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The outstanding question of superstring theory is howsible only if the grand unified gauge group comes from
does it describe our Universe. The space of classicalurrent algebras at levels higher than 1.
supersymmetric string vacua has a large degeneracy, Grand unified models in the superstring theory are
which may be described by a set of parameters, or modulsometimes referred to as grand unified string theories
We expect string dynamics to lift, partially or completely, (GUST). The first GUST analysis was given by Lewellen
this huge degeneracy in the moduli space. Each poirftl]. In particular, he constructed an $0) GUST
in this moduli space corresponds to a particular stringvith four chiral families. Next, Schwartz extended the
model. To be specific, let us consider the heteroticconstruction to include an S8) GUST, also with four
superstring case. Ignoring the possibility of enhancedhiral families [2]. More recently, Erler used the orbifold
gauge symmetry from nonperturbative effects, the ranknethod [3] to construcks GUSTSs, again with an even
of the gauge group is 22 or less [for our countingnumber of families [4]. In the mean time, there are
purpose, Wl) has rank 1]. After accommodating the a number of other interesting related works [5]. Since
standard model of strong and electroweak interactiongature seems to have only three light families, attempts
(with minimum rank 4), there is still plenty of room (i.e., were made to construct a GUST with three chiral families,
with maximum rank 18) for a large hidden sector. Theso far, unsuccessful. This suggests that a 3-family GUST
possible choices of the hidden sector are myriad aneither does not exist, or, more interestingly, is extremely
largely unexplored, and the dynamics in each case iBmited. The GUST models with even number of families
very complicated. The difficulty of string phenomenology mentioned above all involve a level-2 gauge group. So,
is the lack of an objective criteria that would select ato find a GUST with three families, it is natural to go to
particular model among the numerous possibilities; thatevel-3 gauge groups. In this work, we shall report the
is, the moduli space of the hidden sector is too big forconstruction of such a model: A¥ = 1 supersymmetric
the string dynamics to be analyzed systematically. ThiSO(10) GUST with an adjoint Higgs and three chiral
difficulty may be solved by considering grand unificationfamilies; to be more precise, the model has five left-
in string theory. As we shall see, after imposing somehanded and two right-handed chiral families.
rather simple phenomenological constraints, the hidden The model has the gauge group@Y ® U(1) ® M ®
sector seems to be unique and the remaining moduli spa&0(10); ® U(1), where the subscripts indicate the level
is essentially reduced to a one-dimensional space. Thef the current algebra. Her® can be S(2); ® U(1),
string dynamics in this case should be within reach. U(1)?, U(1), or empty. There is only one adjoint Higgs

The apparent unification of the gauge couplings in theepresentation in the SM). Each of the fivel6, and
context of supersymmetry when extrapolated to high enthe two16; families of SG10) is accompanied by &0
ergy scales has created a lot of interest in supersymmetrand a singlet of SQ0). They have quantum numbers
grand unified theories. To realize a grand unified modein U(1)?> ® M, but are singlets under the 82);,. So, by
in the superstring theory, there is a very stringent condefinition, the SW2); gauge group is the hidden sector,
straint. It is well known that, in field theory, adjoint Higgs while M may be considered as a horizontal symmetry.
(or other appropriate higher-dimensional) representation iShere are massless supermultiplets that form doublets in
necessary for a grand unified gauge group to break spontthiis hidden S2),. They are singlets under $) and
neously to the S(3) ® SU(2) ® U(1) gauge group of the neutral under J1). However, these doublets, as well as
standard model. It is also known that, for current algebrashe chiral families of SQ0), have nontrivial quantum
at level 1, space-time supersymmetry with chiral fermionssalues inM. So we may also considéd as the gauge
do not coexist with massless scalar fields in the adjoint ogroup for the messenger or mediator sector, linking the
higher-dimensional representations of the gauge group ihidden and the visible sectors.
heterotic string models. From these facts, one concludes Phenomenologically, one wants a hidden sector that will
that a grand unified model in the superstring theory is posbecome strong so that supersymmetry may be dynamically
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broken. The gauge coupling of a given groGpin the
model at a scalg. below the string scale:, is related to
it via

The spectrum of tha7 = U(1) model can be obtained
in the same way as for the other two models, which
we will discuss in a moment. Since these models are

. ) 2, 2 connected by flat moduli, one may take an effective field

l/ag(p) = ke/astring + (bo/4m)InGm;/u7), (1) theory approyach to obtain the mgssless spectrum of the
where k¢ is the level of the gauge group. For 1y M = U(1) model. Give one of the S@); doublets in
gauge theoryk = 2r2 if the U(1) charge is normalized so the U sector of theM = SU(2); ® U(1) (radius1/3+/2)
that the lowest allowed value is1 (with conformal high- model a nonzero expectation value, and the gauge group
est weightr?/2), andr is the compactification radius of SU(2); ® U(1) breaks to Y1), with the assignment of this
the corresponding world-sheet boson. The congigns  U(1) charge completely determined. In the field theoretic
the one-loop coefficient of the beta function. The hidderapproach, we may also use tl%(10) adjoint Higgs
sector SW2), is asymptotically free while/ is not. At fields to breakSO(10) to SU5) (with its own adjoint
the string scale, the hidden &), couplinga; is 3 times  Higgs fields).
that of the S@10);. So, for typical values of the SQ0) Let us turn to the construction of the models, which
grand unification couplingg, becomes large at a rather is carried out in the orbifold framework [3]. The con-
low scale, within a few orders of magnitude above the elecstruction is achieved by turning on Wilson lines in the
troweak scale. IV is empty, the hidden sector physics SO(32) model toroidally compactified to four dimensions,
will have negligible impact on the physics in the visible followed by aZg orbifold. To make the discussion easier
sector. Since this is phenomenologically undesirable, wéo follow, we split theZe twist into aZ; twist followed by
shall demand a nonempgy in the 3-family GUST. aZ, twist. A more detailed discussion will appear sepa-

In Table I, we give the massless spectra for tworately [6], where other GUSTs are also discussed.
of these cases. The first model is @Y ® SU(2); ® Our starting point is arN = 4 space-time supersym-
SQ(10); ® U(1)?, with the U1) charges normalized to metric Narain model [7] with the momenta of the inter-
radii (1/4/6,1/3+/2,1/6). The second model is §2); ®  nal bosons spanning an even self-dual Lorentzian lattice
S0(10); ® U(1)*, with the U1) charges normalized to I'®?> = I'>? ® I'** ® I''®, where each factor is even self
radii (1/+/6,1/6+/2,1/6+/2,1/6). ltis easy to check that dual. Herel'>? = {(pgllp.)}, with pg, pr € T2 [SU(3)
both models are anomaly free.

TABLE I.

The massless spectra of the two modelsBUe
SO(10) ® U(1)* and SU2) ® SO(10) ® U(1)*.

dilaton, and gauge supermultiplets are not shown.

The gravity,

weight lattice], andp, — pgr € I'* [SU(3) root lattice].
Note thatI'? = {e;n'} and I'> = {&¢'m;}, where ¢; are
the SU3) simple roots, and their duals’ are the cor-
responding weight vectors (i.e; - &/ = 8,i,j = 1,2).
' is the self-dual Spi{32)/Z, lattice. I'** is an even
self-dual Lorentzian lattice that admits a symmetZg

M SU2); ® U(1) ul) e U) orbifold, such that both complex coordinates are simul-
(1,1,45)(0,0,0) (1,45)(0,0,0,0) taneously twisted. The most genel&l* that possesses
(1,3,1)(0,0,0) 2(1,1)(0, +12,0,0),, such aZ; symmetry has ag-dimensional moduli space

U (1,1,1) (0, -6,0), 2(1,1)(0,0, +12,0),, and a generic gauge group = U(1)*. After orbifold-

2(1,4,1)(0,+3,0), 3(1,1)(0,-6,0,0), ing, the resultingM is empty in this generic case. To
2(1,2,1)(0,=3,0); 3(1,1)(0,0,-6,0); obtain a nonempty/, we restrict ourselves to a special
2(1,2,16) (0, =1, 1), 2(1,16) (0, +2,+2,—1). gne-dimensional subspace of the moduli space, which has
22((11’22’11(;) (E)O*__ll’jf)h 22((11 11(;)(%0*j22’:22’j42)h an enhance®. Recall thatI'* is a momentum lattice
(1,’1, i6) (O: +2: _1)2 (1,i6) (0: _4: _4: _1)2 corresponding to a compactification on a torus dgfined by
(1.1.10) (0. +2. +2), (1.10) (0. —4. —4. +2), X TIX, + E;. In our case, the vectos; (and their du-

T 1,1,1) (0, +2, —4), 1,1) (0, —4, —4, —4), als E") can be expressed in terms of the (SJroot and

3 (1,16) (0, —4, +2, — 1), weight vectors; andeé':

((11’,110))(%0,’_:?22”:;2)? Ey =(e1,0),  E» = (e2,0), ()
(1,16) (0, +2,—4, 1), — (—h — (he'
L1002 —4 12 E; = (—hé", ge), Ey = (he', gea), 3)
(1,1)(0,+2, -4, —4), whereg = /1 — h%/3. For0 < h < 1, and with appro-
T (LL16) (1, +1,+1), (1,16) (=1, +1,+1,+1),  priate constant antisymmetric background fields, we have
6 (LL10) (1, +1,-2), (1,10) (*1,+1,+1,-2),  an enhanced gauge gro= SU(3) ® U(1)2. At spe-
(1L L1) (%1, +1, +4), ADEL+L+L44)0 Gal pointsh = 0, 1, T** can be generated H9||E;) and
(2,2,1)(0,0,0), 2(2,1)(0,—3,-3,0), (E'||E"), and the gauge symmetry is enhancedrte=
T (2,4,1)(0,0,0), (2,1) (0,29, +3,0), SU3)? and R = SO(8), respectively. As we shall see,
2 (2,1)(0,+3,+9,0);

(15 ls 1) (131 _390)L

(15 1) (131 _39 _3’0)L

these three cases correspondMo= U(1), M = U(1)?,
andM = SU(2); ® U(1), respectively.
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Next we turn on Wilson lines that break tt#)(32) The model (which we will refer to ad1) that results
subgroup toSO(10)* ® SO(2). This must be done in a from twisting by the abov&; twist hasN = 1 space-time
way so that the resulting Narain model, which we will supersymmetry. First, we discuss the untwisted sector
refer to asN1, still possesses th#&; symmetry of the of this model. All the gauge bosons come from the
space part of thev0 model (so that theZ; orbifolding  untwisted sector, and the gauge group iSBU® R; ®
performed in the next step is possible), and also, th80(10); ® U(1), where Ry C R depends on the value
threeSO(10)s must be symmetric underZa permutation of the modulush. At the generic point0 < i < 1,

[so that modding out by this outer automorphism will R, = U(1)2. At h = 0, R, is enhanced to U)*, and
yield SO(10)3]. The above requirements (up to equivalentfor 2 = 1, Ry = SU(3);. The latter case corresponds to a
representations) fix the Wilson lines to have the followingspecial breakingO(8); D SU(3); that results from th€é
form: twist. This can be understood a¥.a twist in the SU3),
_ (1) (1) < subgroup ofSO(8); D SU(3); ® U(1)> accompanied by
Ui = (e1/2110) (Px /21IPL"/2) (s]010IS), (4) a Z; twist on theZ; symmetry in the 1)? subgroup,
U, = (e2/2]]0) (P}?/znpf)/z) (0]s|0]S) . (5) the latter simply being the triality symmetry of the
. ) i ) . SO(8); Dynkin diagram under whicl§, — 8, — 8. —

Here6v2\/2e are writing the Wilson lines as shift vectors ing  Begides the gauge supermultiplets, other massless
the ' lattice. ThusU, andU, are order 2Z,) ,Sh'ztzs- states appearing in the untwisted sector are three copies
Here e /2 and e, /2 are the right-moving shifts if™>". ¢ aqjgint Higgs fields 0fSO(10);. There are also three

. : ) ) : N
The I'** shifts are given byPr’ = P’ + Ei + E3,  copies of massless states in irrepsRef For example, at

P(Ll) = —hE* and P}z) = P(LZ) + E, + Ey, P(Lz) = hE3. h =1, we have three copies of chiral fermionsliey, of
The SO(32) shifts are given in theSO(10)* ® SO(2)  SU(3); (here we define these states to be left handed).
basis. In this basisf stands for the null vectory The twisted sectors give rise to chiral matter fields of

(V) is the vector weight, whereas (S) ands (S) are  SO(10);. The asymmetricZ; twist (6]|0) in T'>? con-

the spinor and antispinor weights &O(10) [SO(2)].  tributes only a factor ofl to the number of fixed points
[For SO(2), V=1, S =1/2, andS = —1/2.] These as the factor3 contributed by the right movers is can-
Wilson lines break the gauge symmetry to(SU® R ®  celed against the volume factor of the invariant sublattice,
SO(10)* ® SO(2). Note thatR is not affected. All the whichisIT?. Similarly, the outer automorphism twist con-
gauge bosons come from the unshifted sector, wheredgbutes only one fixed point. This follows from the form
the shifted sectors give rise to massive states only. Notef the invariant sublattice, which i = {(~/3q|0)},
that, for each twist antbr shift in the model building, where(q|Q) = (0/0), (v|V), (s]S), (sIS). The momenta in
we have implicitly chosen the spin structures of the right-the twisted and inverse twisted sector belong to the shifted
moving world-sheet fermions to be compatible with thedual latticesI® + (0] = 2/3), respectively, wherd™® =

world-sheet supersymmetry. {(q/~/3]1Q)}. The only nontrivial contribution to the num-
Now we introduce the followindgZ; twist on theN1  ber of fixed points in the twisted sectors comes from the
model: symmetricZ; twist (©||®) in I'**. This twist contributes

9 = 3 X 3, fixed points. So there are nine fixed points
(0110) (6116) (P12/3). (6) in the twisted sector. The left-moving fixed points fall

where 6 is a Z3 twist (that is, a2« /3 rotation) that under irreps of the?, group. ForR, = SU(3); we have
acts only on the right-moving part of thE22 |attice three copies (due to the three right-moving fixed pomts)
(and the corresponding oscillator excitations), and the leftof massless states in the 8) ® SU(3); ® SO(10)s ir-
moving part is untouched. This is an asymmetric orbi-"€Ps(1,3,16)(—1)., (1,3,10)(+2)., (1,3, 1)(—4).. [Here
fold. The I'** lattice is twisted symmetrically by the We give the Ul) charge in parentheses, and its normal-
75 ® Z; O twist. The threeSO(10)s are permuted by ization is 1/6.] Note that the S(B); chiral anomaly
the action of theZ; outer automorphism twisP: ¢! —  In the twisted sectors is canceled by that in the untwisted
bt — ¢l — ¢!, where the real bosong!, I = 1,...,5, sector as al0. of SU(3); has 27 times the anomaly
correspond to theth SO(10) subgroupp = 1,2,3. We  contribution of a3,. The model is also U) anomaly

can define new bosong! = %(Qﬁf + @b + @D the free due to the underlyings structure of theSO(10); ®

other ten real bosons are complexified via linear comfu(l) matter fields as can be seen from the branch-

o I — L 1 YV, Nt —  ing 27 = 16(—1) + 10(+2) + 1(—4) under the break-
binations .y (61 + wdz + w7ds) and (&) ing Es D SO(10) ® U(1).
701 + 0y + we3), wherew = exp27i/3). Un- To obtain the final model, let us orbifold thel model

der P, ¢! is invariant, while®’ [(®/)!] are eigenstates by the following symmetricZ, twist:

with eigenvaluew? (w), i.e., modded out. Th&s; in- T s

variant states form irreducible representations (irreps) of (Oller/2) (=11l = 1) (0710). (7)
SO(10);. Finally, string consistency requires the inclu- Here the left-moving momenta &% are shifted by, /2,
sion of the2/3 shift in the SO(2) lattice. while T''¢ is untouched.T'*# is symmetrically twisted by
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a diagonalZ, twist (1 is a4 X 4 identity matrix). This Last, we consider th&, twisted sector72. Let us

Z, orbifold preserves th& = 1 supersymmetry. consider first the twisted sector of tli&, orbifold of
First, we discuss the untwisted sectdr All the gauge the N1 model, and then itZs-invariant states that are

bosons still come from the untwisted sector, and theresent in the final model. The sublattice invariant under

gauge group is now SQ); ® U(1) ® M ® SO(10); ® the Z, twist is given by the sublattice of'?>? ® I'!6

U(1). The SU2); ® U(1) factor emerges from the regular invariant under the Wilson line&; and U,. The metric

breaking SUW3); D SU(2); ® U(1), due to thee; /2 shift.  of this sublattice has determinan6. Therefore, the

Since this shift is required by string consistency, wenumber of fixed points idz X 4,/+/16 = 2z X 2;. The

see that S), is the biggest possible hidden sector inZ, orbifold breaks SIB) ® SO(8) to SU2) ® U(1) ®

our construction. M is a subgroup ofR;, depending SU(2)*, with two massless sets d2,1,2,2,2)(0) and

on the value ofh. ForO<h <1, M =U(1). For (1,2,1,1,1)(=3). Now consider the action of thZ;

h =0, M is enhanced to U) ® U(1). Forh =1, M twist. It converts the last three $2) to SUQ2);, while

is enhanced to S@); ® U(1), which is a result of the breaking the second $2) to U(1). The resultingZs-

regular breaking SB); D SU(2); ® U(1). Let us focus invariant massless states d22) and(2,4) [in SUQ2) ®

on theh = 1 case, since the other cases are simpler. Not8U(2);] plus a pair of singlets. All the states in nontrivial

that there are no massless states in the nontrivial irrepsreps of SO(10); ® U(1) are massive. This concludes

of SU(2); ® U(1) ® U(1). Two out of the three copies our construction.

of the massless states in the irrepsmf ® SO(10)3 in We have explored various combinations 2f twists

the A1 model haveZ, phase—1, whereas the third copy and shifts, but failed to obtain triefamily feature. This

has the phasd. Since the adjoint irreps 080(10); leads us to the additiona, twist used above. Within

are singlets undeRr;, only one copy of the massless this framework, we have also obtained a variation of the

SO(10); adjoint Higgs fields remains in the final model. above M = SU(2); ® U(1) model; the only difference

We also have one copy of(—6) and 3(0) each, and is the assignment of th& quantum numbers and(U

two copies of2(—3) and4(+3) each [The W1) charge charges. These points and other GUSTs will be discussed

is normalized tol/3+/2.] These states arise as a resultin Ref. [6]. In conclusion, we see that the realization of

of the branching [under SB); D SU(2); ® U(1)] 10 =  the 3-family grand unification in string theory imposes

1(—6) + 2(—3) + 3(0) + 4(+3), where the singlet and very powerful constraints in the moduli space.
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