Once dynamo growth enters the
after equipartition ensues, and this is therefore the case gkcond and third phases, the backreaction of the field on
interest for this paper. the turbulent eddy becomes important with respect to the
The growth of field in a particular localized region net transport of magnetic field. In particular, the rapid
results from stretching and dragging of seed flux by agrowth in magnetic tension inhibits it from traveling much
turbulent flow. As the bundle or tube is dragged favorablymore than~/. Unless reconnection with another tube can
for exponential growth, material will be inhibited from happen before the tension response, the tube will react
seeping into the tube from the ends since there the field isack. Both the diffusion and helicity coefficients require
weak, and the force on particles opposes the direction dhhibited motions of the turbulent velocity. For example,
field line convergence [20]. The amount of mass in a tubénhibited turbulent diffusion would mean that an ink mark
should thus remain the same, or decrease. Assuming thah some tube statistically incurs zero net displacement
it remains the same, incompressibility implies a constanfrom its initial location (i.e., oscillating motions) instead of
volume. Thus the cross sectional area of the tulsg «  increasing its separation from the initial point with time.
[71, and from flux freezing3, « [. The edge of the tube  No inhibition of motions would mean that a tube could
is a current sheet, with no flow normal to it, and thusreconnect with a partner in the time it takes to move a
pressure is balanced across it: distancer,, namely a timer,/v,. After a reconnection,
- 2 the tube would change one of its ends, and would then
Bt 1= (Bo + 1) (Bext/ B, ®)  move in a different random direction from whence it
where B, = 87 Ppar,/B; and Bext = 87 Ppanext/Bexe  came, before impacting another tube. The process would
with Bey is of order the initial seed fieldPp.., is the  continue, enabling, for example, an effective diffusion.
tube particle pressure, am}..ox: is the external particle The reconnection time scale isF(Ry.,)/va,, Where
pressure. Equation (9) shows thit < Bex sinceB; > f(R,,,) is the function of the magnetic Reynolds number
Bex, in equilibrium. associated with the length scatg and vy, is the tube

Since the tube pressure is balanced by the externa|ifvén speed. There would be no inhibition to turbulent
pressure, the magnetic energy density can be higher thaRotions when

the turbulent energy density at the tube locations when

B, is small, and then the volume filling fraction of vad/vi ~ ML+ B2

the tubes would necessarily be small. To see this note . pl2 —-1/2

that the average magneticyand particle pressures satisfy Bawe/(1 + B > FRu.), (12)
Prag ~ fPmag: andPpu ~ (1 — f)Pparext, Wheref is  where the second similarity follows from equipartition.
the fraction of volume occupied by magnetic flux tubes,For Sweet-Parker (SP) reconnectiof(Ry;,) ~ R,{M
Pmag, IS the magnetic pressure in the flux tubes, andwhile for Petschek (PK) reconnectidi(Ry ;) ~ In Ry,
Ppariext IS the particle pressure external to the tubes[1]. Note that Ry, ~ (r;/I)Ry; = ().()6RM’1M12(1 +
Thus Bave ~ [(1 - f)/f]Ppart,ext/Pmag,t = (1 + :81) X ﬂr) ~ 0.06RM,1(1 + ,Bt)/Bave from [11], WhereRM,, is

(1 = H/f. Thusf/(1 = f) = (1 + B1)/Bave- the standard magnetic Reynolds number associated with
Each energy containing (outer) scale eddy of wavei. For the more string/(gnt SP case, (12) then becomes

length / stretches a tube to lengthand radiusr,. The g /(1 + B,) > 0.25R,,;, which is likely satisfied in
thickness of each tube;, can be estimated by balancing or above the solar convection zone of the Sun [1]. Note
the magnetic and turbulent eddy drag forces [12,21]. Thighat if the field were diffuse and not concentrated in flux
gives tubes, theng,,. ~ B; and the inequality in (12) could
(B> /4mrre)mr? ~ Capexivi2r (10)  not be satisfied.

Note that (11) and the line following it imply that
r/L = f. But each tube fills a fraction-r2/L* < f?
of an eddy volume. Thus there axel/f tubes per eddy
volume whenl — f ~ 1.

Application to the dynamo coefficientsThe simplest
L > - Ir?/vay to describe the effect of flux tubes is to say that fast
equmbnum, B//8T ~ Ppaext(1 + B)7", s0 that (10) reconnection significantly reduces the backreaction terms
gives, forl — f ~ 1, of the Lorentz force on the velocity field in the equation

ri/l = CqUM*(1 + B,)/4m ~ 0.06M?>(1 + B,), (11) of motion. Thus the velocities in the dynamo coefficients
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where B, is the magnitude of the field in the flux tube,
pext 1S the density outside the flux tube, adt} is the
coefficient of turbulent drag. Sinckis a wavelength,
the radius of curvaturer, can be estimated by/4
when the tube maximally responds to the turbulence.
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would approach their kinematic values the more efficient Finally, note that a similar rapid reconnection between
the reconnection. In the presence of equipartition magevacuated tubes in loy8,,. star forming molecular cloud
netic flux tubes, the reduction from their kinematic limit regions of the ISM may remove material from field lines
would be determined by the fraction of tube Lorentz forceand initiate collapse [23]. In an initially uniform,,. <<
that contributes to the back reaction, namely the fraction plasma, nonlinear compressional Alfvén waves clump
that cannot reconnect duringy. Equivalently, using (13) material on the scale of the energy containing eddies to
and noting that dynamo coefficients depend on two poweéensity enhancements of ordetB.,.. The Alfvén speed
ers of the velocity, we have associated with the sparse regions is large, allowing rapid

&b ~ Min[@in, Bave(1 + Br) '@wn/F(Ry,)?] (13) reconnection, closed loops formation, and dissipation.
Thus intermittency can also lead to fast reconnection in
- - . plasmas with3,,. < 1.
Bor ~ Min[Biin, Bave(1 + B1) ™' Brin/F(Ry.1)*1, (14) " Thanks to G. Field for discussion.
where the subscripts kin and br refer to the kinematic
values and the values including the backreaction, respec-
tively. The right sides of (13) and (14) are the minima of
the quantities brackets. . o
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