
VOLUME 77, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER1996

any

2662
Semiclassical Quantization of Nonseparable Systems without Periodic Orbits
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We present a new method for the semiclassical quantization of classically integrable as well as
nonintegrable systems. The method is based on the semiclassical approximation of the equilibrium
density matrix, using classical trajectories on the upside down potential surface. Periodic orbits do
not play any special role. Explicit results are given for the case of the classically chaotic potential
kx2y2y2. [S0031-9007(96)01277-X]
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Enormous progress has been made in the last
decades in understanding the semiclassical approx
tion to quantum mechanics. The semiclassical spect
of bound states may be obtained using the Einst
Brillouin-Keller method (EBK) for classically integrabl
systems [1]. If the system is not integrable, one res
to the periodic orbit summation formula of Gutzwille
[2]. In both cases, the semiclassical density of state
obtained by finding either the periodic or the quasipe
odic orbits of the system. Both methods do not provid
semiclassical approximation for the wave function; ot
methods, such as the use of Gaussian wave packe
conjunction with the classical orbits, must be employed

In this Letter we propose to use a semiclassical meth
which is equally applicable to classically integrable a
nonintegrable systems and which gives at the same tim
good approximation to the quantum wave function. T
central idea is the systematic use of the semiclass
approximation to the matrix elements of the imagina
time propagator

rsx, x0; bd ; kxje2bH jx0l ,
wherex denotes a point in then-dimensional configura
tion space,H is the Hamiltonian, andb ­ 1ykBT is the
imaginary time in units of̄h.

Consider, for example, the diagonal matrix element.
can be decomposed in terms of the exact eigenfunct
cisxd and eigenvaluesEi of the Hamiltonian as

rsx, x; bd ­
X̀
i­0

e2bEi jcisxdj2. (1)

If the imaginary timeb is large enough (a more precis
definition is given below) then only the ground state w
contribute to the sum. The densityjc0sxdj2 is independen
of b and normalized, so that knowledge of the diago
matrix element and its integral overx for times b that
are sufficiently large will suffice to determine both t
eigenvalueE0 as well as the densityjc0sxdj2. Having
determined the ground state energy and density, one
subtract them off the sum given in (1) and repeat
0031-9007y96y77(13)y2662(4)$10.00
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process to get the first excited state energy and den
In this manner, one may peel off, state by state,
eigenvalues and densities. All that is needed is a “go
semiclassical estimate of the imaginary time propagato

The semiclassical theory for the imaginary time prop
gator is rather old. Over sixty years ago, Wigner [3] fou
the leading order term in an̄h expansion of the partition
function trse2bHd. Feynman suggested the use of var
tional methods [4], based on the Bogoliubov inequality a
a semiclassical expansion of the path integral. This
proach was developed extensively by Kleinert [5,6]. T
use of classical trajectories in imaginary time as a pract
way for computing densities originates with Miller and c
workers [7]. However, none of these approaches was e
used in a systematic way to elucidate the quantum eig
values and densities of multidimensional systems.

Consider a system with two degrees of freedom
which the real time classical motion is chaotic. Th
Gutzwiller summation [2] may be used in principle
however, it is difficult to implement in practice becau
of the typically large numbers of periodic orbits th
contribute to the sum, each with a different phase. Wh
practical resummation schemes have been implemen
in the real time approach [8], one must still deal with
summation of terms with varying phases. In contrast,
imaginary time, the trajectories sum up with real negat
exponents. Convergence of the sum over imaginary t
trajectories may thus be expected to be fast.

Very recently, Weiperet al. [9] have demonstrated fo
a one-dimensional system that the semiclassical appr
mation to the propagator leads to reliable estimates
bound states and resonance energies as well as
associated densities. In the present paper, we demons
the applicability of the imaginary time semiclassic
theory to a model system with two degrees of freedo
whose real time dynamics is known to be largely chaot

The coordinate representation of the imaginary tim
propagator (the density matrix) of a quantum particle
massm moving in the potentialV sxd may be written as
© 1996 The American Physical Society
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(4)

rgy

4).
nts

ce.
an imaginary time path integral:

rsx, x0; bd ­
Z

D fxge2Sfxgy h̄. (2)

The functional integral is over all pathsxstd, 0 # t #

h̄b such thatxs0d ­ x and xsh̄bd ­ x0. Each path is
weighted by its Euclidean action

Sfxg ­
Z h̄b

0
dt

∑
m
2

Ùx2 1 V sxd
∏

.

An arbitrary path in configuration space, parametri
by the timet, may be written asxstd ­ xclstd 1 ystd,
where the classical pathxclstd is the imaginary time
solution of the classical equations of motion in t
potential V sxd [7], and ystd describes fluctuations wit
the boundary conditionsys0d ­ ysh̄bd ­ 0. The action
may be decomposed into a classical actionSfxclg and a
fluctuating part which comes from the fluctuation pa
ystd. The semiclassical estimate of the density is obtai
by expanding the action appearing in the path integra
up to second order in the fluctuations about the class
path. The classical path minimizes the action and is
dominant contribution to the sum. If there exists a
hxa

clj of classical trajectories leading from the initial
the final point in the time interval̄hb, one must sum th
contributions from all of them. The semiclassical dens
matrix rscsx, x0; bd has the form

rscsx, x0; bd ­
X
a

1
p

Ja

e2Sfxa
clgy h̄, (3)

whereJa ­ dethd2Sfxgydxst1ddxst2djx­xa
cl
j is the deter-

minant describing the Gaussian integral over the quan
fluctuations. The details of evaluation of the determin
may be found in Refs. [4,6,10].

In this Letter we consider a quartic oscillator poten
in two degrees of freedom [11], which has the form

V sxd ­
k
2

x2y2, k . 0 . (4)

This potential does not have any stable fixed poi
The classical trajectories are mostly chaotic, stable
bits do exist but are long, and the area of the sta
phase space surrounding them is negligible [11]. I
this lack of integrable motion which makes the qu
tic potential a formidable challenge to semiclassical t
ory. It is useful to rewrite the problem in terms
the dimensionless variables:X ­ skh̄2b2ymd1y2x, Y ­
skh̄2b2ymd1y2y, dt ­ dtyh̄b, and S̃ ­ Syh̄. Further-
more, all dimensionless classical trajectories scale acc
ing to Xclst, 1d ­ aXclsat, ad, a . 0, whereXclst, ud is
a path witht [ f0, ug. It therefore suffices to solve th
classical equations of motion at a certain temperatur
obtain the solutions at all temperatures.

The Hamiltonian with the quartic oscillator potential (
has C4y symmetry. This group has four nondegener
irreducible representations labeled byA1, A2, B1, and
B2. In addition, there is a doubly degenerate irreduc
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representationE. Hence the full density matrix can b
written as

rsx, x0; bd ­
X
g

rgsx, x0; bd , (5)

where g [ hA1, A2, B1, B2, Ej. To obtain the density
matrix rg for each representation separately one m
properly symmetrize the full density matrix by taking in
account off-diagonal matrix elements which are rela
to each other by the eight symmetry operations of
group. For example, the diagonal part of the den
matrix associated with representationA1 takes the form

rA1 fx, x; bg ­f%sx, yd 1 % s2x, yd 1 %s y, xd

1 %s2y, xd 1 % s2y, 2xd 1 %s2x, 2yd

1 %sx, 2yd 1 % s y, 2xdgy8 ,

where we putx ­ sx, yd and %s6x, 6yd represents the
matrix elementsrfsx, yd, s6x, 6yd; bg of the full density
matrix.

One of the interesting features of the imaginary ti
semiclassical approximation is that the contributing t
jectories are proper solutions of a boundary value prob
with fixed end points. In addition, apart from the low tem
perature region, the semiclassical density matrixrg for a
specific representation is determined only by at most e
trajectories [see Fig. 1(a)]. Note that for very low te
peratures and for coordinates near the diagonal one
have more than one trajectory contributing to the full d
sity matrix [cf. Fig. 1(b)]. The central idea of any sem
classical approximation is that the fluctuations about
classical paths are small. For the present potential,
assumption does not hold for very low temperatures.
particular, the accumulation of orbits along the diagon
(x ­ 6y) implies bifurcations and associated large flu
tuations. One may correct for these large fluctuations
going to higher order in the expansion about the class
orbit, as shown for one-dimensional systems in Ref. [1
Extension of these methods to the quartic potential
will be considered elsewhere.

Having determined the density matrix, the free ene
of the system is obtained fromFsbd ­ 2 lnfZsbdgyb,

FIG. 1. Classical trajectories in the inverted potential (
(a) Typical trajectories contributing to the matrix eleme
rfx, s6x, 6yd; bg and rfx, s6y, 6xd; bg. (b) Low tempera-
ture trajectories in the first quadrant of configuration spa
Dashed lines represent equipotential lines.
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where

Zsbd ­
Z

dx rsx, x; bd ­
X̀
i­0

e2bEi (6)

is the partition function. As mentioned above, the de
sity matrix (1) and also the partition function (6) ca
now be used to quantize a system within a semicla
cal approximation. At a sufficiently largeb ­ b0 we
first get Fsb0d ­ E0 and then from the density matrix
jc0sxdj2. Subtracting this ground state contribution fro
the full density matrix gives with the same procedure
before at a sufficiently large temperatureb1 , b0 the
energy E1 and the densityjc1sxdj2 of the first excited
state, and so on state by state. Largebi means that
expf2bisEi11 2 Eidg, i ­ 0, 1, 2, . . ., is small compared
to 1. This condition must be confirmed self-consistent
In principle, one should consider the limitb ! ` to
minimize the thermal error from contributions from ex
cited states. On the other hand, the scaling propertie
the scale invariant potential (4) imply that the semiclas
cal expansion parameterh̄ corresponds tob3. Thus the
simple semiclassical approximation (3) becomes exac
high temperaturesb ! 0 but breaks down for very large
b. As a consequence, semiclassical quantization of
system can be implemented by looking for an optimal
termediate value ofb for which the thermal error is ex-
ponentially suppressed but the semiclassical error is
small. Note that this difficulty is a peculiarity of the qua
tic potential. Because of the scale invariance there is
intrinsic system parameter for a semiclassical expans
We have chosen to implement the method for a rat
“difficult” case. In more “molecular” potentials the exis
tence of a harmonic minimum will make the semiclassic
method work much better.

In Fig. 2 we have depicted the exact and semiclass
free energies as functions ofb for the A1 and E repre-
sentations. While for smallb all states contribute to the
sum (6), the exact free energy saturates at low tempera
since only the ground state contributes. In contrast,
mentioned above, the semiclassical approximation le
to a temperature dependent free energyFscsbd also for
large b. Hence we estimate the energies from a po
where the correspondingFscsbd is minimally sensitive to
variations inb, i.e., wheredFscsbdydb is minimal. The
assumption that thermal errors at those points are sm
is checked later self-consistently. We note that a sim
lar criterion was first suggested by Stevenson [13] a
“principle of minimal sensitivity” (PMS) in perturbative
expansions in quantum field theories and was extensiv
studied in the past decade [14].

Accordingly, the semiclassical ground state energy
A1 is estimated from the point where the slope of t
semiclassical free energy vanishes, in this case at
maximum Fscsb0d ­ 0.486 with b0 ­ 2.64. For theE
representation, the semiclassical free energy has no m
mum but an inflection point atb0 ­ 2.41 so that the mini-
2664
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FIG. 2. Free energies for theA1 (lower curves) andE (upper
curves) representations. Dashed lines denote the exact v
and dotted-dashed lines the semiclassical values. Solid
indicate the exact ground state energies.

mum of dFscsbdydb coincides withd2Fscsbdydb2 ­ 0.
Proceeding along these lines as described above, we
tain the lowest three eigenvalues for each of the five r
resentations fromeithera maximumor an inflection point
of Fscsbd (see Table I). Despite the difficulties with th
scale invariant model, the first two states are found in
cellent agreement with the exact eigenvalues with typ
errors of 1%. For the second excited states the larg
deviations are about 10%. The exact results were
tained by a numerical solution of the Schrödinger eq
tion. In principle, we can go on, but at this simple sta
of the procedure one cannot expect reasonable result
more than the first few eigenvalues in each representa
due to an accumulation of errors. An improvement of
method that corrects for thermal errors will be presen
elsewhere.

Given the energy eigenvalues we are able to extract
densitiesjcisxdj2 from the density matrix (2) as describe
above. As shown in Fig. 3, we find excellent agreem
with the numerically exact densities. Since the min
differences between semiclassical and exact densities
not apparent in 2d contour plots, Fig. 3 shows als
integrated densitiesdsxd, integrated along they axis. In

TABLE I. Semiclassical and exact energy eigenvalues
each of the five representations of the quartic oscillator (4).

gnn 0 1 2
ex. sc. ex. sc. ex. sc.

A1 0.554 0.486 1.758 1.808 2.493 2.14
A2 4.037 3.965 5.736 5.647 7.110 6.67
B1 1.528 1.499 2.376 2.147 3.072 3.08
B2 2.506 2.442 4.637 4.579 5.886 5.29
E 1.189 1.159 2.047 1.911 2.750 2.38
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FIG. 3. Semiclassical densitiesjc0sxdj2 for the (a) A1,
(b) B1, (c) A2, and (d) B2 representations. Semiclassic
densities integrated along they axis for the (e)A1 (dotted line),
A2 (dashed line), and (f)B1 (dotted line), B2 (dashed line
representations are compared with the exact densities (
lines).

particular, we find that bifurcations of classical paths
the concomitant breakdown of the simple semiclass
density matrix (3) occur in regions in configuration sp
where the densities are always negligibly small.

In conclusion, we have demonstrated that semiclas
quantization of the equilibrium density matrix is a viab
alternative to the real time semiclassical theory.
contrast to real time semiclassical methods, periodic o
do not play any special role. It is straightforward to ap
the method to systems with more than two degree
freedom. The peeling method allows for determination
the lowest eigenvalues where traditionally semiclass
estimates should be the worst because of the low de
of states. We have demonstrated the procedure in d
for the case of a classically chaotic two-dimensio
lid
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quartic oscillator and found good agreement between
semiclassical and numerically exact lowest eigenval
and densities.
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