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Three-Family SO(10) Grand Unification in String Theory
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The construction of a supersymmetric SOs10d grand unification with5 left-handed and2 right-handed
families in the four-dimensional heterotic string theory is presented. The model has one SOs10d adjoint
Higgs field. The SOs10d current algebra is realized at level3. [S0031-9007(96)00948-9]

PACS numbers: 11.25.Mj, 12.10.Dm, 12.60.Jv
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The outstanding question of superstring theory is h
does it describe our Universe. The space of class
supersymmetric string vacua has a large degene
which may be described by a set of parameters, or mo
We expect string dynamics to lift, partially or complete
this huge degeneracy in the moduli space. Each p
in this moduli space corresponds to a particular str
model. To be specific, let us consider the heter
superstring case. Ignoring the possibility of enhan
gauge symmetry from nonperturbative effects, the r
of the gauge group is 22 or less [for our count
purpose, Us1d has rank 1]. After accommodating th
standard model of strong and electroweak interact
(with minimum rank 4), there is still plenty of room (i.e
with maximum rank 18) for a large hidden sector. T
possible choices of the hidden sector are myriad
largely unexplored, and the dynamics in each cas
very complicated. The difficulty of string phenomenolo
is the lack of an objective criteria that would selec
particular model among the numerous possibilities;
is, the moduli space of the hidden sector is too big
the string dynamics to be analyzed systematically. T
difficulty may be solved by considering grand unificati
in string theory. As we shall see, after imposing so
rather simple phenomenological constraints, the hid
sector seems to be unique and the remaining moduli s
is essentially reduced to a one-dimensional space.
string dynamics in this case should be within reach.

The apparent unification of the gauge couplings in
context of supersymmetry when extrapolated to high
ergy scales has created a lot of interest in supersymm
grand unified theories. To realize a grand unified mo
in the superstring theory, there is a very stringent c
straint. It is well known that, in field theory, adjoint Higg
(or other appropriate higher-dimensional) representatio
necessary for a grand unified gauge group to break sp
neously to the SUs3d ≠ SUs2d ≠ Us1d gauge group of the
standard model. It is also known that, for current algeb
at level 1, space-time supersymmetry with chiral fermi
do not coexist with massless scalar fields in the adjoin
higher-dimensional representations of the gauge grou
heterotic string models. From these facts, one conclu
that a grand unified model in the superstring theory is p
0031-9007y96y77(13)y2612(4)$10.00
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sible only if the grand unified gauge group comes fro
current algebras at levels higher than 1.

Grand unified models in the superstring theory a
sometimes referred to as grand unified string theo
(GUST). The first GUST analysis was given by Lewell
[1]. In particular, he constructed an SOs10d GUST
with four chiral families. Next, Schwartz extended th
construction to include an SUs5d GUST, also with four
chiral families [2]. More recently, Erler used the orbifo
method [3] to constructE6 GUSTs, again with an even
number of families [4]. In the mean time, there a
a number of other interesting related works [5]. Sin
nature seems to have only three light families, attem
were made to construct a GUST with three chiral famili
so far, unsuccessful. This suggests that a 3-family GU
either does not exist, or, more interestingly, is extrem
limited. The GUST models with even number of familie
mentioned above all involve a level-2 gauge group.
to find a GUST with three families, it is natural to go
level-3 gauge groups. In this work, we shall report t
construction of such a model: AnN ­ 1 supersymmetric
SOs10d GUST with an adjoint Higgs and three chir
families; to be more precise, the model has five le
handed and two right-handed chiral families.

The model has the gauge group SUs2d1 ≠ Us1d ≠ M ≠

SOs10d3 ≠ Us1d, where the subscripts indicate the lev
of the current algebra. HereM can be SUs2d3 ≠ Us1d,
Us1d2, Us1d, or empty. There is only one adjoint Higg
representation in the SOs10d. Each of the five16L and
the two 16R families of SOs10d is accompanied by a10
and a singlet of SOs10d. They have quantum number
in Us1d2 ≠ M, but are singlets under the SUs2d1. So, by
definition, the SUs2d1 gauge group is the hidden secto
while M may be considered as a horizontal symmet
There are massless supermultiplets that form doublet
this hidden SUs2d1. They are singlets under SOs10d and
neutral under Us1d. However, these doublets, as well
the chiral families of SOs10d, have nontrivial quantum
values inM. So we may also considerM as the gauge
group for the messenger or mediator sector, linking
hidden and the visible sectors.

Phenomenologically, one wants a hidden sector that
become strong so that supersymmetry may be dynamic
© 1996 The American Physical Society
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broken. The gauge coupling of a given groupG in the
model at a scalem below the string scalems is related to
it via

1yaGsmd ­ kGyastring 1 sb0y4pd lnsm2
s ym2d , (1)

where kG is the level of the gauge group. For a Us1d
gauge theory,k ­ 2r2 if the Us1d charge is normalized so
that the lowest allowed value is61 (with conformal high-
est weightr2y2), andr is the compactification radius o
the corresponding world-sheet boson. The constantb0 is
the one-loop coefficient of the beta function. The hidd
sector SUs2d1 is asymptotically free whileM is not. At
the string scale, the hidden SUs2d1 couplinga2 is 3 times
that of the SOs10d3. So, for typical values of the SOs10d
grand unification coupling,a2 becomes large at a rathe
low scale, within a few orders of magnitude above the el
troweak scale. IfM is empty, the hidden sector physic
will have negligible impact on the physics in the visib
sector. Since this is phenomenologically undesirable,
shall demand a nonemptyM in the3-family GUST.

In Table I, we give the massless spectra for tw
of these cases. The first model is SUs2d1 ≠ SUs2d3 ≠
SOs10d3 ≠ Us1d3, with the Us1d charges normalized to
radii s1y

p
6, 1y3

p
2, 1y6d. The second model is SUs2d1 ≠

SOs10d3 ≠ Us1d4, with the Us1d charges normalized to
radii s1y

p
6, 1y6

p
2, 1y6

p
2, 1y6d. It is easy to check tha

both models are anomaly free.

TABLE I. The massless spectra of the two models SUs2d2 ≠
SOs10d ≠ Us1d3 and SUs2d ≠ SOs10d ≠ Us1d4. The gravity,
dilaton, and gauge supermultiplets are not shown.

M SUs2d3 ≠ Us1d Us1d ≠ Us1d

s1, 1, 45d s0, 0, 0d s1, 45d s0, 0, 0, 0d
s1, 3, 1d s0, 0, 0d 2s1, 1d s0, 112, 0, 0dL

U s1, 1, 1d s0, 26, 0dL 2s1, 1d s0, 0, 112, 0dL

2s1, 4, 1d s0, 13, 0dL 3s1, 1d s0, 26, 0, 0dL

2s1, 2, 1d s0, 23, 0dL 3s1, 1d s0, 0, 26, 0dL

2s1, 2, 16d s0, 21, 21dL 2s1, 16d s0, 12, 12, 21dL

2s1, 2, 10d s0, 21, 12dL 2s1, 10d s0, 12, 12, 12dL

2s1, 2, 1d s0, 21, 24dL 2s1, 1d s0, 12, 12, 24dL

s1, 1, 16d s0, 12, 21dL s1, 16d s0, 24, 24, 21dL

s1, 1, 10d s0, 12, 12dL s1, 10d s0, 24, 24, 12dL

T s1, 1, 1d s0, 12, 24dL s1, 1d s0, 24, 24, 24dL

3 s1, 16d s0, 24, 12, 21dL

s1, 10d s0, 24, 12, 12dL

s1, 1d s0, 24, 12, 24dL

s1, 16d s0, 12, 24, 21dL

s1, 10d s0, 12, 24, 12dL

s1, 1d s0, 12, 24, 24dL

T s1, 1, 16d s61, 11, 11dL s1, 16d s61, 11, 11, 11dL
6 s1, 1, 10d s61, 11, 22dL s1, 10d s61, 11, 11, 22dL

s1, 1, 1d s61, 11, 14dL s1, 1d s61, 11, 11, 14dL

s2, 2, 1d s0, 0, 0dL 2s2, 1d s0, 23, 23, 0dL

T s2, 4, 1d s0, 0, 0dL s2, 1d s0, 69, 13, 0dL

2 s2, 1d s0, 13, 69, 0dL

s1, 1, 1d s63, 23, 0dL s1, 1d s63, 23, 23, 0dL
n

c-

e

o

The spectrum of theM ­ Us1d model can be obtaine
in the same way as for the other two models, wh
we will discuss in a moment. Since these models
connected by flat moduli, one may take an effective fi
theory approach to obtain the massless spectrum of
M ­ Us1d model. Give one of the SUs2d3 doublets in
the U sector of theM ­ SUs2d3 ≠ Us1d (radius1y3

p
2)

model a nonzero expectation value, and the gauge g
SUs2d3 ≠ Us1d breaks to Us1d, with the assignment of thi
Us1d charge completely determined. In the field theore
approach, we may also use theSOs10d adjoint Higgs
fields to breakSOs10d to SUs5d (with its own adjoint
Higgs fields).

Let us turn to the construction of the models, whi
is carried out in the orbifold framework [3]. The con
struction is achieved by turning on Wilson lines in t
SOs32d model toroidally compactified to four dimension
followed by aZ6 orbifold. To make the discussion easi
to follow, we split theZ6 twist into aZ3 twist followed by
a Z2 twist. A more detailed discussion will appear sep
rately [6], where other GUSTs are also discussed.

Our starting point is anN ­ 4 space-time supersym
metric Narain model [7] with the momenta of the inte
nal bosons spanning an even self-dual Lorentzian la
G6,22 ­ G2,2 ≠ G4,4 ≠ G16, where each factor is even se
dual. HereG2,2 ­ hspRjjpLdj, with pR , pL [ G̃2 [SUs3d
weight lattice], andpL 2 pR [ G2 [SUs3d root lattice].
Note that G2 ­ heinij and G̃2 ­ hẽimij, where ei are
the SUs3d simple roots, and their duals̃ei are the cor-
responding weight vectors (i.e.,ei ? ẽj ­ d

j
i , i, j ­ 1, 2).

G16 is the self-dual Spins32dyZ2 lattice. G4,4 is an even
self-dual Lorentzian lattice that admits a symmetricZ3

orbifold, such that both complex coordinates are sim
taneously twisted. The most generalG4,4 that possesse
such aZ3 symmetry has an8-dimensional moduli spac
and a generic gauge groupR ­ Us1d4. After orbifold-
ing, the resultingM is empty in this generic case. T
obtain a nonemptyM, we restrict ourselves to a speci
one-dimensional subspace of the moduli space, which
an enhancedR. Recall thatG4,4 is a momentum lattice
corresponding to a compactification on a torus defined
XI ­ XI 1 EI . In our case, the vectorsEI (and their du-
als ẼI ) can be expressed in terms of the SUs3d root and
weight vectorsei andẽi :

E1 ­ se1, 0d, E2 ­ se2, 0d , (2)

E3 ­ s2hẽ2, ge1d, E4 ­ shẽ1, ge2d , (3)

whereg ;
p

1 2 h2y3. For 0 , h , 1, and with appro-
priate constant antisymmetric background fields, we h
an enhanced gauge groupR ­ SUs3d ≠ Us1d2. At spe-
cial pointsh ­ 0, 1, G4,4 can be generated bys0jjEId and
sẼI jjẼI d, and the gauge symmetry is enhanced toR ­
SUs3d2 and R ­ SOs8d, respectively. As we shall see
these three cases correspond toM ­ Us1d, M ­ Us1d2,
andM ­ SUs2d3 ≠ Us1d, respectively.
2613
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Next we turn on Wilson lines that break theSOs32d
subgroup toSOs10d3 ≠ SOs2d. This must be done in
way so that the resulting Narain model, which we w
refer to asN1, still possesses theZ3 symmetry of the
space part of theN0 model (so that theZ3 orbifolding
performed in the next step is possible), and also,
threeSOs10ds must be symmetric under aZ3 permutation
[so that modding out by this outer automorphism w
yield SOs10d3]. The above requirements (up to equivale
representations) fix the Wilson lines to have the follow
form:

U1 ­ se1y2jj0d sPs1d
R y2jjP

s1d
L y2d ssj0j0jSd , (4)

U2 ­ se2y2jj0d sPs2d
R y2jjP

s2d
L y2d s0jsj0jSd . (5)

Here we are writing the Wilson lines as shift vectors
the G6,22 lattice. ThusU1 andU2 are order 2 (Z2) shifts.
Here e1y2 and e2y2 are the right-moving shifts inG2,2.
The G4,4 shifts are given byP

s1d
R ­ P

s1d
L 1 E1 1 E3,

P
s1d
L ­ 2hẼ4 and P

s2d
R ­ P

s2d
L 1 E2 1 E4, P

s2d
L ­ hẼ3.

The SOs32d shifts are given in theSOs10d3 ≠ SOs2d
basis. In this basis,0 stands for the null vector,v
(V ) is the vector weight, whereass (S) and s (S) are
the spinor and antispinor weights ofSOs10d [SOs2d].
[For SOs2d, V ­ 1, S ­ 1y2, and S ­ 21y2.] These
Wilson lines break the gauge symmetry to SUs3d ≠ R ≠

SOs10d3 ≠ SOs2d. Note thatR is not affected. All the
gauge bosons come from the unshifted sector, whe
the shifted sectors give rise to massive states only. N
that, for each twist andyor shift in the model building
we have implicitly chosen the spin structures of the rig
moving world-sheet fermions to be compatible with t
world-sheet supersymmetry.

Now we introduce the followingZ3 twist on theN1
model:

sujj0d sQjjQd sP j2y3d , (6)

where u is a Z3 twist (that is, a2py3 rotation) that
acts only on the right-moving part of theG2,2 lattice
(and the corresponding oscillator excitations), and the
moving part is untouched. This is an asymmetric o
fold. The G4,4 lattice is twisted symmetrically by th
Z3 ≠ Z3 Q twist. The threeSOs10ds are permuted b
the action of theZ3 outer automorphism twistP : f

I
1 !

f
I
2 ! f

I
3 ! f

I
1, where the real bosonsfI

p , I ­ 1, ..., 5,
correspond to thepth SOs10d subgroup,p ­ 1, 2, 3. We
can define new bosonswI ; 1

p
3
sfI

1 1 f
I
2 1 f

I
3d; the

other ten real bosons are complexified via linear co
binations FI ; 1

p
3
sfI

1 1 vf
I
2 1 v2f

I
3d and sFI dy ;

1
p

3
sfI

1 1 v2f
I
2 1 vf

I
3d, wherev ­ exps2piy3d. Un-

der P , wI is invariant, whileFI [sFI dy] are eigenstate
with eigenvaluev2 (v), i.e., modded out. TheZ3 in-
variant states form irreducible representations (irreps
SOs10d3. Finally, string consistency requires the inc
sion of the2y3 shift in theSOs2d lattice.
2614
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The model (which we will refer to asA1) that results
from twisting by the aboveZ3 twist hasN ­ 1 space-time
supersymmetry. First, we discuss the untwisted sec
of this model. All the gauge bosons come from t
untwisted sector, and the gauge group is SUs3d1 ≠ R1 ≠

SOs10d3 ≠ Us1d, where R1 , R depends on the value
of the modulush. At the generic point0 , h , 1,
R1 ­ Us1d2. At h ­ 0, R1 is enhanced to Us1d4, and
for h ­ 1, R1 ­ SUs3d3. The latter case corresponds to
special breakingSOs8d1 . SUs3d3 that results from theQ
twist. This can be understood as aZ3 twist in the SUs3d1

subgroup ofSOs8d1 . SUs3d1 ≠ Us1d2 accompanied by
a Z3 twist on theZ3 symmetry in the Us1d2 subgroup,
the latter simply being the triality symmetry of th
SOs8d1 Dynkin diagram under which8y ! 8s ! 8c !
8y . Besides the gauge supermultiplets, other mass
states appearing in the untwisted sector are three co
of adjoint Higgs fields ofSOs10d3. There are also three
copies of massless states in irreps ofR1. For example, at
h ­ 1, we have three copies of chiral fermions in10L of
SUs3d3 (here we define these states to be left handed).

The twisted sectors give rise to chiral matter fields
SOs10d3. The asymmetricZ3 twist sujj0d in G2,2 con-
tributes only a factor of1 to the number of fixed points
as the factor3 contributed by the right movers is can
celed against the volume factor of the invariant sublatti
which isG2. Similarly, the outer automorphism twist con
tributes only one fixed point. This follows from the form
of the invariant sublattice, which isG6 ­ hs

p
3qjQdj,

wheresqjQd ­ s0j0d, svjV d, ssjSd, ssjSd. The momenta in
the twisted and inverse twisted sector belong to the shif
dual latticesG̃6 1 s0j 6 2y3d, respectively, wherẽG6 ­
hsqy

p
3jQdj. The only nontrivial contribution to the num

ber of fixed points in the twisted sectors comes from t
symmetricZ3 twist sQjjQd in G4,4. This twist contributes
9 ­ 3R 3 3L fixed points. So there are nine fixed poin
in the twisted sector. The left-moving fixed points fa
under irreps of theR1 group. ForR1 ­ SUs3d3 we have
three copies (due to the three right-moving fixed poin
of massless states in the SUs3d1 ≠ SUs3d3 ≠ SOs10d3 ir-
repss1, 3, 16ds21dL, s1, 3, 10ds12dL, s1, 3, 1ds24dL. [Here
we give the Us1d charge in parentheses, and its norm
ization is 1y6.] Note that the SUs3d3 chiral anomaly
in the twisted sectors is canceled by that in the untwis
sector as a10L of SUs3d3 has 27 times the anomaly
contribution of a3L. The model is also Us1d anomaly
free due to the underlyingE6 structure of theSOs10d3 ≠

Us1d matter fields as can be seen from the bran
ing 27 ­ 16s21d 1 10s12d 1 1s24d under the break-
ing E6 . SOs10d ≠ Us1d.

To obtain the final model, let us orbifold theA1 model
by the following symmetricZ2 twist:

s0jje1y2d s21jj 2 1d s015j0d . (7)

Here the left-moving momenta ofG2,2 are shifted bye1y2,
while G16 is untouched.G4,4 is symmetrically twisted by
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a diagonalZ2 twist (1 is a 4 3 4 identity matrix). This
Z2 orbifold preserves theN ­ 1 supersymmetry.

First, we discuss the untwisted sectorU. All the gauge
bosons still come from the untwisted sector, and
gauge group is now SUs2d1 ≠ Us1d ≠ M ≠ SOs10d3 ≠

Us1d. The SUs2d1 ≠ Us1d factor emerges from the regula
breaking SUs3d1 . SUs2d1 ≠ Us1d, due to thee1y2 shift.
Since this shift is required by string consistency,
see that SUs2d1 is the biggest possible hidden sector
our construction. M is a subgroup ofR1, depending
on the value ofh. For 0 , h , 1, M ­ Us1d. For
h ­ 0, M is enhanced to Us1d ≠ Us1d. For h ­ 1, M
is enhanced to SUs2d3 ≠ Us1d, which is a result of the
regular breaking SUs3d3 . SUs2d3 ≠ Us1d. Let us focus
on theh ­ 1 case, since the other cases are simpler. N
that there are no massless states in the nontrivial ir
of SUs2d1 ≠ Us1d ≠ Us1d. Two out of the three copie
of the massless states in the irreps ofR1 ≠ SOs10d3 in
the A1 model haveZ2 phase21, whereas the third cop
has the phase1. Since the adjoint irreps ofSOs10d3
are singlets underR1, only one copy of the massles
SOs10d3 adjoint Higgs fields remains in the final mode
We also have one copy of1s26d and 3s0d each, and
two copies of2s23d and 4s13d each [The Us1d charge
is normalized to1y3

p
2.] These states arise as a res

of the branching [under SUs3d3 . SUs2d3 ≠ Us1d] 10 ­
1s26d 1 2s23d 1 3s0d 1 4s13d, where the singlet and
the triplet have theZ2 phase1, while the doublet and the
quartet have the phase21.

Next, let us consider theZ3 twisted (plus its inverse
sector T3. We start with the nine fixed points in th
sector. Of these nine fixed points, the one at the origi
invariant under theZ2 twist. The remaining eight fixed
points form four pairs, and theZ2 twist permutes the two
fixed points in each pair. Forming four symmetric a
four antisymmetric combinations, we have9 ­ 5s1d 1

4s21d (where theZ2 phases are given in parenthese
that is, five of the original nine are invariant under t
Z2 twist. Since there is no relative phase between theT2
and T3 sectors, these five copies of theSOs10d3 chiral
matter fields survive, while the other four are projec
out. These five copies transform in the irreps ofM. We
have two copies ofs1, 2, 16ds0, 21, 21dL and one copy of
s1, 1, 16ds0, 12, 21dL, plus the corresponding vector an
singlet irreps ofSOs10d3 [the Us1d charges are normalize
to s1y

p
6, 1y3

p
6, 1y6d].

Next, consider theZ6 twisted (plus its inverse) sec
tor T6. The sublattice invariant under theZ6 twist
is the same as that for theZ3 twist. The number
of fixed points in theT6 sector is one. The mass
less chiral fields are singlets under SUs2d1 ≠ SUs2d3:
s1, 1, 16d s61, 21, 21dR, plus the corresponding vecto
and singlet irreps ofSOs10d3. Note that these states a
right handed, and come in pairs [61 of the first Us1d
charge]. So, effectively, we have a total of3 ­ 5 22 left-
handed chiral families of16’s.
e
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te
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Last, we consider theZ2 twisted sectorT2. Let us
consider first the twisted sector of theZ2 orbifold of
the N1 model, and then itsZ3-invariant states that are
present in the final model. The sublattice invariant und
the Z2 twist is given by the sublattice ofG2,2 ≠ G16

invariant under the Wilson linesU1 andU2. The metric
of this sublattice has determinant16. Therefore, the
number of fixed points is4R 3 4Ly

p
16 ­ 2R 3 2L. The

Z2 orbifold breaks SUs3d ≠ SOs8d to SUs2d ≠ Us1d ≠
SUs2d4, with two massless sets ofs2, 1, 2, 2, 2d s0d and
s1, 2, 1, 1, 1d s63d. Now consider the action of theZ3

twist. It converts the last three SUs2d to SUs2d3, while
breaking the second SUs2d to Us1d. The resultingZ3-
invariant massless states ares2, 2d and s2, 4d [in SUs2d ≠

SUs2d3] plus a pair of singlets. All the states in nontrivia
irreps of SOs10d3 ≠ Us1d are massive. This conclude
our construction.

We have explored various combinations ofZ3 twists
and shifts, but failed to obtain the3-family feature. This
leads us to the additionalZ2 twist used above. Within
this framework, we have also obtained a variation of t
above M ­ SUs2d3 ≠ Us1d model; the only difference
is the assignment of theM quantum numbers and Us1d
charges. These points and other GUSTs will be discus
in Ref. [6]. In conclusion, we see that the realization
the 3-family grand unification in string theory impose
very powerful constraints in the moduli space.
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