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Defect Lines in the Ising Model and Boundary States on Orbifolds
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Critical phenomena in the two-dimensional Ising model with a defect line are studied using boundary
conformal field theory on thec ­ 1 orbifold. Novel features of the boundary states arising from the
orbifold structure, including continuously varying boundary critical exponents, are elucidated. New
features of the Ising defect problem are obtained including a novel universality class of defect lines and
the universal boundary to bulk crossover of the spin correlation function. [S0031-9007(96)01226-4]
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Boundary conformal field theory [1] is of conside
able current interest in string theory [2], classical tw
dimensional critical phenomena, and quantum impu
problems [3]. In the case of thec ­ 1 free boson, com-
pactified onto a circle or radiusr, Dirchlet (D) and Neu-
mann (N) boundary conditions, in which the field or i
dual obeyw ­ w0 or w̃ ­ w̃0, have been well studie
[4]. By symmetry, the dimensions of boundary operat
are independent ofw0, w̃0. Here we extend this analys
to thec ­ 1 Z2 orbifold [5] in which w and2w are iden-
tified, showing that now the boundary dimensions dep
on these parameters and that special features occur a
orbifold fixed points,w0 ­ 0, pr, w̃0 ­ 0, py2r . These
results are used to understand the critical behavior
defect line in the Ising model.

We consider a two-dimensional Ising model at its cr
cal temperature, with a (horizontal) defect line. Mo
fying the vertical couplings across the defect line, fo
square lattice on a torus, yields the classical Hamiltoni

E ­ 2
X

i­1,M

X
j­1,N21

fJ1si,jsi11,j 1 J2si,jsi,j11g

2
X

i­1,M

fJ1si,N si11,N 1 J̃si,N si,1g . (1)

Various exact results have been obtained on this m
[6,7]. When the bulk couplingsJ1 andJ2 are tuned to the
critical point, the defect model exhibits a line of critic
points depending on the details of the defect, i.e.,
value of J̃ in Eq. (1). The spin-spin correlation functio
decays along the defect line with a critical exponent wh
varies continuously along the line of critical points. Oth
types of defect lines are possible, including modificat
of horizontal couplings, introducing multispin coupling
imposing magnetic fields at the line, etc. Eight oth
universality classes can be readily obtained by cut
the system at the defect line and imposing independ
boundary conditions, spin up, spin down, or free on
two sides.

To apply boundary conformal field theory (CFT)
this problem, we must “fold” the system at the defe
line [8] (see Fig. 1), obtaining two Ising variables
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each point, coupled only at the boundary, a special c
of the Ashkin-Teller (AT) model. The correspondin
CFT is hence thec ­ 1 Z2 orbifold [5]. We show that
all known universality classes of boundary conditions
the Ising defect line problem, and some additional o
not previously known, correspond toD and N boundary
conditions on the orbifold model. The universal groun
state degeneracyg [9] is calculated for all boundary
conditions and the relative renormalization group stabi
is discussed. We have calculated the spin correla
function with the spins at arbitrary points relative
the defect line and each other for arbitrary bound
conditions; we give the result forD boundary conditions
here. Details and further results will be given in a long
paper [10].

The Hilbert space for the AT model with period
boundary conditions contains two sectors, in which the f
boson obeys either periodic or twisted boundary conditi
[5]. Boundary states are constructed, in general, us
both sectors. (Related discussions in string theory
found in [11].) For a periodic boson, boundary sta
are constructed using the oscillator creation opera
for right and left movers of momentum62pnyb, a

y
Rn,

and a
y
Ln, where b is the length of the periodic spatia

interval. In addition the zero-mode statesjsw, kdl are used.
Here w and k are integers which label winding numbe

FIG. 1. The folding of the Ising model on a cylinder to
c ­ 1 theory on a strip. We fold at the defect line and al
at the line on the opposite side. These lines correspond to
boundary in the folded system.
© 1996 The American Physical Society
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in the space and time direction, respectively. The l
and right-moving energies of these states ares2pybdx and
s2pybdx̄ with x ­ srw 1 ky2rd2, x̄ ­ srw 2 ky2rd2.
The Dirichlet boundary state which is an eigenstate
wssd with eigenvaluew0 is [4]

jDsw0dl ­
1

p
2r

exp

"
2

X̀
n­1

a
y
Lna

y
Rn

#

3
X̀

k­2`

e2ikw0yr js0, kdl . (2)

Orbifold model boundary states must be invariant un
w ! 2w; hence it is necessary to combine theD states
with eigenvaluew0 and2w0:

jDOsw0dl ­
1

p
2

fjDsw0dl 1 jDs2w0dlg . (3)

It is useful to consider a torus of circumferencesb and2l
with two D defect lines at diametrically opposite location
separated byl. After folding, this corresponds to the finit
cylinder geometry considered in Ref. [1]. The partiti
function at inverse temperatureb can be written in terms
of the boundary states as

Zw0,w 0
0

­ kDOsw0dje2lHP
b jDOsw0

0dl

­ Zsw0 2 w0
0d 1 Zsw 1 w0

0d , (4)

where

Zsw0 2 w0
0d ­ kDsw0dje2lHP

b jDsw0
0dl

­
1

hsqd

X̀
n­2`

q2r2fn1sw02w
0
0dy2pg2

, (5)

with hsqd ­ q1y24
Q`

n­1s1 2 qnd and q ­ e2pbyl .
Zsw0 2 w

0
0d is the partition function for a periodic boso

Note that all states in the Boltzmann sum have inte
multiplicity and that, in the casew0 ­ w

0
0, the ground

state occurs with multiplicity one. It is this physic
condition which fixed the normalization of the bounda
state in Eqs. (2) and (3). In the case of equal bound
conditions, the finite-size energies give the dimensi
of boundary operators [1]. For a periodic boson
boundary operator spectrum can be read off from Eq.
x ­ 2r2n2 1 integer. It is independent ofw0, as it must
be by symmetry. However, this is not the case for
orbifold boson; instead, from Eq. (4), the boundary scal
dimensions vary continuously withw0, corresponding to
a line of fixed points.

Also note that for the orbifold case whenw0 is at
one of the fixed points,0 or pr, the ground state
occurs with multiplicity two, signaling that this is no
a well-defined boundary state. To obtain well-defin
Dirichlet boundary states in these two cases we m
add a component from the twisted sector. Imposing
twisted boundary conditionwss 1 bd ­ 2wssd leads
to oscillators with half-integer momenta,an11y2. There
are no zero modes in this case and the constant pa
w must have the value0 or pr, corresponding to two
t-
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different oscillator ground states,j0lT and jprlT . Thus
we can only construct Dirichlet states in the twisted sec
for these values ofw0. These states are

jDsw0dT l ; exp

"
2

X̀
n­0

a
y
Lsn11y2da

y
Rsn11y2d

#
jw0lT , (6)

where w0 ­ 0 or pr only. There are four possible
D boundary states in these cases, which give inte
multiplicities when combined with the otherD states and
give unit multiplicity for the ground state when combine
with themselves. These are

jDOsw0d6l ; 221y2jDsw0dl 6 221y4jDsw0dT l , (7)

for w0 ­ 0, pr only.
In a similar manner we can constructN states. For a

periodic boson these are

jNsw̃0dl ­
p

r
X̀

w­2`

e22irww̃0 exp

"
1

X̀
n­1

a
y
Lna

y
Rn

#
3 jsw, 0dl . (8)

Note that in this case we use the other type of zero mo
which vary in the space direction, and that the sign in
exponential for the oscillator factor is reversed.jNsw̃0dl is
an eigenstate of the dual field,w̃ssd, of radius1y2r, with
eigenvaluew̃0. We may regard̃w as an orbifold variable
with fixed points at0 and py2r. Thus the orbifoldN
states are

jNOsw̃0dl ­
1

p
2

fjNsw̃0l 1 jNs2w̃0dlg , (9)

for 0 , w̃0 , py2r. We can construct four specialN
states forw̃0 ­ 0, py2r by analogy with theD con-
struction, using the twisted sector. These are constru
from the linear combinations of oscillator ground sta
sj0lT 6 jprlT d, respectively.

These two continuous lines,0 , w0 , pr and
0 , w̃0 , py2r, plus 8 discrete points of bound
ary states obey the Ishibashi conditionfT ssd 2

T̄ ssdg jAl ­ 0, where T and T̄ are the left- and right-
moving components of the energy-momentum tens
All partition functions constructed from any pair of the
boundary states contain only non-negative integer mu
plicities. The states constructed from the same bound
state at both boundaries all have unit multiplicity f
the identity operator. We conjecture that for gene
values ofr this is the most general set of boundary sta
satisfying these conditions. The analogous statement
been proven for a periodic boson [12].

We now apply ther ­ 1 case of this general analys
of orbifold boundary CFT into the Ising model with
defect line. TheD boundary conditions correspond to th
integrable defect line of Eq. (1). By comparing the exa
spectrum [7] with that of the CFT we obtain

tansw0 2 py4d ­
sinhfs1 2 J̃yJ2dJ2yT g
sinhfs1 1 J̃yJ2dJ2yT g

s0 , w , pd , (10)
2605
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while sinhsJ1yTd sinhsJ2yT d ­ 1 so that the bulk Ising
model is critical. As we varỹJyJ2 from 2` to `, w0
decreases monotonically frompy4 2 tan21fexps2J2yTdg
(between3py4 and p) to py4 2 tan21fexps22J2yT dg
(between0 and py4). Only in the extreme anisotropi
limit J2yJ1 ! 0, doesw0 approach the end-point value
p and0.

There are additional discrete universality classes
defect lines in which different boundary conditions a
imposed independently on the two sides of the li
Cardy has shown [1] that there are only three universa
classes of boundary conditions for an Ising model o
semi-infinite plane: spin up ("), spin down (#), and free
( f). We denote the boundary state corresponding to"
boundary condition on the left of the defect and a# on the
right as j "#l, etc. Thej ffl state simply corresponds t
the Dirchlet state with̃JyJ2 ­ 0, w0 ­ py2. By direct
comparison of the partition functions, we have verifi
that the four boundary states corresponding to" and #

boundary conditions are

j ""l ­ jDOs0d1l, j #"l ­ jDOspd1l , (11)

with the spin-reversed states given by the correspon
“–” orbifold boundary states. It is interesting to note th
the unphysical boundary state obtained by extrapola
w0 ! 0 without including the twisted sector can b
written

lim
w0!0

jDOsw0dl ­ jDOs0d1l 1 jDOs0d2l ­ j ""l 1 j ##l .

(12)

This limit corresponds to an infinitely strong couplin
across the defect line and also a limit where the ot
vertical couplingsJ2yT ! 0 while the horizontal cou-
plings, J1yT ! `. Thus it seems reasonable to suppo
that the two horizontal chains of spins which are coup
across the defect line,si, Nd and si, 1d, get locked into a
perfectly ferromagnetically aligned state corresponding
j ""l 1 j ##l. Similarly, the limit w0 ! p gives the per-
fectly aligned antiferromagnetic state.

The other four possibilities for imposing differe
boundary conditions on the two sides of the defect li
j f "l, etc., correspond to the four end-pointN boundary
conditions in a similar way. The nature of theN line of
boundary states is commented on below.

We now turn to the renormalization group stability
these various universality classes of boundary conditio
This can be addressed by checking for relevant boun
operators allowed by symmetry, and also by invoking
g theorem which states that the ground-state degenerag
always decreases in flows from less stable to more st
fixed points. We first consider the continuous line
D fixed points, with0 , w0 , p . This has the value
g ­ 1 along the entire line, indicating that this is inde
a line of stable fixed points; no flow can occur along
line. We can read off the dimensions of all bounda
operators from the partition function of Eq. (4). Th
2606
of
e
e.
ity
a

a

d

ing
t
ng

er

se
d

to

t
e,

f
ns.
ary
e
y
ble
f

d
e

ry
e

only nontrivial relevant boundary operators (of dimens
x # 1) have dimensions2sw0ypd2 and 2sw0yp 2 1d2.
They can be shown to correspond tos1 6 sN , the sum
and difference of the Ising spin operators on the two s
of the defect line. If we consider a defect line with t
Ising Z2 symmetry, then the relevant boundary opera
are prevented from occurring by symmetry. Thus theD
boundary conditions are a stable line of fixed points wh
should attract generic defect lines withZ2 symmetry.
That is, we may consider arbitrary vertical and horizon
couplings near the defect line (which preserve horizo
translational symmetry) and always expect to renorma
to a D fixed point with some value ofw0. On the other
hand, if we break theZ2 symmetry, for example, b
appling a magnetic field along the defect line, then
destablize these fixed points. It is natural to expect
we then renormalize to one of the end-pointD boundary
conditions corresponding to independent spin up or d
boundary conditions on the two sides of the defect l
Taking over the results for a semi-infinite Ising syste
[1,9] we conclude that these boundary conditions h
g ­ 1y2, and no relevant operators. They are the m
stable fixed points.

The generalN states haveg ­
p

2 and have relevan
operators of dimensionx ­ 1y2, which correspond to
product of the Ising spin operators on the two sides of
defect line. Thus, they represent unstable critical po
which could be achieved only by imposing addition
symmetries at the defect line [10]. We expect that add
other couplings would produce a flow away from theN
boundary conditions toD boundary conditions (g ­ 1), if
the Z2 symmetry is preserved, or to fixed spin bound
conditions (g ­ 1y2) if not.

Finally, we turn to the critical spin-spin correlatio
function for an infinite system with a defect line ofD
type, for arbitrary strength of the defect. We introdu
a complex spatial coordinate for the folded system,z ­
x 1 iy, where x, y are the two spatial coordinates; t
defect is aty ­ 0 so y $ 0 after folding. (If the Ising
model does not haveJ1 ­ J2, square symmetry, it i
neccessary to rescale one of the coordinates.) The fo
introduces two different spin operatorss1 and s2 at
each point. This universal bulk to boundary crosso
function, depending in a nontrivial universal way on t
cross ratiox ; jsz1 2 z2dysz1 2 z̄2dj2, can be determine
by standard methods in terms of the boundary s
[1,13]. Using the explicit construction of the AT mod
conformal blocks by Zamolodchikov [14], and theD-
boundary states given above, we obtain

ksjsz1dsjsz2dl ­

µ
1

4y1y2x

∂1y8 1
q3sssusxdddd

q3

3 ssse2iw0 ,
p

usxd ddd , (13)

for two spins on the same side of the defect line (be
folding). Hereqj are elliptic theta functions (as define
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FIG. 2. The two-spin correlation for various strengths of
defect. We show the result for (a)ks1s1l and (b)ks1s2l for
w0 ­ 0 (strong coupling and anisotropic limit),0.1p, 0.2p,
and 0.25p (no defect),0.3p, 0.4p, and 0.5p (free boundary
condition). They are shown as a function of the (horizon
distancer, in a log-log plot.

in Ref. [5]) andusxd is defined byx ­ fq2sudyq3sudg4.
When the two points are on opposite sides of the de
line before folding we obtain

ks1sz1ds2sz2dl ­

µ
1

4y1y2x

∂1y8 1
q3sssusxdddd

q2

3 ssse2iw0 ,
p

usxd ddd . (14)
Using MATHEMATICA , we have plotted, in Fig. 2, the co
relation functions for the two points at unit distance fro
the boundary and separated by an arbitrary distance
each other. In the short-distance limit,ks1s1l converges
to a unique power law, 1y4, which is independent of th
defect strength. This is the expected bulk limit. In t
large-distance limit, the correlation function is govern
by another exponent,s2w0ypd2, which depends on the de
fect strength. This is the boundary limit. Our result int
polates between these two limits. In the “short-distan
limit, ks1s2l converges to a constant which depends
the defect strength. This actually corresponds to two s
e
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located symmetrically about the defect line. In gener
ks1s2l is smaller thanks1s1l for the same defect strengt
and the same (horizontal) distance, as expected. Ne
theless, they asymptotically converge to the same pow
law function in the large-distance limit with the consta
prefactor forJ̃ fi 0.
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Note added.—After most of this work was completed
we were informed that A. W. W. Ludwig has obtaine
some related results independently.
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