
VOLUME 77, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JULY 1996

-UIB),
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We give a statistical characterization of states with nonzero winding number in the phase turbulence
(PT) regime of the one-dimensional complex Ginzburg-Landau equation. We find that states with
winding numbers larger than critical ones are unstable in the sense that they decay to states with
smaller winding numbers. The transition from phase to defect turbulence is interpreted as an ergodicity
breaking transition which occurs when the range of stable winding numbers vanishes. Asymptotically
stable states which are not spatiotemporally chaotic are described within the PT regime of a nonzero
winding number. [S0031-9007(96)00561-3]
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Spatiotemporal complex dynamics [1,2] is one of t
present focuses of research in nonlinear phenomena. M
effort has been devoted to the characterization of differ
dynamical phases and transitions between them for m
equations such as the complex Ginzburg-Landau eq
tion (CGLE) [1,3–11]. One of the main questions drivin
these studies is whether concepts brought from statis
mechanics can be useful for describing complex none
librium systems [3,12]. In this paper we give a characte
zation of the spatiotemporal configurations that occur in
phase turbulence (PT) regime of the CGLE (described
low), for a finite system, in terms of a global wave numb
This quantity plays the role of an order parameter cla
fying different phases. We show that in the PT regim
there is an instability such that a conservation law for
global wave number occurs only for wave numbers with
a finite range that depends on the point in parameter sp
Our study is statistical in the sense that averages over
sembles of initial conditions are used. Our results allow
characterization of the transition from PT to defect or a
plitude turbulence (DT) (another known dynamical regim
of the CGLE) in terms of the range of conserved glob
wave numbers: As one moves in parameter space, w
the PT regime and towards the DT regime, this range
comes smaller. The transition is identified with the po
in parameter space at which such a stable range disapp

The CGLE is an amplitude equation for a complex fie
Asx, td describing universal features of the dynamics
extended systems near a Hopf bifurcation [1,7]

≠tA ­ A 1 s1 1 ic1d=2A 2 s1 1 ic2d jAj2A . (1)

Binary fluid convection [13], transversally extended las
[14], chemical turbulence [15], and bluff body wakes [16
among other systems, can be described by the CG
in the appropriate parameter range. We will restr
ourselves in this paper to the one-dimensional case,
is A ­ Asx, td, with x [ f0, Lg. For this situation a
major step towards the analysis of phases and ph
0031-9007y96y77(2)y267(4)$10.00
e
ch
nt
el
a-

al
i-

i-
e
e-
.
i-
e
e
n
ce.
n-
a
-
e
l
in
e-
t
ars.

f

s
,
E
t
at

se

transitions in (1) was the identification [3–5] of differen
chaotic regimes in different regions of the parame
spacefc1, c2g (see Fig. 1). Equation (1) has plane-wa
solutions Ak ­

p
1 2 k2eikx with k [ f21, 1g. When

c1c2 . 21 there is a range of wave numbersf2kE , kEg
such that the plane-wave solutions with wave numb
in this range are linearly stable. They become unsta
outside this range (the Eckhaus instability [6]). The lim
of this rangekE approaches zero as the productc1c2
approaches21, so that the range of stable plane wav
vanishes by approaching from below the linec1c2 ­ 21
(the Benjamin-Feir or Newell line, labeled BF in Fig. 1
Above that line no plane wave is stable and differe
turbulent states exist. The authors of [3–5] identifi
three different regimes in different regions above t
BF line (Fig. 1): PT, DT, and bichaos. Among thes
regimes, the transition between PT and DT has recei
special attention [3,10,17]. In spite of the fact th
there are some indications that this transition can be
defined in theL ! ` limit [5,9,10], the PT regime is

FIG. 1. Regions of the parameterfc1, c2g space for the CGLE
displaying different kinds of regular and chaotic behavio
Lines L1, L3 were determined in [3–5].
© 1996 The American Physical Society 267
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robustly observed for any finite size system and for fin
observation times, with the transition to DT appeari
at a quite well-defined line (L1 in Fig. 1) [9]. In the
DT region the modulusjAj of A ­ jAjeif becomes zero
at some instants and places (calleddefects), so that the
phasef becomes undefined and the winding numb
n ; 1

2p

RL
0 ≠xfdx changes value during evolution. I

contrast, dynamics maintains the modulus ofA far from
zero in the PT region, so thatn is thought to be a
constant of motion there. A global wave number of t
configuration can be defined ask ; 2pnyL. In the
bichaos regime one may observe either DT, PT, o
coexistence of them depending on the initial conditio
[5]. These different regimes were originally identifie
from the analysis of the space-time density ofdefects. If
this picture is correct, one can speculate that the transi
between DT and PT would be a kind of ergodici
breaking transition [18] as in other systems describ
by statistical mechanics. DT would correspond to
“disordered” phase andn classifies different “ordered”
phases in PT. However, we note that most studies of
PT regime have considered in detail only the case ofn ­
0. In fact the phase diagram in Fig. 1 was constructed
this case. In order to provide a better understanding of
PT-DT transition we undertake in this Letter a systema
study of PT configurations withn fi 0 .

Typical configurations of the PT state of zero windin
number consist of pulses injAj, corresponding to phas
sinks, that travel and collide rather irregularly on top of
k ­ 0 unstable background wave (that is, a uniform osc
lation) [3,5]. The phase of these configurations stron
resembles solutions of the Kuramoto-Shivashinsky (K
equation. Quantitative agreement has been found betw
the n ­ 0 PT states of the CGLE and solutions of th
KS equation near the BF line [10]. The more obvio
effect of a nonzeron is the appearance of a uniform
drift added to the irregular motion of the pulses. In a
dition, Chaté [4,5] reported an earlier breakdown of t
PT regime whenn fi 0. Our results below show that no
all the winding numbers are in fact allowed in the PT r
gion at long times. PT states with too largejnj are only
transients and decay to states within a band of allow
winding numbers. The width of this band shrinks to ze
when approaching the lineL1. In addition we find that the
allowed nonzero winding number states are not of a sin
type. We have identified three basic types of asympto
states forn fi 0, which we describe below.

In order to study the dynamics of states withn fi 0 we
have performed simulations extensively covering the
region of parameters of Fig. 1. Only a small part of t
simulations is shown here, and the rest will be repor
elsewhere. We use a pseudospectral code with peri
boundary conditions and second-order accuracy in tim
Spatial resolution was typically 512 modes, with runs
up to 4096 modes to confirm the results. We work
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fixed system sizeL ­ 512. The initial condition in our
simulation is a plane wave of the desired winding numb
slightly perturbed by a white Gaussian random field. T
initial evolution of the spatial power spectrum is we
described by the linear stability analysis around the init
plane wave: Typically the perturbation grows most
around the most unstable wave numbers identified fr
such linear analysis. After some time the system reac
a state similar to then ­ 0 PT, except for a nonzero
average velocity of the chaotically traveling pulses. W
call this stateriding PT. Its spatial power spectrum i
broad and unsteady, with the more active wave numb
located around the one determined by the initial windi
number. We observe that when this winding number
small, it remains constant in time, and the system eit
remains in theriding PT state or approaches one o
the more regular asymptotic states that will be describ
below. If jnj is initially too high, the competition betwee
wave numbers leads to phase slips that reducejnj until a
value inside an allowed range is reached. Then the sys
evolves as before.

We present in Fig. 2 the temporal evolution ofnstd,
the average ofnstd over 50 independent realizations o
the random perturbation added to the initial plane wa
for a fixed point in parameter space. The variance am
the sample of 50 realizations is also shown. Three ini
valuesni of the winding number are shown.nstd typically
presents a decay fromni to the final winding numbernf .
The decay is found to take place in a characteristic ti
t that we quantify as the time for which half of the jum
in n has been attained. Figure 3 shows1yt for different
values ofni. The different curves correspond to differe
values ofc2 with fixed c1. Similar results were obtained
for c2 fixed and varyingc1. t increases with an apparen
divergence asni approaches a particular valuenc which
is a function ofc1 andc2. We estimate thisnc by fitting
linearly the data for1yt. Other fits involving nontrivial

FIG. 2. (a) Temporal evolution ofnstd for three different ini-
tial winding numbersni ­ 19 (solid), 15 (dotted),10 (dashed).
c1 ­ 2.1, c2 ­ 20.75. (b) Winding number standard devi
ation s.
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FIG. 3. Inverse of the characteristic time for winding numb
relaxation as a function of the initial winding number. Th
value of c1 is fixed (c1 ­ 2.1) and c2 varies from near the
BF line (c2 ­ 21y2.1) to the L1 line (c2 ø 20.9). Different
symbols correspond toc2 ­ 20.6 (1), c2 ­ 20.7 (p), c2 ­
20.75 (e), c2 ­ 20.8 (n), and c2 ­ 20.83 (h). The inset
shows the critical winding number (nc) as a function ofc2.

critical exponents have been tried, but they do not impro
the simpler linear one in a significant manner. A ve
similar value ofnc is obtained by simply determining th
value ofni below whichnstd does not change in any of th
realizations. Values ofnc from some of the simulations
are in the inset of Fig. 3.nc vanishes asc2 approaches
the transition lineL1 (or L3 when passing through th
bichaos region). For example, the linear fitting of t
data in the inset of Fig. 3 and extrapolation towards z
nc reproduces the value forL1 of [3,5] (c2 ø 20.9 for
c1 ­ 2.1) within the fitting error inc2 of 60.02.

The winding number instability found here in the P
region is strikingly similar to the Eckhaus instabilit
of traveling waves below the BF line of Fig. 1 [6
There is a range of allowed winding numbers such t
configurations outside this range undergo phase s
until an allowedn is reached. The difference is tha
below the BF line, the attractor for each stablen is a
traveling plane wave of wave numberk, whereas each
n, or an equivalent global wave number, characteri
phase turbulent attractors above the BF line. The allow
range of traveling waves shrinks to zero whensc1, c2d
approaches the BF from below, whereas above BF,
allowed n range shrinks to zero when approaching t
L1 line from the right. In this picture, the transition PT
DT appears as theBF line associated with an Eckhaus
like instability for phase turbulent waves. Such windin
number instability gives rise to a transition between sta
of different global wave numbers, but none of these sta
is a perfect traveling wave (TW) state with a well-defin
uniform wave number. The transition is thus reminisce
of the one observed for an Eckhaus instability in t
presence of stochastic noise [19]. In the latter cas
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local wave number independent of position cannot
defined because of noise, while for phase turbulent wa
the disorder is generated by the system dynamics. T
comparison is also instructive because it can be sho
that, for the one-dimensional stochastic case, there
no true long range order, and therefore no true ph
transition in the infinite size limit [20]. But for finite
sizes and finite observation times, well-defined effecti
transitions and even critical exponents can be introdu
[19]. The PT-DT transition in the CGLE can be a
effective transition of this kind. In order to furthe
characterize the robustness of the effective transition
analysis of system size effects should be perform
Preliminary results indicate that thenc obtained for each
sc1, c2d point grows linearly with system sizeL, as it
should happen for a well-defined extensive quantity.

Finally, we consider the nature of the asymptotic sta
allowed within the band of “stable”n. We have numeri-
cally found three basic types of states in the PT region
parameters with nonzeron. Figure 4 shows in gray levels
the value of≠xfsx, td as a function ofx andt. The state
shown in the top left is the familiar [5]riding PT,which is
similar to the PT usually seen forn ­ 0 (wiggling pulses
in the gradient of the phase) except for a systematic d
in a direction determined byn. The other two states do
not show spatiotemporal chaos. They can be describe
the motion in time of a spatially rigid pattern on the top
a plane wave (withk fi 0) background and with periodic
boundary conditions. The state shown in the top right co
sists of equidistant pulses traveling uniformly. They a
the quasiperiodic states described in [6]. The state sho
in the bottom left, which we callfrozen turbulence,con-
sists of pulses uniformly traveling on a plane wave bac
ground, as in the quasiperiodic case, but now the pulses
not equidistant from each other. The spatial power sp
trum is shown for this latter case. It is a broad spectru
in the sense that the inverse of its width, which gives
measure of the correlation length, is small compared w
the system size. This is due to the irregular positions
the pulses. In addition, the spectrum is constant in tim
which makes this frozen state different from riding PT a
reflects that the pattern moves rigidly. The existence of
two states with no spatiotemporal chaos (quasiperiodic
frozen turbulence) described above can be understood
analyzing the phase equation valid near the BF instabil
In the case of a nonzeron it contains terms breaking the
left-right symmetry [6,21], and it is known as a Kawaha
equation [22]. Its uniformly traveling solutions are relate
to the rigidly propagating patterns of Figs. 1(b) and 1(
These solutions can be analyzed with the tools of Shilnik
theory [23]. The details will be discussed elsewhere.

In addition to the pure three basic states, there
configurations in which they coexist at different places
space, giving rise to a kind ofintermittentconfiguration,
some of them already observed in [4]. The main resu
reported here, that is the existence of an Eckhaus-
269
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instability for phase-turbulent waves, the identification
the transition PT-DT with the vanishing of the range
stable winding numbers, and the coexistence of differ
kinds of PT attractors should in principle be observ
in systems for which PT and DT regimes above a H
bifurcation are known to exist [16]. We note in additio
that the experimental observation of what seems to b
Eckhaus instability for nonregular waves has been alre
reported in [24].

FIG. 4. Spatiotemporal evolution of≠xfsx, td with time run-
ning upwards andx in the horizontal direction. The lighter gre
corresponds to the maximum value of≠xfsx, td and the darker
grey corresponds to the minimum value. Different scales
grey are used in each case in order to see the significant s
tures. (a) Last102 time units of a run104 time units long for a
riding PT state atc1 ­ 2.1 andc2 ­ 20.83. The initial condi-
tion was a TW withni ­ 20 that decayed tonf ­ 21 after a
short time. (b) Last102 time units of a run105 time units long
for a quasiperiodic state. The initial condition is random no
with an amplitude of 0.05.c1 ­ 2.0 andc2 ­ 20.8. (c) Last
102 time units of a run104 time units long for a frozen turbu
lence state. The initial condition is a TW ofni ­ 12 that de-
cayed tonf ­ 6 after a short time.c1 ­ 1.75 andc2 ­ 20.8.
(d) Spatial power spectrumSsqd as a function of wave num
ber for the frozen turbulence configuration shown in (c). T
specimen is constant in time.
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