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This paper is devoted to proving that, in QCD, the lightest glueball state must be the scalar with
JP€ = 0%*. The proof relies upon the positivity of the path integral measure in Euclidean space and
the fact that interpolating fields for all spins can be bounded by powers of the scalar glueball operator.
The problem presented by the presence of vacuum condensates is circumvented by considering the time
and space evolution of the propagators. [S0031-9007(96)01201-X]

PACS numbers: 12.39.Mk, 12.38.Lg

In this paper | shall show that, if glueball states exist,where F4” (x) = %e“”“ﬁFaﬂ(x) is the dual field tensor,
then the lightest one must be tlg ™ scalar. There andf; andfg are constants. The scalar correlator
has r.ecently been a ren_eweo_l flurry of interest, b(_)th T'(x, 1) = O|T[G(x, )G(0)]|0) )
experimental and theoretical, in these very mterestlng?1 _ _
states and the situation is beginning to clarify [1—5].has a standard path integral representation,
In spite of this, the situation still remains unresolved o if4 [ Fo P dx
and somewhat ambiguous, so exact results such as those I'(x,1) = j DAue " de(p + m)
presented here are of some interest. Much detailed
analysis has now been performed on a large amount of X G(x,1)G(0). 3)
recent experimental data with the result that a few rathen sum over quark flavors is to be understood. By
good candidates have emerged, particularly in the regiomserting a complete set of stat¢§) this can also be
1.5-1.7 GeV [1]. Potential, bag [4] and instanton gaswritten as
[2] models suggest that the lowest state should be a
scalar and that its mass should be in the above rangel’(x, ) = Z|<0|G(O)|N>|2e(iEN"iPN”‘)0(t) + (t = —1)
All of these models, in spite of having the virtue of N
incorporating the correct low energy physics of QCD, 4)
are only effective representations of the full theory,from which a corresponding Kallen-Lehmann representa-
and so their accuracy is difficult to evaluate. However tion can be inferred (see below).
recent lattice simulations of QCD based on an extensive A useful subsidiary quantity to consider is (for> 0)
amount of data are in general agreement with these model

results [3]. On the other hand, estimates from a field () = f d*xT(x,1) (5)
theoretic model [5] indicate that the" " tensor should

be the lightest state, whereas a QCD sum rule analysis = Z|<0|G(0)|N>|25(3)(pN)eiMNt, (6)
indicates that it should be tife ™ pseudoscalar [6]. This N

disagreement between the QCD sum rules and the latti
measurements is somewhat surprising since they oug
to be the least model dependent and therefore the mo
reliable. However, the lattice simulations use a quenched,
or valence, approximation, which is not generally believed Qr(1) = Q(it) = e M7, (7)
to be a major source of error, and the QCD sum rulegyhere M, is the mass of the lightest contributing state.
have difficulty satisfying a low energy theorem. In any aAn analogous result can be derived fbKx,7) via its
case, as already state above, the claim of this paper is thg|len-Lehmann representation (see below), where the
regardless of the model or approximation used, the scal@xponential decay arises from the larger |x| behavior
this must be true. of points worth remarking about this before proceeding.
To begin, | shall first review some standard formalismrirst, in pure QCD, where the** glueballs are expected
as it applies to scalar and pseudoscalar glueballs befokg pe the lightest states in their respective chaniéjs=
generalizing to arbitrary states. These spinless states ca; or M. In the full theory, however, the lightest states
be described by the operators, are those of 2 pions and 3pions, respectively, and the
. a y glueballs become unstable resonances and mix with quark
Gx) = fGFW(x)F,‘; (x) (1) states. In that casé/, = M,, or Msz,. On the other
and G(x) = feFy,(0)F (x), hand, in the limit whenr becomes large, but remains

here My is the invariant mass of the stal&). The
clidean version of this (given by taking— i7) implies
at, whenr — o,
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smaller than~2M¢ /T2, where['; is the width of the which implies

resonance, it can be shown that the exponential decay law, - .

Eq. (7), still remains valid but with a magg, given by Fe(x,7) = —(0IGe(x. )HG£(0)10). (13)
Mg rather thanM,, (a similar result obviously also holds where, in the last step, the conditioF|0) = 0 has
for the pseudoscalar case). The point is that, if there arbeen imposed. Notice that, whereas bad(r) and
well-defined narrow resonant states present in a particuldr(x, r) are positive definite, their time derivatives are
channel, then they can be sampled by sweeping throughegative definite. Now, at the classical level, is

an appropriate range of asymptoticvalues where they positive definite. We can therefore repeat our previous

dominate, since is conjugate ta\y [7]. argument by working in Euclidean space and combining
The basic inequality we shall employ is that, in thethe inequalities (8) with a path integral representation for
Euclidean region, (13) to formally obtain (forr > 0) the inequalities,
(F, = FEYY? =2 0= f5'Ge(x, 1) = if(_;IGE(X, 7), fng‘E(x,r) = fng‘E(x,T)
R L (14)
® and /57 0x(r) = [ 0x(r).

where Gg(x,7) = Gg(x,it). Although this inequality

holds for classical fields, it can be exploited in the The larger limit then leads to

quantize_d theor_y by using the path integral repre_sentat_i(_)n, [ Mge MoT = f(_;ZMGe—M(;T (15)

Eq. (3), in Euclidean space where the measure is positive

definite. The positivity of the measure has been skillfullyfrom which (10) follows even in the presence of
used by Weingarten [8] to prove that in the quarkcondensates.

sector the pion must be the lightest state. Here, when There are some subtle points in this argument that
combined with the inequality (8), it immediately leads to deserve clarification, in particular, the nature of the path

the inequalities (valid for > 0), integral representation for (13) and the question of the
-2 ~ —2F vacuum energy contribution. The HamiltoniaH, that
fo'lelxr) = fg le(X’ ™) (9) generates time translationsab initio expressed in terms
and f52Qr(1) = 5 0p(1). of canonical momentum and coordinate field variables (

Bv taki | but <2M/T2) and using (7), the andA, for example, in the axial gauge). Unfortunately, the
in)éqﬁa:::)? ™ large (bu o/1¢) 9 (7) measure of the Hamiltonian path integral in terms of these

variables is not necessarily positive definite even in the
Mg = Mg (10)  Euclidean region. For the above argument to be valid, it is
easily follows. In pure QCD where these glueballs aretherefore necessary that, after integrating out the canonical
isolated singularities, their widths vanish and the limitmomenta, the resulting measure of the Lagrangian form
T — o can be taken without constraint. be positive definite and the integrand in the scalar glueball
Although this is the result we want, its proof presumescase be negative definite. In addition, we need to show
the absence of a vacuum condengate= (0|G(0)[0). It  that the presence of a possible vacuum endfgygiven
is generally believed thaf # 0 so the lightest state by H|0) = Ey|0) [and which was defined to vanish when
contributing to the unitarity sum in Eq. (4) is, in fact, obtaining (13)] does not spoil the argument. To discuss
the vacuum, in which caséf, = 0 and the larger  these problems it is convenient to employ some of the
behavior of I'g(x,7) is a constant,E?, rather than language and results of the transfer matrix formalism
an exponential. Thus, the inequalities (9) are triviallyused in lattice theory since this is directly formulated in
satisfied for asymptotic values af since there is no the Euclidean region as a Lagrangian theory where the
condensate in the pseudoscalar channel. To circumventeasure is positive definite [9].
this problem it is clearly prudent to consider either the For sufficiently small lattice spacing, the elements of
derivative of Q(¢) or, more generally, the time or space the transfer matrix7’, taken between adjacent time slices
evolution of I'(x,¢) since these remove the offending (n + 1)a andna in a coordinate basis are given by
condensate contribution. Although it will be shown below  “Hya
that many of the subtleties can be finessed by considering Tovin = e o (16)

V2T'x(x, 7), it is instructive to first consider (for > 0) In the pure gauge theoryH,,, = Hn+1,n(AavAa) =
. L .03 My 1/2(A2 + B2). In this expression, A, = [A"*! —
Qr(r) = %KOlG(O)lNM 89 (py)Mye - (A1) A"/a = dA,/dt, and the color magnetic fiel®, is
. . _understood to be derived frod, in the usual way and
The vacuum state clearly does not contribute to this SQyaluated as the average of its values at tifies- 1)a
its large 7 behavior is, up to a factorMo, just th_at of andna. Notice thatH,+, is just the coordinate matrix
Eq. (.7)' except FhaMo is now the mass of the lightest element of the usual canonical Minkowski space Hamil-
contributing particle state. Now (far > 0), tonian. H(E,,A,) = 1/2(E2 + B2) with E, replaced

Ie(x,7) = 0le"Gr(0)e #7GE(0)|0), (12) by A,. Except for the factors, this is none other than
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Gr(x). The extension of this to include fermions presentSe‘(MG‘Eo)T. It, too, receives no contribution from the

no difficulty and is best expressed using lattice gauge theracuum condensate. Thus, when combined with (8), this

ory [9,10]. Notice that becausH,.,, = 0 the transfer again leads to (15) and then to (10) even in the presence

matrix elements satisfy the inequalit9:< T,,+,, = 1.  of a vacuum energy.

This bound, which follows from the existence of a As already remarked, an alternative method for deriving

Hamiltonian, plays a central role in our proof [9—11]. the inequality is to use the space rather than the time

Up to an irrelevant normalization factor which cancelsevolution ofI" and, in particular, to consider the quantity

in evaluating amplitudes relative to the vacuum-vacuum

amplitude, the operator form fdf is T = e ", where V2Te(x,7) = —(0lG(x, ))P*G(0)]0), (21)

H is to be expressed canonically in terms of conjugat§yhereP = E, x B, is the 3-momentum operator. Al-

variables. Thud' is basically the time evolution operator though this sidesteps some of the subtleties discussed

which generates the path integral, above, the derivation requires knowledge of the asymp-

_ _ totic behavior of the full correlator rather than just that

Te(x, 7) = (T GTIGTY). 17) of O(7). This can be deduced from its Kallen-Lehmann

representation which follows from asymptotic freedom,

Here (k — l)a = 7 is fixed, while Na — « in order dthe h i< of di . )
to pick out the vacuum expectation value. When thisEd: (4) and the fact thai (x) is of dimension 4:

is expressed in the above matrix form it leads to the I(x,t) = E2 + 11'(0)9%6“(x) + (0)6“(x)
conventional path integral [the Euclidean version of (3)]. " 5
The positivity of the resulting measure simply reflects the + 34] dp” p(W)AF(x, kb . (22)
positivity of 7,4, ‘ T

Let us apply this toQg(7) by considering the finite

lattice difference Here I1(4%) is the scalar glueball propagator [i.e., the

Fourier transform ofl’(x)] whose imaginary part is the

ATg(x,7) = Ti(x,7 + a) — Tp(x,7) spectral weight functiom(¢?); Ar(x, u?) is the standard
free Feynman propagator. From this, one finds that the

= 0IGe(x,7) (T — DGE(0)10). (18)  |arge r behavior of V2I'z(x, 7) is, up to powers, again

_MG'T . - . .
When expressed in matrix form to generate the path in;E is 'reT?:ngtheg;?I t:(;?(;fesegar:sna(t)i]:/((az(lj)éfzgiréhlsc:
tegral, this immediately leads taI'z(x,7) = 0 since “ b YAa ' 9

Gp(x) =0 and .1, = 1. Furthermore, by virtue of all of the previous arguments go through leading to the

(8), the finite difference version of (14) can be straightfor—lm_:‘qu"Jlllty (10). Notice, however,lltha_lt In .th'S (?Se the
wardly derived: vacuum energy presents no complication siB¢@ = 0.

The extension of the above argument to the general

fGPATE(x, 7) = f5*ATk(x, 7). (19) case showing that the scalar must be lighter than all
other glueball states can now be effected. Introduce an

Finally, AQg(r) satisfies a representation identical operatorT,,.z..(x), constructed out of a sufficiently long

to Eq. (11) but with Mye ™" replaced by (1 —  string of Fy,(x)'s and Fi"(x)'s that can, in principle,

e Mva)e~Myx7 - Thus, like (11) it is negative definite, does create an arbitrary physical glueball state of a given spin.

not receive a contribution from the vacuum condensateGenerally speaking, a givef, once constructed, can, of

and behaves the samedé ™ for larger. This therefore course, create states of many different spins, depending on

justifies the argument leading to (15) and therefore to théhe details of exactly how it is constructed. As a simple

inequality (10). example, consider the fourth-rank tensor [12]
We still need to address the question of a nonzero _
vacuum energy,Ey. In Eqg. (11) its presence simply Tyvap(x) = Fup(0)Fap(x) (23)

changesiy to (My — Eo) = 0, reminding us that physi- which creates glueball states with quantum numbers
cal masses are to be measured relativ&fo However, and 0**. Now, in Euclidean space, the magnitude of
irp] Eq. (&3),H geltsdreplacedthH — go])c which, insige bany component offy,(x), or Fa"(x), is bounded by
the path integral, does not have a definite sign, there ; a v i

€p gral . 9 the magnitude of ¢, (x)F&” (x)]'/2. Hence, any single
raising a potential problem. Consider then, instead, th%omponent of T (x) must, up to a constant, be
lattice version of)g(7): bounded b;G(x):MMB ’ '

A’Te(x,7) = (0IGe(x, 7) (Te™* = 1)’ G£(0)]0). (20) Tuvap(x) = f5'G(x). (24)

When expressed as a path integral in matrix form this iS'his inequality is the analog of (8) and so the same line
positive definite. Furthermore it satisfies a representationf reasoning used to exploit that inequality when proving
analogous to (11) but with/ye 7 replaced by{1 —  (10) can be used here. Following the same sequence of
e~ Myv—Ea2 o~ (My=E)7 and so behaves asymptotically as steps leads to the conclusion thi#g must be lighter than
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