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Defect Lines in the Ising Model and Boundary States on Orbifolds
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Critical phenomena in the two-dimensional Ising model with a defect line are studied using boundary
conformal field theory on the = 1 orbifold. Novel features of the boundary states arising from the
orbifold structure, including continuously varying boundary critical exponents, are elucidated. New
features of the Ising defect problem are obtained including a novel universality class of defect lines and
the universal boundary to bulk crossover of the spin correlation function. [S0031-9007(96)01226-4]

PACS numbers: 05.50.+q, 11.25.Hf, 61.72.Lk

Boundary conformal field theory [1] is of consider- each point, coupled only at the boundary, a special case
able current interest in string theory [2], classical two-of the Ashkin-Teller (AT) model. The corresponding
dimensional critical phenomena, and quantum impurityCFT is hence the = 1 Z, orbifold [5]. We show that
problems [3]. In the case of the= 1 free boson, com- all known universality classes of boundary conditions in
pactified onto a circle or radius, Dirchlet (D) and Neu- the Ising defect line problem, and some additional ones
mann (V) boundary conditions, in which the field or its not previously known, correspond i® and N boundary
dual obeyg = ¢y or @ = &y, have been well studied conditions on the orbifold model. The universal ground-
[4]. By symmetry, the dimensions of boundary operatorsstate degeneracy [9] is calculated for all boundary
are independent apy, $o. Here we extend this analysis conditions and the relative renormalization group stability
to thec = 1 Z, orbifold [5] in which ¢ and—¢ are iden- is discussed. We have calculated the spin correlation
tified, showing that now the boundary dimensions dependunction with the spins at arbitrary points relative to
on these parameters and that special features occur at tthee defect line and each other for arbitrary boundary
orbifold fixed points,pg = 0, wr, 9 = 0, w/2r. These conditions; we give the result fap boundary conditions
results are used to understand the critical behavior of here. Details and further results will be given in a longer
defect line in the Ising model. paper [10].

We consider a two-dimensional Ising model at its criti- The Hilbert space for the AT model with periodic
cal temperature, with a (horizontal) defect line. Modi- boundary conditions contains two sectors, in which the free
fying the vertical couplings across the defect line, for aboson obeys either periodic or twisted boundary conditions
square lattice on a torus, yields the classical Hamiltonian[5]. Boundary states are constructed, in general, using

both sectors. (Related discussions in string theory are

= - Z Z [Jioijoit1j + Jo0ij0ij+1] found in [11].) For a periodic boson, boundary states
i=LM j=1.N-1 are constructed using the oscillator creation operators
~ ; 1
_ Z Jioinoiny + Joiyoiil. (1) for rlgTht and left movers of momenturﬁzw.n/,.e, aRns
i=1,M and a;,, where B is the length of the periodic spatial

Various exact results have been obtained on this moddfterval. In addition the zero-mode statés, k)) are used.

[6,7]. When the bulk couplingg, andJ, are tuned to the Herew andk are integers which label winding numbers
critical point, the defect model exhibits a line of critical

points depending on the details of the defect, i.e., the
value ofJ in Eq. (1). The spin-spin correlation function / \
decays along the defect line with a critical exponent which ‘
varies continuously along the line of critical points. Other
types of defect lines are possible, including modification

of horizontal couplings, introducing multispin couplings, / —_— /

imposing magnetic fields at the line, etc. Eight other

universality classes can be readily obtained by cutting / T

the system at the defect line and imposing independent { Defect Line

boundary conditions, spin up, spin down, or free on the // Defect Line

two sides. . . .
. FIG. 1. The folding of the Ising model on a cylinder to a
To apply boundary conformal field theory (CFT) to ¢ = 1 theory on a strip. We fold at the defect line and also

this problem, we must *fold” the system at the defectat the line on the opposite side. These lines correspond to the
line [8] (see Fig. 1), obtaining two Ising variables at boundary in the folded system.
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in the space and time direction, respectively. The leftdifferent oscillator ground state$))r and|7r)r. Thus
and right-moving energies of these states(are/8)x and  we can only construct Dirichlet states in the twisted sector
Qm/B)x with x = (rw + k/2r)%, ¥ = (rw — k/2r)>.  for these values op,. These states are

The Dirichlet boundary state which is an eigenstate of S +
¢ (o) with eigenvaluepy is [4] ID(@o)7) = X0 = D 4] (us1/98Rm+12) | l@0)T. (6)
o0 n=0
ID(g0)) = L eXF{— > azna;n} where o = 0 or 7r only. There are four possible
V2r D boundary states in these cases, which give integer

ikgo/r multiplicities when combined with the othér states and
X _Z ¢ 10, k). () give unit multiplicity for the ground state when combined
k= with themselves. These are

Orbifold model boundary states must be invariant under N A1) 14
¢ — —¢; hence it is necessary to combine thestates IDo(eo) %) = 277D (o)) + 27 *ID(@0)r),  (7)
with eigenvaluep, and — ¢y: for ¢ = 0, 7r only.

1 In a similar manner we can constru¥t states. For a
|Do (o)) = EHD(%» + ID(=¢0))].  (3)  periodic boson these are

It is useful to consider a torus of circumferenggsnd?2! IN(&0)) = V7 Z e 2irwdo ex;{Jr Z aznazn}
with two D defect lines at diametrically opposite locations, w=—00 =
separated by. After folding, this corresponds to the finite X |(w,0)). (8)

cylinder geometry considered in Ref. [1]. The partition
function at inverse temperatug® can be written in terms
of the boundary states as

Note that in this case we use the other type of zero modes
which vary in the space direction, and that the sign in the
. exponential for the oscillator factor is reversdt.(¢g)) is
Zpp ol = (Do (po)le e [Do(e))) an eigenstate of the dual fiel@(o), of radius1/2r, with

_ o / eigenvaluep,. We may regardp as an orbifold variable

= Zleo = e0) T Ze T @), () it fixed points at0 and or/2r. Thus the orbifoldy
where states are

oy — e_lHZ /
Zgo = #0) = (Dlgolle ™ Dleo) No(@o) = 7 ING) + INC-G0)]. (9)

1 < > A
= % - 2l gom g0, ®)  foro< oo < m/2r. We can construct four special
e states forgy = 0, 7/2r by analogy with theD con-
with  7(q) = q"*[T,—1(1 = ¢") and g =e "P/".  gguction, using the twisted sector. These are constructed
Z(po — o) is the partition function for a periodic boson. from the linear combinations of oscillator ground states
Note that all states in the Boltzmann sum have intege(|0); + |7r)y), respectively.
multiplicity and that, in the case, = ¢y, the ground These two continuous linesp < ¢y < 7r and
state occurs with multiplicity one. It is this physical 0 < ¢, < 7/2r, plus 8 discrete points of bound-
condition which fixed the normalization of the boundary ary states obey the Ishibashi conditioff'(¢) —
state in Egs. (2) and (3). In the case of equal boundary(s)]|A) = 0, whereT and T are the left- and right-
conditions, the finite-size energies give the dimenSionﬁ]oving components of the energy-momentum tensor.
of boundary operators [1]. For a periodic boson thea|l partition functions constructed from any pair of these
boundary operator spectrum can be read off from Eq. (Sloundary states contain only non-negative integer multi-
x = 2r’n? + integer. Itis independent afy, as it must piicities.” The states constructed from the same boundary
be by symmetry. However, this is not the case for thestate at both boundaries all have unit multiplicity for
orbifold boson; instead, from Eq. (4), the boundary scalinghe identity operator. We conjecture that for generic
dimensions vary continuously witl,, corresponding to values ofr this is the most general set of boundary states
a line of fixed points. satisfying these conditions. The analogous statement has
Also note that for the orbifold case whepo is at  been proven for a periodic boson [12].
one of the fixed points0 or =zr, the ground state We now apply ther = 1 case of this general analysis
occurs with multiplicity two, signaling that this is not of orbifold boundary CFT into the Ising model with a
a well-defined boundary state. To obtain well-definedgefect line. TheD boundary conditions correspond to the
Dirichlet boundary states in these two cases we mushtegrable defect line of Eq. (1). By comparing the exact
add a component from the twisted sector. Imposing thgpectrum [7] with that of the CFT we obtain

twisted boundary conditiorp(o + B) = —¢ (o) leads | — 7/ /T
to oscillators with half-integer momenta,, ;.. There tan(og — 7 /4) = sinfi( ~/ 2)/2/T]
are no zero modes in this case and the constant part of sinf{(1 + J/J2)J2/T]

¢ must have the valu® or 7rr, corresponding to two 0 < e <m, (10)
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while sinHJ,/T)sinh(J,/T) = 1 so that the bulk Ising only nontrivial relevant boundary operators (of dimension
model is critical. As we vary//J, from —o to <, ¢, x = 1) have dimensiong(¢,/7)> and 2(¢o/7 — 1)2.
decreases monotonically from/4 — tan '[exp2J,/T)]  They can be shown to correspondde * oy, the sum
(between3w /4 and 7) to 7 /4 — tan [exp(—2J,/T)]  and difference of the Ising spin operators on the two sides
(between0 and 7/4). Only in the extreme anisotropic of the defect line. If we consider a defect line with the
limit J,/J; — 0, doesg, approach the end-point values Ising Z, symmetry, then the relevant boundary operators
7 ando0. are prevented from occurring by symmetry. Thus ihe
There are additional discrete universality classes oboundary conditions are a stable line of fixed points which
defect lines in which different boundary conditions areshould attract generic defect lines witf, symmetry.
imposed independently on the two sides of the lineThat is, we may consider arbitrary vertical and horizontal
Cardy has shown [1] that there are only three universalitouplings near the defect line (which preserve horizontal
classes of boundary conditions for an Ising model on dranslational symmetry) and always expect to renormalize
semi-infinite plane: spin upf), spin down [), and free to a D fixed point with some value opy. On the other
(f). We denote the boundary state corresponding to ahand, if we break theZ, symmetry, for example, by
boundary condition on the left of the defect anflan the  appling a magnetic field along the defect line, then we
right as|1l), etc. The|ff) state simply corresponds to destablize these fixed points. It is natural to expect that
the Dirchlet state with//J, = 0, 9 = 7 /2. By direct we then renormalize to one of the end-palhtboundary
comparison of the partition functions, we have verifiedconditions corresponding to independent spin up or down
that the four boundary states correspondingftand|  boundary conditions on the two sides of the defect line.
boundary conditions are Taking over the results for a semi-infinite Ising system,
1) = |Do(0)+), 1) = |Do(m)+), (11) [1,9] we conclude that these boundary conditions have

) ) ) g = 1/2, and no relevant operators. They are the most
with the spin-reversed states given by the correspondingtaple fixed points.

“—" orbifold boundary states. It is interesting to note that The generalV states have = +/2 and have relevant
the unphysical boundary state obtained by extrapolatingperators of dimension = 1/2, which correspond to a
¢o — 0 without including the twisted sector can be product of the Ising spin operators on the two sides of the
written defect line. Thus, they represent unstable critical points
lim |Do(@o)) = IDo(0)+) + |Do(0)—) = |1) + |ll).  which could be achieved only by imposing additional
$0—0 symmetries at the defect line [10]. We expect that adding
12)  other couplings would produce a flow away from tNe
This limit corresponds to an infinitely strong coupling boundary conditions t® boundary conditionsg(= 1), if
across the defect line and also a limit where the othethe Z, symmetry is preserved, or to fixed spin boundary
vertical couplings/,/T — 0 while the horizontal cou- conditions g = 1/2) if not.
plings,J;/T — . Thus it seems reasonable to suppose Finally, we turn to the critical spin-spin correlation
that the two horizontal chains of spins which are coupledunction for an infinite system with a defect line @f
across the defect lindj, N) and (i, 1), get locked into a type, for arbitrary strength of the defect. We introduce
perfectly ferromagnetically aligned state corresponding t@a complex spatial coordinate for the folded systen=
[11) + [ll). Similarly, the limit ¢ — 7 gives the per- x + iy, wherex,y are the two spatial coordinates; the
fectly aligned antiferromagnetic state. defect is aty = 0 soy = 0 after folding. (If the Ising
The other four possibilities for imposing different model does not havd, = J,, square symmetry, it is
boundary conditions on the two sides of the defect lineneccessary to rescale one of the coordinates.) The folding
| £ 1), etc., correspond to the four end-poitboundary introduces two different spin operatoks; and o, at
conditions in a similar way. The nature of theline of  each point. This universal bulk to boundary crossover
boundary states is commented on below. function, depending in a nontrivial universal way on the
We now turn to the renormalization group stability of cross ratior = |(z; — z2)/(z1 — Z2)|%, can be determined
these various universality classes of boundary conditiondy standard methods in terms of the boundary state
This can be addressed by checking for relevant boundaif,13]. Using the explicit construction of the AT model
operators allowed by symmetry, and also by invoking theconformal blocks by Zamolodchikov [14], and the-
g theorem which states that the ground-state degengracyboundary states given above, we obtain
always decreases in flows from less stable to more stable

1/8
fixed points. We first consider the continuous line of (0i(z1)0j(z2)) = < 1 ) 1 9
D fixed points, with0 < ¢, < 7. This has the value ' ‘ dy1yax /) 3(u(x))
g = 1 along the entire line, indicating that this is indeed X (e20 m) (13)

a line of stable fixed points; no flow can occur along the
line. We can read off the dimensions of all boundaryfor two spins on the same side of the defect line (before
operators from the partition function of Eq. (4). The folding). Hered; are elliptic theta functions (as defined
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(.':m)1 é)orrelation function of two spins in the same layer
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FIG. 2. The two-spin correlation for various strengths of the

defect. We show the result for (&, o) and (b){c0») for
¢@o = 0 (strong coupling and anisotropic limit)).17, 0.2,
and 0.257 (no defect),0.37, 0.47r, and 0.57 (free boundary

condition). They are shown as a function of the (horizontal)

distancer, in a log-log plot.

in Ref. [5]) andu(x) is defined byx = [ (u)/ %3 (u)]*.

When the two points are on opposite sides of the defect

line before folding we obtain

1\
(1(z)oaz)) = ( 4mx) S
X (29 (). (14)

Using MATHEMATICA , we have plotted, in Fig. 2, the cor-

located symmetrically about the defect line. In general,
(o107) is smaller thar{o o) for the same defect strength
and the same (horizontal) distance, as expected. Never-
theless, they asymptotically converge to the same power-
law function in the large-distance limit with the constant
prefactor forJ # 0.
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Note added—After most of this work was completed,
we were informed that A.W.W. Ludwig has obtained
some related results independently.

*Electronic address: oshikawa@physics.ubc.ca
TElectronic address: affleck@physics.ubc.ca
[1] J.L. Cardy, Nucl. PhysB324, 581 (1989).
[2] J. Polchinski, Phys. Rev. Letf5, 4724 (1995).
[3] I. Affleck, Acta Phys. Pol26, 1869 (1995).
[4] C.G. Callan, C. Lovelace, C.R. Nappi, and S.A. Yost,
Nucl. Phys.B293 83 (1987).
For a review, see P. Ginsparg, fields, Strings and Criti-
cal Phenomena, Les Houches, Session Xlddited by
E. Brezin and J. Zinn-Justin (North-Holland, Amsterdam,
1988).
R.V. Bariev, Sov. Phys. JETB0, 613 (1979); B.M.
McCoy and J.H.H. Perk, Phys. Rev. Letf4, 840
(1980); L.P. Kadanoff, Phys. Rev. B4, 5382 (1981);
A.C. Brown, Phys. Rev. B5, 331 (1982); G. Delfino,
G. Mussardo, and P. Simonetti, Nucl. Phy432 518
(1994).
M. Henkel and A. Patkds, Nucl. Phy8&285 29 (1987);
M. Henkel, A. Patkés, and M. Schlottmann, Nucl. Phys.
B314, 609 (1989); D.B. Abraham, L.F. Ko, and N.M.
Svrakic, J. Stat. Phy$6, 563 (1989).

[5]

[6]

[7]

relation functions for the two points at unit distance from [8] E. Wong and I. Affleck, Nucl. PhysB417, 403 (1994).
the boundary and separated by an arbitrary distance froni9] |. Affleck and A.W.W. Ludwig, Phys. Rev. Let67, 161

each other. In the short-distance limit;; o) converges
to a unique power law, /4, which is independent of the
defect strength. This is the expected bulk limit.

In the
large-distance limit, the correlation function is governed
by another exponent2¢o/7)?, which depends on the de-

(1991).

[10] M. Oshikawa and I. Affleck (to be published).

[11] J.A. Harvey and J.A. Minahan, Phys. Lett. B8 44
(1987); N. Ishibashi and T. Onogi, Nucl. Phyg318 239
(1989); G. Pradisi and A. Sagnotti, Phys. Lett2B6, 59
(1989).

fect strength. This is the boundary limit. Our resultinter-119] p. Friedan (private communication).
polates between these two limits. In the “short-distance(13] J.L. Cardy and D.C. Lewellen, Phys. Lett. B9, 274

limit, (o10) converges to a constant which depends on

(1991).

the defect strength. This actually corresponds to two spinfi4] Al. B. Zamolodchikov, Sov. Phys. JET&S, 1061 (1986).

2607



