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Semiclassical Quantization of Nonseparable Systems without Periodic Orbits
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We present a new method for the semiclassical quantization of classically integrable as well as
nonintegrable systems. The method is based on the semiclassical approximation of the equilibrium
density matrix, using classical trajectories on the upside down potential surface. Periodic orbits do
not play any special role. Explicit results are given for the case of the classically chaotic potential
kx?y?/2. [S0031-9007(96)01277-X]
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Enormous progress has been made in the last twprocess to get the first excited state energy and density.
decades in understanding the semiclassical approxim#a this manner, one may peel off, state by state, the
tion to quantum mechanics. The semiclassical spectruraigenvalues and densities. All that is needed is a “good”
of bound states may be obtained using the Einsteinsemiclassical estimate of the imaginary time propagator.
Brillouin-Keller method (EBK) for classically integrable  The semiclassical theory for the imaginary time propa-
systems [1]. If the system is not integrable, one resortgator is rather old. Over sixty years ago, Wigner [3] found
to the periodic orbit summation formula of Gutzwiller the leading order term in ah expansion of the partition
[2]. In both cases, the semiclassical density of states i&unction t(e ##). Feynman suggested the use of varia-
obtained by finding either the periodic or the quasiperi-tional methods [4], based on the Bogoliubov inequality and
odic orbits of the system. Both methods do not provide a semiclassical expansion of the path integral. This ap-
semiclassical approximation for the wave function; othemproach was developed extensively by Kleinert [5,6]. The
methods, such as the use of Gaussian wave packets use of classical trajectories in imaginary time as a practical
conjunction with the classical orbits, must be employed. way for computing densities originates with Miller and co-

In this Letter we propose to use a semiclassical methodyorkers [7]. However, none of these approaches was ever
which is equally applicable to classically integrable andused in a systematic way to elucidate the quantum eigen-
nonintegrable systems and which gives at the same timealues and densities of multidimensional systems.
good approximation to the quantum wave function. The Consider a system with two degrees of freedom for
central idea is the systematic use of the semiclassicalhich the real time classical motion is chaotic. The
approximation to the matrix elements of the imaginaryGutzwiller summation [2] may be used in principle,
time propagator however, it is difficult to implement in practice because

p(x,x'; B) = (x|le PH|x), of the typically large numbers of periodic orbits that
contribute to the sum, each with a different phase. While
practical resummation schemes have been implemented,
in the real time approach [8], one must still deal with a
ILsummation of terms with varying phases. In contrast, in
fghaginary time, the trajectories sum up with real negative
exponents. Convergence of the sum over imaginary time
trajectories may thus be expected to be fast.

p(x,x; B) = D e Phily;(x)I%. (1) Very recently, Weipekt al. [9] have demonstrated for

i=0 a one-dimensional system that the semiclassical approxi-

If the imaginary timeg is large enough (a more precise mation to the propagator leads to reliable estimates of
definition is given below) then only the ground state will bound states and resonance energies as well as the
contribute to the sum. The densliyy(x)|? is independent associated densities. In the present paper, we demonstrate
of B and normalized, so that knowledge of the diagonathe applicability of the imaginary time semiclassical
matrix element and its integral ovar for times B that  theory to a model system with two degrees of freedom
are sufficiently large will suffice to determine both the whose real time dynamics is known to be largely chaotic.
eigenvalueE, as well as the densityiy(x)|>. Having The coordinate representation of the imaginary time
determined the ground state energy and density, one mayopagator (the density matrix) of a quantum particle of
subtract them off the sum given in (1) and repeat thenassm moving in the potentiaV (x) may be written as

wherex denotes a point in the-dimensional configura-
tion spaceH is the Hamiltonian, ang@ = 1/kpT is the
imaginary time in units ofi.

Consider, for example, the diagonal matrix element.
can be decomposed in terms of the exact eigenfunctio
¢;(x) and eigenvalueg; of the Hamiltonian as
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an imaginary time path integral: representatior. Hence the full density matrix can be
written as
p(x,x"; B) = f Dx]e SV, (2)
. . . p(x,x; B) = D pg(x,x'; B), 5)
The functional integral is over all pathe(7),0 = 7 = % 8

AB such thatx(0) = x andx(AB8) = x’. Each path is

weighted by its Euclidean action where g € {4,A,,B,B,,E}. To obtain the density

i matrix p, for each representation separately one must
S[x] = f d,,[ﬂ,-iz + V(x)] properly symmetrize the full density matrix by taking into
2 account off-diagonal matrix elements which are related
An arbitrary path in configuration space, parametrizedo each other by the eight symmetry operations of the
by the timer, may be written ax(7) = xq(7) + y(r), group. For example, the diagonal part of the density
where the classical patly,(7) is the imaginary time matrix associated with representatidntakes the form
solution of the classical equations of motion in the .01 = _
potential V(x) [7], and y(r) describes fluctuations with palx.x: Bl =letx.y) + e(=x.y) + e(y.x)
the boundary conditiong(0) = y(i8) = 0. The action + e(=y,x) + e(=y,—x) + e(—x,—y)
may be_ decomposgd into a classical acti®,] a_lnd a + o, —y) + o(y,—x)]/8,
fluctuating part which comes from the fluctuation path
y(7). The semiclassical estimate of the density is obtaine#/here we putx = (x,y) and ¢(*x, *y) represents the
by expanding the action appearing in the path integral (2natrix elementsp[(x, y), (+x, *y); 8] of the full density
up to second order in the fluctuations about the classicdNatrix.
path. The classical path minimizes the action and is the One of the interesting features of the imaginary time
dominant contribution to the sum. If there exists a se€miclassical approximation is that the contributing tra-
{x&} of classical trajectories leading from the initial to jectories are proper solutions of a boundary value problem
the final point in the time intervak 3, one must sum the With fixed end points. In addition, apart from the low tem-
contributions from all of them. The semiclassical densityPerature region, the semiclassical density magiixfor a

matrix ps (x, x'; 8) has the form specific representation is determined only by at most eight
1 ) trajectories [see Fig. 1(a)]. Note that for very low tem-

pse(x,x’; B) = Z —— ¢ SIxaV/n (3) peratures and for coordinates near the diagonal one can
w Vo have more than one trajectory contributing to the full den-

whereJ, = de{82S[x]/8x(71)8x(r5)lx=y:} is the deter- sity matrix [cf. Fig. 1(b)]. The central idea of any semi-
minant describing the Gaussian integral over the quanturflassical approximation is that the fluctuations about the
fluctuations. The details of evaluation of the determinanflassical paths are small. For the present potential, this

may be found in Refs. [4,6,10]. assumption does not hold for very low temperatures. In
In this Letter we consider a quartic oscillator potentialParticular, the accumulation of orbits along the diagonals
in two degrees of freedom [11], which has the form (x = *y) implies bifurcations and associated large fluc-

K tuations. One may correct for these large fluctuations by

V(x) = 3x2y2’ k>0. (4) going to higher order in the expansion about the classical

_ _ _ ~orbit, as shown for one-dimensional systems in Ref. [12].
This potential does not have any stable fixed pointsextension of these methods to the quartic potential (4)
The classical trajectories are mostly chaotic, stable oryill be considered elsewhere.
bits do exist but are long, and the area of the stable Having determined the density matrix, the free energy

phase space surrounding them is negligible [11]. It isof the system is obtained from(8) = — In[Z(B)]/B,
this lack of integrable motion which makes the quar-

tic potential a formidable challenge to semiclassical the-
ory. It is useful to rewrite the problem in terms of
the dimensionless variableX = (kh2B8%/m)/%x, Y =
(kr2B%/m)\ /%y, dt = drv/hKB, and § = S/hK. Further-
more, all dimensionless classical trajectories scale accord-
ingtoX.(z,1) = aXy(at, ), a > 0, whereX(z, 8) is

a path withz € [0, 6]. It therefore suffices to solve the
classical equations of motion at a certain temperature to
obtain the solutions at all temperatures.

The Hamiltonian with the quartic oscillator potential (4) F!G- 1. = Classical trajectories in the inverted potential (4).
(a) Typical trajectories contributing to the matrix elements

has Cyy Symmetry. Th_is group has four nondegeneratep[x’(ix’ +y): 8] and p[x.(+y, =x): 8]. (b) Low tempera-
irreducible representations labeled By, Az, By, and ture trajectories in the first quadrant of configuration space.
B,. In addition, there is a doubly degenerate irreducibleDashed lines represent equipotential lines.

X X
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where

28) = [ axpxp =3 @)

i=0
is the partition function. As mentioned above, the den-
sity matrix (1) and also the partition function (6) can
now be used to quantize a system within a semiclassi-

Eor

=

1

-

cal approximation. At a sufficiently larg8 = B, we
first get F(By) = Eo and then from the density matrix
lo(x)|>. Subtracting this ground state contribution from
the full density matrix gives with the same procedure as
before at a sufficiently large temperatufa < By the
energy E, and the density¢(x)|*> of the first excited

Eopa,

0.2

Pty

state, and so on state by state.

Large means that

exd—Bi(Ei+1 — E;)], i = 0,1,2,..., is small compared
to 1. This condition must be confirmed self-consistently.

1.5

2

p

Bog Boa,

In principle, one should consider the lim@g — « to

minimize the thermal error from contributions from ex- FIG- 2. Free energies for the (lower curves) and: (upper
Prves) representations. Dashed lines denote the exact values

cited State_'s' Qn the othgr hanQ’ the scaling propt_arties énd dotted-dashed lines the semiclassical values. Solid lines
the scale invariant potential (4) imply that the semiclassiingicate the exact ground state energies.

cal expansion parametér corresponds tg833. Thus the
simple semiclassical approximation (3) becomes exact at
high temperature — 0 but breaks down for very large mum of dF,.(8)/d 8 coincides withd’F..(B8)/d B> = 0.
B. As a consequence, semiclassical quantization of thProceeding along these lines as described above, we ob-
system can be implemented by looking for an optimal in-tain the lowest three eigenvalues for each of the five rep-
termediate value of8 for which the thermal error is ex- resentations froneithera maximumor an inflection point
ponentially suppressed but the semiclassical error is stithf F,.(8) (see Table I). Despite the difficulties with the
small. Note that this difficulty is a peculiarity of the quar- scale invariant model, the first two states are found in ex-
tic potential. Because of the scale invariance there is noellent agreement with the exact eigenvalues with typical
intrinsic system parameter for a semiclassical expansiorerrors of 1%. For the second excited states the largest
We have chosen to implement the method for a rathetieviations are about 10%. The exact results were ob-
“difficult” case. In more “molecular” potentials the exis- tained by a numerical solution of the Schrédinger equa-
tence of a harmonic minimum will make the semiclassicakion. In principle, we can go on, but at this simple stage
method work much better. of the procedure one cannot expect reasonable results for
In Fig. 2 we have depicted the exact and semiclassicahore than the first few eigenvalues in each representation
free energies as functions ¢@f for the A; and E repre-  due to an accumulation of errors. An improvement of the
sentations. While for smaj8 all states contribute to the method that corrects for thermal errors will be presented
sum (6), the exact free energy saturates at low temperatugtsewhere.
since only the ground state contributes. In contrast, as Given the energy eigenvalues we are able to extract the
mentioned above, the semiclassical approximation leadgensities;(x)|> from the density matrix (2) as described
to a temperature dependent free enefgy(B) also for above. As shown in Fig. 3, we find excellent agreement
large 8. Hence we estimate the energies from a poinwith the numerically exact densities. Since the minor
where the corresponding.(8) is minimally sensitive to  differences between semiclassical and exact densities are
variations inp3, i.e., wheredF.(B)/dp is minimal. The not apparent in @ contour plots, Fig. 3 shows also
assumption that thermal errors at those points are smailitegrated densitied(x), integrated along the axis. In
is checked later self-consistently. We note that a simi-

lar criterion was first suggested by Stevenson [13] as FABLE I. Semiclassical and exact energy eigenvalues for

“principle of minimal sensitivity” (PMS) in perturbative gach of the five representations of the quartic oscillator (4).
expansions in quantum field theories and was extensively

studied in the past decade [14]. g\n 0 1 2
Accordingly, the semiclassical ground state energy for ex. SC. ex. SC. ex. SC.
A, is estimated from the point where the slope of theA; 0554 0486 1.758 1.808 2493 2141
semiclassical free energy vanishes, in this case at thél2 4037 3.965 5736 5647 7110  6.670
maximum F.(8) = 0.486 with By = 2.64. For theE B %ggg %jﬁg ig;g ié‘;; gg;g gggg
representation, the semiclassical free energy has no max? 1189 1159 2047 19011 2750 2381

mum but an inflection point g8y = 2.41 so that the mini-
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quartic oscillator and found good agreement between the
semiclassical and numerically exact lowest eigenvalues
and densities.
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