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Theorem on the Lightest Glueball State
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This paper is devoted to proving that, in QCD, the lightest glueball state must be the scalar
JPC ­ 011. The proof relies upon the positivity of the path integral measure in Euclidean space
the fact that interpolating fields for all spins can be bounded by powers of the scalar glueball ope
The problem presented by the presence of vacuum condensates is circumvented by considering
and space evolution of the propagators. [S0031-9007(96)01201-X]

PACS numbers: 12.39.Mk, 12.38.Lg
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In this paper I shall show that, if glueball states ex
then the lightest one must be the011 scalar. There
has recently been a renewed flurry of interest, b
experimental and theoretical, in these very interes
states and the situation is beginning to clarify [1–
In spite of this, the situation still remains unresolv
and somewhat ambiguous, so exact results such as
presented here are of some interest. Much deta
analysis has now been performed on a large amoun
recent experimental data with the result that a few ra
good candidates have emerged, particularly in the reg
1.5–1.7 GeV [1]. Potential, bag [4] and instanton g
[2] models suggest that the lowest state should b
scalar and that its mass should be in the above ra
All of these models, in spite of having the virtue
incorporating the correct low energy physics of QC
are only effective representations of the full theo
and so their accuracy is difficult to evaluate. Howev
recent lattice simulations of QCD based on an exten
amount of data are in general agreement with these m
results [3]. On the other hand, estimates from a fi
theoretic model [5] indicate that the211 tensor should
be the lightest state, whereas a QCD sum rule ana
indicates that it should be the021 pseudoscalar [6]. This
disagreement between the QCD sum rules and the la
measurements is somewhat surprising since they o
to be the least model dependent and therefore the m
reliable. However, the lattice simulations use a quench
or valence, approximation, which is not generally believ
to be a major source of error, and the QCD sum ru
have difficulty satisfying a low energy theorem. In a
case, as already state above, the claim of this paper is
regardless of the model or approximation used, the sc
must be the lightest glueball state. I shall now show w
this must be true.

To begin, I shall first review some standard formalis
as it applies to scalar and pseudoscalar glueballs be
generalizing to arbitrary states. These spinless states
be described by the operators,

Gsxd ­ fGFa
mnsxdFmn

a sxd

and G̃sxd ­ fG̃Fa
mnsxdF̃mn

a sxd ,
(1)
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whereF̃
mn
a sxd ; 1

2 emnabFabsxd is the dual field tensor
andfG andfG̃ are constants. The scalar correlator

Gsx, td ; k0jTfGsx, tdGs0dgj0l (2)

has a standard path integral representation,

Gsx, td ­
Z

D Aa
meiy4

R
Fa

mnF
mn
a d4x detsDy 1 md

3 Gsx, tdGs0d . (3)

A sum over quark flavors is to be understood. B
inserting a complete set of statesjNl this can also be
written as

Gsx, td ­
X
N

jk0jGs0djNlj2esiEN t2ipN ?xdustd 1 st ! 2td

(4)
from which a corresponding Kallen-Lehmann represen
tion can be inferred (see below).

A useful subsidiary quantity to consider is (fort . 0)

Qstd ;
Z

d3xGsx, td (5)

­
X
N

jk0jGs0djNlj2ds3dspNdeiMN t , (6)

where MN is the invariant mass of the statejNl. The
Euclidean version of this (given by takingt ! it) implies
that, whent ! `,

QEstd ; Qsitd ø e2M0t , (7)

where M0 is the mass of the lightest contributing sta
An analogous result can be derived forGsx, td via its
Kallen-Lehmann representation (see below), where
exponential decay arises from the larget or jxj behavior
of the free Feynman propagator. There are a cou
of points worth remarking about this before proceedin
First, in pure QCD, where the061 glueballs are expecte
to be the lightest states in their respective channels,M0 ­
MG or MG̃ . In the full theory, however, the lightest state
are those of 2 pions and 3 pions, respectively, and
glueballs become unstable resonances and mix with q
states. In that case,M0 ­ M2p or M3p . On the other
hand, in the limit whent becomes large, but remain
© 1996 The American Physical Society
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smaller than,2MGyG
2
G , whereGG is the width of the

resonance, it can be shown that the exponential decay
Eq. (7), still remains valid but with a massM0 given by
MG rather thanM2p (a similar result obviously also hold
for the pseudoscalar case). The point is that, if there
well-defined narrow resonant states present in a partic
channel, then they can be sampled by sweeping thro
an appropriate range of asymptotict values where they
dominate, sincet is conjugate toMN [7].

The basic inequality we shall employ is that, in t
Euclidean region,

sFa
mn 6 F̃mn

a d2 $ 0 ) f21
G GEsx, td $ 6f21

G̃ G̃Esx, td ,

(8)
where GEsx, td ; GEsx, itd. Although this inequality
holds for classical fields, it can be exploited in t
quantized theory by using the path integral representa
Eq. (3), in Euclidean space where the measure is pos
definite. The positivity of the measure has been skillfu
used by Weingarten [8] to prove that in the qua
sector the pion must be the lightest state. Here, w
combined with the inequality (8), it immediately leads
the inequalities (valid fort . 0),

f22
G GEsx, td $ f22

G̃ G̃Esx, td

and f22
G QEstd $ f22

G̃ Q̃Estd .
(9)

By taking t large (but ,2MGyG
2
G) and using (7), the

inequality

MG # MG̃ (10)

easily follows. In pure QCD where these glueballs
isolated singularities, their widths vanish and the lim
t ! ` can be taken without constraint.

Although this is the result we want, its proof presum
the absence of a vacuum condensateE ; k0jGs0dj0l. It
is generally believed thatE fi 0 so the lightest state
contributing to the unitarity sum in Eq. (4) is, in fac
the vacuum, in which caseM0 ­ 0 and the larget

behavior of GEsx, td is a constant,E2, rather than
an exponential. Thus, the inequalities (9) are trivia
satisfied for asymptotic values oft since there is no
condensate in the pseudoscalar channel. To circum
this problem it is clearly prudent to consider either t
derivative ofQstd or, more generally, the time or spa
evolution of Gsx, td since these remove the offendin
condensate contribution. Although it will be shown belo
that many of the subtleties can be finessed by conside
=2GEsx, td, it is instructive to first consider (fort . 0)

ÙQEstd ­ 2
X
N

jk0jGs0djNlj2ds3dspN dMN e2MNt . (11)

The vacuum state clearly does not contribute to this
its larget behavior is, up to a factor2M0, just that of
Eq. (7), except thatM0 is now the mass of the lightes
contributing particle state. Now (fort . 0),

GEsx, td ­ k0jeHtGEs0de2HtGEs0dj0l , (12)
aw,

are
lar
gh

e

e
on,
tive
ly
rk
en
o

re
it

s

,

ly

ent
e

e
g
w
ing

so

t

which implies

ÙGEsx, td ­ 2k0jGEsx, tdHGEs0dj0l , (13)

where, in the last step, the conditionHj0l ­ 0 has
been imposed. Notice that, whereas bothQEstd and
GEsx, td are positive definite, their time derivatives a
negative definite. Now, at the classical level,H is
positive definite. We can therefore repeat our previ
argument by working in Euclidean space and combin
the inequalities (8) with a path integral representation
(13) to formally obtain (fort . 0) the inequalities,

f22
G

ÙGEsx, td # f22
G̃

Ù̃
GEsx, td

and f22
G

ÙQEstd # f22
G̃

Ù̃QEstd .
(14)

The larget limit then leads to

f22
G MGe2MGt $ f22

G̃ MG̃e2MG̃t (15)

from which (10) follows even in the presence
condensates.

There are some subtle points in this argument
deserve clarification, in particular, the nature of the p
integral representation for (13) and the question of
vacuum energy contribution. The Hamiltonian,H, that
generates time translations isab initio expressed in term
of canonical momentum and coordinate field variablesE
andA, for example, in the axial gauge). Unfortunately, t
measure of the Hamiltonian path integral in terms of th
variables is not necessarily positive definite even in
Euclidean region. For the above argument to be valid,
therefore necessary that, after integrating out the canon
momenta, the resulting measure of the Lagrangian f
be positive definite and the integrand in the scalar glue
case be negative definite. In addition, we need to sh
that the presence of a possible vacuum energyE0 given
by Hj0l ­ E0j0l [and which was defined to vanish whe
obtaining (13)] does not spoil the argument. To disc
these problems it is convenient to employ some of
language and results of the transfer matrix formali
used in lattice theory since this is directly formulated
the Euclidean region as a Lagrangian theory where
measure is positive definite [9].

For sufficiently small lattice spacing,a, the elements o
the transfer matrix,T , taken between adjacent time slic
sn 1 1da andna in a coordinate basis are given by

Tn11,n ­ e2Hn11,na. (16)

In the pure gauge theory,Hn11,n ; Hn11,ns ÙAa, Aad ­
1y2s ÙA2

a 1 B2
ad. In this expression, ÙAa ; fAn11

a 2

An
agya ø ≠Aay≠t, and the color magnetic fieldBa is

understood to be derived fromAa in the usual way and
evaluated as the average of its values at timessn 1 1da
andna. Notice thatHn11,n is just the coordinate matri
element of the usual canonical Minkowski space Ham
tonian. HsEa, Aad ­ 1y2sE2

a 1 B2
ad with Ea replaced

by ÙAa. Except for the factorfG , this is none other than
2623
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GEsxd. The extension of this to include fermions prese
no difficulty and is best expressed using lattice gauge
ory [9,10]. Notice that becauseHn11,n $ 0 the transfer
matrix elements satisfy the inequality:0 # Tn11,n # 1.
This bound, which follows from the existence of
Hamiltonian, plays a central role in our proof [9–11
Up to an irrelevant normalization factor which canc
in evaluating amplitudes relative to the vacuum-vacu
amplitude, the operator form forT is T ­ e2Ha, where
H is to be expressed canonically in terms of conjug
variables. ThusT is basically the time evolution operato
which generates the path integral,

GEsx, td ­ kTN2kGTk21GT ll . (17)

Here sk 2 lda ­ t is fixed, while Na ! ` in order
to pick out the vacuum expectation value. When t
is expressed in the above matrix form it leads to
conventional path integral [the Euclidean version of (3
The positivity of the resulting measure simply reflects
positivity of Tn11,n.

Let us apply this to ÙQEstd by considering the finite
lattice difference

DGEsx, td ; GEsx, t 1 ad 2 GEsx, td

­ k0jGEsx, td sT 2 1dGEs0dj0l . (18)

When expressed in matrix form to generate the path
tegral, this immediately leads toDGEsx, td # 0 since
GEsxd $ 0 and Tn11,n # 1. Furthermore, by virtue o
(8), the finite difference version of (14) can be straightf
wardly derived:

f22
G DGEsx, td # f22

G̃ DG̃Esx, td . (19)

Finally, DQEstd satisfies a representation identic
to Eq. (11) but with MN e2MN t replaced by s1 2

e2MN ade2MN t . Thus, like (11) it is negative definite, doe
not receive a contribution from the vacuum condens
and behaves the same aseMGt for larget. This therefore
justifies the argument leading to (15) and therefore to
inequality (10).

We still need to address the question of a nonz
vacuum energy,E0. In Eq. (11) its presence simpl
changesMN to sMN 2 E0d $ 0, reminding us that physi
cal masses are to be measured relative toE0. However,
in Eq. (13),H gets replaced bysH 2 E0d which, inside
the path integral, does not have a definite sign, ther
raising a potential problem. Consider then, instead,
lattice version ofQ̈Estd:

D2GEsx, td ­ k0jGEsx, td sTeE0a 2 1d2GEs0dj0l . (20)

When expressed as a path integral in matrix form thi
positive definite. Furthermore it satisfies a representa
analogous to (11) but withMN e2MN t replaced byf1 2

e2sMN 2E0dag2e2sMN 2E0dt and so behaves asymptotically
2624
ts
e-

a
.
ls
m

te
r

is
e
].
e

in-

r-

l

s
te,

he

ro

by
he

is
ion

s

e2sMG2E0dt . It, too, receives no contribution from th
vacuum condensate. Thus, when combined with (8),
again leads to (15) and then to (10) even in the prese
of a vacuum energy.

As already remarked, an alternative method for deriv
the inequality is to use the space rather than the t
evolution ofG and, in particular, to consider the quantit

=2GEsx, td ­ 2k0jGsx, tdP2Gs0dj0l , (21)

whereP ­ Ea 3 Ba is the 3-momentum operator. Al
though this sidesteps some of the subtleties discus
above, the derivation requires knowledge of the asym
totic behavior of the full correlator rather than just th
of Qstd. This can be deduced from its Kallen-Lehma
representation which follows from asymptotic freedo
Eq. (4) and the fact thatGsxd is of dimension 4:

Gsx, td ­ E2 1 P0s0d≠2ds4dsxd 1 Ps0dds4dsxd

1 ≠4
Z `

M2
0

dm2

m4
rsm2dDFsx, m2d . (22)

Here Psq2d is the scalar glueball propagator [i.e., th
Fourier transform ofGsxd] whose imaginary part is the
spectral weight functionrsq2d; DFsx, m2d is the standard
free Feynman propagator. From this, one finds that
large t behavior of=2GEsx, td is, up to powers, again
e2MG t. The path integral representation of (21), in whi
Ea is replaced byÙAa as before, is negative definite s
all of the previous arguments go through leading to
inequality (10). Notice, however, that in this case t
vacuum energy presents no complication sincePj0l ; 0.

The extension of the above argument to the gen
case showing that the scalar must be lighter than
other glueball states can now be effected. Introduce
operator,Tmnab...sxd, constructed out of a sufficiently lon
string of Fa

mnsxd0s and F̃
mn
a sxd0s that can, in principle,

create an arbitrary physical glueball state of a given sp
Generally speaking, a givenT , once constructed, can, o
course, create states of many different spins, dependin
the details of exactly how it is constructed. As a simp
example, consider the fourth-rank tensor [12]

Tmnabsxd ­ FmnsxdFabsxd (23)

which creates glueball states with quantum numbers211

and 011. Now, in Euclidean space, the magnitude
any component ofFa

mnsxd, or F̃
mn
a sxd, is bounded by

the magnitude offFa
mnsxdFmn

a sxdg1y2. Hence, any single
component of Tmnabsxd must, up to a constant, b
bounded byGsxd:

Tmnabsxd # f21
G Gsxd . (24)

This inequality is the analog of (8) and so the same l
of reasoning used to exploit that inequality when provi
(10) can be used here. Following the same sequenc
steps leads to the conclusion thatMG must be lighter than
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the lightest state interpolated byTmnabsxd, from which
the inequality

Ms211d $ Ms011d ; MG (25)

follows. It is worth pointing out that the pseudoscal
analog of this operator can be similarly bounded, there
leading to the inequalityMs211d $ Ms221d. This argu-
ment can be generalized to an arbitraryTmnab...sxd since,
again up to some overall constants analogous tofG of
Eq. (1), it is bounded by some powerspd of Gsxd; i.e., for
any of its components,Tmnab...sxd # Gsxdp . Now, the
operatorGsxdp has the same quantum numbers asGsxd
and so can also serve as an interpolating field for the c
ation of the scalar glueball. The same arguments use
prove that this011 state is lighter than either the012 or
the211 can now be extended to the general case show
that it must be lighter thanany state created byany T ; in
other words, the scalar glueball must indeed be the lig
est glueball state.

Finally, we make some brief remarks about the co
ditions under which the bound is saturated. Clearly,
inequalities (8) become equalities whenFa

mnsxd ­ F̃a
mnsxd

which is also the condition that minimizes the action a
signals the dominance of pure nonperturbative instanto
In such a circumstance the011 and012 will be degener-
ate. However, the proof of the mass inequality (10) on
required (8) to be valid at asymptotic values ofjxj. Thus,
the saturation of this bound actually rests only on t
weaker conditions thatF be self-dual in the asymptotic
region where it must vanish like a pure gauge field. Sim
larly, the saturation of the general inequality showing t
scalar to be the lightest state occurs whenall components
of Fa

mnsxd have the same functional dependence at asym
totic values ofjxj. Although this is a stronger condition
than required by the general asymptotic self-dual con
tion, it is, in fact, satisfied by the explicit single instanto
solution. Thus, the splitting of the levels is determin
by how much the asymptotic behavior of the nonpert
bative fields differ from those of pure instantons. Th
therefore suggests a picture in which the overall scale
glueball masses is set by nonperturbative effects driven
instantons (which produce the confining long-range for
but that the level splittings are governed by perturbat
phenomena.
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