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Magnetic Tomography of a Cavity State
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A method to determine the state of a single quantized cavity mode is proposed. By adiabatic p
the quantum state of the field is transferred completely onto an internal Zeeman submanifold of an
Utilizing a method of Newton and Young [Ann. Phys.49, 393 (1968)], we can determine this angul
momentum state uniquely, by a finite number of magnetic dipole measurements with Stern-G
analyzers. An example illustrates the influence of dissipation. [S0031-9007(96)01266-5]

PACS numbers: 42.50.–p, 42.50.Vk
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The state of a quantum mechanical system is comple
specified by its density operator̂r. It is a fundamenta
as well as an important practical question of quan
mechanics to devise measurement schemes which a
a complete determination ofr̂. By a sequence of repeate
measurements on an ensemble of identically prep
systems the state has to be characterized operationall
quantum optics this topic of complete state determina
has recently received considerable attention in the con
of characterizing nonclassical states of the radiation fi
and states of atomic and molecular motion [1–10].

In a seminal paper, Vogel and Risken [1] have poin
out that the state of a single mode of the radiat
field (equivalent to a one-dimensional harmonic osci
tor) can be found by tomographic techniques and co
sponding experiments have been performed by Ray
and co-workers [2]. The central idea of quantum s
tomography is based on a reconstruction of the d
sity matrix r̂ from measured quadrature probabiliti
pxsud ­ sx, ujr̂jx, ud. Herejx, ud is a rotated eigenstat
of the quadrature operatorxu , i.e., jx, ud ­ Rsudyjxl ­
eiuayajxl with a and ay lowering and raising opera
tors of the oscillator. Alternative schemes have b
discussed in the literature under the name of state
doscopy [6] or by introducing discrete Wigner functio
[7]. Very recently, ideas were developed for a state
termination of ions moving in harmonic trapping pote
tials [5,10].

In the present paper we discuss a new schem
measure the density matrix of the radiation field o
single quantized cavity mode by a magnetic tomograp
It is based on combining ideas we have developed
the context of quantum state engineering of arbitr
Fock-state superpositions in a cavity by adiabatic pas
[11], with a tomography of atomic angular momentu
states by Stern-Gerlach measurements originally prop
in [12].

It is well known that the adiabatic change of a Ham
tonian interaction transforms initial energy eigenstates
eigenstates of the final Hamilton operator [13]. T
method to map quantum states is applied in various c
texts of molecular and atomic physics [11,14,15]. It is a
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the key mechanism for transferring the state of a quanti
cavity mode onto the internal state manifold of an atom

According to Fig. 1, an atom passes adiabatica
[11,15] through the spatial profile of a classicals1-
polarized laser beam [Rabi-frequency:Vstd] and, with a
spatiotemporal displacementt . 0, through the profile
of a quantized,p-polarized cavity mode [atom-cavity
coupling: gst 2 td]. We assume that the electron
structure of the atoms corresponds to an opticalJg !

Je ­ Jg 2 1 dipole transition.
The coupled atom-cavity system evolves according

the time-dependent Hamiltonian

FIG. 1. Evolution of a degenerate two level atom (angu
momentum:Jg ! Je ­ Jg 2 1) coupled to a quantizeds0-
polarized cavity mode. First, it passes through the profile
classical beam (s1) and then, with a delay, through the cavity
© 1996 The American Physical Society
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Hstdyh̄ ­ vc ay
c ac 1 veg

JeX
me­2Je

jJe, melAkJe, mejA

2 iVstd seivLtA1 2 A
y
1 e2ivLtd

1 igst 2 td sayA0 2 A
y
0 ad , (1)

where ac and vc are the annihilation operator an
oscillation frequency of the cavity mode, respective
In terms of atomic basis states and Clebsch-Gor
coefficients C

1,Jg ,Je
s,mg ,me , the atomic deexcitation operato

A0, A61 are defined by

As ­
X

jmg j#Jg ,jmej#Je

jJg, mglAkJe, mejAC
1,Jg ,Je
s,mg ,me .

The state space spanned by this Hamiltonian has th
markable feature that it can be decomposed into inva
subspacesH ­

L`
n­22Jg

H n. Because of angular mo
mentum conservation, it is only possible to couple an
lar momentum states to a finite number of photon st
by means of a unitary evolution [Eq. (1)],

H n ­ hjmgj # Jg, 0 # n ­ n 1 Jg 1 mgk

jJg, mglA ≠ jnlC , jJe, mglA ≠ jn 2 1lCj .

One element of the subspaceH n is of particular interest
i.e., a linear combination involving only ground sta
[14,16]

jfn
0 l ­

Jg21X
mg­2Jg

an
mg

jJg, mglA ≠ jn 1 Jg 1 mglC . (2)

By an appropriate choice of coefficientsan
mg

, i.e.,

a
n
mg21std
an

mg
std

­
gst 2 td

Vstd

q
n 1 Jg 1 mg

C
1,Jg ,Je

0,mg ,mg

C
1,Jg ,Je

1,mg21,mg

, (3)

this normalized state (a
n
Jg21 ­ N ) becomes also a

eigenvector of the Hamilton operator in the interact
representation [derived from Eq. (1)] and has a z
eigenvalue. According to the adiabatic theorem [13],
eigenvector approaches a stationary eigenstate of the
responding Schrödinger equation, if the time-depend
change of the Hamilton operator during the total inter
tion time T is much less than the characteristic transit
frequencies (VmaxT ,

p
Nmax gmaxT ¿ 1). Furthermore,

if the delay and shape of the pulse sequences are ch
such that

0
2`√t
√ gst 2 tdyVstd t!1`

! ` , (4)

then this is a mapping process that only permutes s
up to a sign changesn ­ signfan

2Jg2ns1`dg,

jJg, Jg 2 1lA ≠ jn 1 2Jg 2 1lC
2`√t
√ jfn

0 stdl ,

jfn
0 stdl t!1`

! sn jJg, 2Jg 2 nlA ≠ j0lC .

In other words, a coupled atom-cavity density opera
r̂sACd that can be factorized initially into a pure atom
d
ly.
an
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state and a field state containing less than2Jg photons
will be mapped to a product of atomic ground sta
superpositions and the cavity vacuum

jJg, Jg 2 1lAkJg, Jg 2 1jA ≠ r̂sCd 2`√t
√ r̂sACdstd

r̂sACdstd t!1`
! r̂sAd ≠ j0lCk0jC , (5)

with

r̂sCd ­
0X

n,m­2s2Jg21d
rsCd

n,m jn 1 2Jg 2 1lC

3 km 1 2Jg 2 1jC ,

and

r̂sAd ­
0X

n,m­2s2Jg21d
snsm rsCd

n,m j2Jg 2 nlA

3 k2Jg 2 mjA .

With reverse adiabatic passage, an internal atomic sta
prepared uniquely by reading out the cavity state.

The complete characterization of such an angular
mentum state by a number of magnetic dipole meas
ments was described in Ref. [12]. It is required to det
a set of physical observables that are proportional to

hjmj # J, jsj # 2J kP̂msu, wsdj .

Here P̂msu, wsd represents the projector onto a rotat
state jJ, m, Rsu, wsd$ezl ­ DsJdsRd jJ, m, $ezl, s enumer-
ates an arbitrary set of4J 1 1 azimuthal anglesws, and
u is a constant inclination. This method can be imp
mented, for example, by the unitary evolution of an a
gular momentum state in a homogeneous magnetic
$Bsu, wsd ­ jBj $nsu, wsd oriented differently, each time
the measurement is performed, and by using a con
tional Stern-Gerlach analyzer as shown in Fig. 2.

From theJ-dimensional representation of the rotati
group DsJdsRd or the Wigner matricesdsJdsud [17], one
finds

jJ, m, Rsu, wdezl ­
JX

n­2J

e2inwdsJd
nmsud jJ , n, ezl . (6)

Hence, the occupation probabilities are given by

pmsu, wsd ­
JX

n,l­2J

e2isn2ldws dsJd
nmsuddsJd

lm sud rln . (7)

This linear equation relates density matrix eleme
fs2J 1 1d s2J 1 1d real numbersg to measured proba
bilities that are positive numbers. By determini
s2J 1 1d s4J 1 1d different probabilities, this seem
ingly overdetermined set of linear equations has
unique solution that is positive definite. Forjlj # J,
0 # w # J 2 l, one finds

rl,l1w ­
JX

m­2J

2JX
j­0

C
JJj
m,2m,0C

JJj
l1w,2l,w

s21dl2m

d
sjd
w,0sud

Xsudwm .

(8)

In case of an equally spaced array of azimuthal an
ws, i.e., 2p , ws ­ ss2py4J 1 1d , p, jsj # 2J, the
2659
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FIG. 2. Setup of a Stern-Gerlach experiment with an ad
tional homogeneous magnetic field$Bsu, wd ­ jBj $nsu, wd in-
ducing spin precession around the axis$nsu, wd.

quantity Xsud is the discrete Fourier transform of th
measured probability tableau

Xsudwm ­
1

4J 1 1

2JX
s­22J

eiwws pmsu, wsd . (9)

In contrast to systems with continuous degrees of fr
dom, the reconstruction algorithm of Eq. (8) is faithful
inclination anglesu are avoided whered

sJd
w,0sud vanishes

(i.e., the zeros of an associated Legendre polynomi
Most detrimental to this state tomography is the loss
cavity photons during the adiabatic interaction. In co
trast, spontaneous atomic decay is of minor importance
the adiabatic eigenstate is formed by a ground state
perposition. To examine the influence of dissipation,
have coupled the atom-cavity system to an environm
[11] and obtained the following master equation for t
density operator̂r:

d
dt

r ­ 2
i
h̄

fHeffr 2 rH
y
effg 1 G

X
s­0,61

AsrAy
s

1 k acray
c , (10)

whereG andk denote the spontaneous decay rate and
inverse cavity lifetime, respectively.

In the interaction picture representation [derived fro
Eq. (1)], the effective, nonhermitian Hamiltonian, intro
duced above, is given by

Heff ­

√
D 2 i

G

2

!
JeX

me­2Je

jJe, mel kJe, mej 2 i
k

2
ay

c ac

2 iVstd sA1 2 A
y
1 d 1 igst 2 td say

c A0 2 A
y
0 acd .

(11)
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For simplicity, it is assumed that the cavity and the e
ternal laser have a common frequencyvc ­ vL and are
detuned from the atomic resonance byD ­ veg 2 vL.
The resulting atomic density operator can be determin
either by solving the master equation [Eq. (10)] or, alte
natively, by averaging over a number of simulated qua
tum trajectories [18].

In Fig. 3, the results of the mapping and reconstructi
process are shown for an initially pure cavity state

jcst0dlC ­
1

p
2

sj4lC 1 j7lCd , (12)

FIG. 3. (a) Real part of the initial cavity density matrixr
sFd
n,n

vs photon numbern, n; (b) atomic ground state occupatio
probabilities pmsu, wsd vs magnetic quantum numberm and
azimuthal phase indexs of an atom that moved adiabatically
through the cavity; (c) atomic density matrixr

sAd
m,m vs magnetic

quantum numberm, m, inverted tomographically from the data
represented in (b) (see text for parameters).
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The real part of the initial cavity density matrix, i.e
rsCdst0d ­ jcst0dlCkcst0djC vs photon numbern, n is
shown in Fig. 3(a). In order to map this cavity sta
onto a Zeeman submanifold, we assumed a sufficie
large degeneracy (Jg ­ 4 ! Je ­ 3). Both fields are
tuned to the atomic resonanceD ­ 0. All frequencies
are scaled to the spontaneous decay rate of the at
excited stateG, as the peak Rabi frequencyVmax ­
50 G and the maximal cavity coupling constantgmax ­
30 G. The time-dependent Gaussian turn-on (beam)
files were of identical shapeFWHM ­ 1 fG21g and
had a relative delay oft ­ 0.65 fG21g. To complete
the adiabatic passage, a total interaction intervalst0 ­
21.07 fG21g, tend ­ 1.72 fG21gd was chosen. The cav
ity decay rate was set tok ­ 0.01 G which implies a
decay probability ofPC ­ kkNl stend 2 t0d ø 0.15 (for
contemporary cavity QED experiments in the optical
microwave regime see Ref. [19]).

From the final density matrix, the atomic ground st
occupation probability [Eq. (7)] was evaluated withws ­
ss2py4J 1 1d, jsj # 2J, and

pm

√
p

3
, ws

!
­

*
J, m, n

√
p

3
, ws

! É
r

sAd
simstendd

3

É
J, m, n

√
p

3
, ws

!+
.

The result is depicted in Fig. 3(b).
Subsequently, we applied the tomographic inv

sion [defined in Eq. (8)] to these data to obtainr
sAd
m,m,

[Fig. 3(c)]. Direct comparison with the simulated dens
matrix r

sAd
simstendd shows that the inversion procedu

induces no error. The additional features that appea
the mapped quantum state are of physical origin.
populationr

sAd
4,4 is solely due to the spontaneous emiss

of a s2 photon, as this state is otherwise not coup
to the dynamics at all. On the other hand, the sate
peaks that appear in the vicinity of the original coher
superposition state are caused by the decay of the c
state during the adiabatic mapping process. However
resemblance with the original cavity state is striking.

In summary, we have studied a method to map
state of a single quantized cavity mode adiabatically o
a finite dimensional degenerate Zeeman submanifol
an atom that passes through the resonator. Subsequ
we characterize this state by a number of repeated S
Gerlach measurements on identically prepared atom
outlined in Ref. [12]. By a full quantum mechanic
calculation, including spontaneous emission and ca
decay, we have shown that this method yields a fait
image of the original,a priori unknown cavity state. Thi
method is not limited to the measurement of pure st
but may be applied also in case of statistical mixtures.
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discussions. R. W. acknowledges financial support f
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