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Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gas
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The Bose-Einstein condensates of alkali atomic gases are spinor fields with local “spin-gau
symmetry. This symmetry is manifested by a superfluid velocityus (or gauge field) generated by
the Berry phase of the spin field. In “static” traps,us splits the degeneracy of the harmonic energy
levels, breaks the inversion symmetry of the vortex nucleation frequencyVc1, and can lead tovortex
ground states. [S0031-9007(96)01231-8]
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The recent discoveries of Bose-Einstein condensa
in atomic gases of87Rb [1], 7Li [2], and 23Na [3] have
achieved a long sought goal in atomic physics. They h
also provided condensed matter physicists opportuni
to study interacting Bose systems at a wide range
densities. The realizations of these condensates are m
possible by the invention of a number of special magne
traps which trap alkali atoms inF ­ 2 (or F ­ 1)
hyperfine spin states, with spins maximally aligned w
the local magnetic fieldB. These hyperfine states ar
referred to as “adiabatic” spin states.

An immediate question is whether these alkali co
densates differ from the familiar4He condensate in any
fundamental way. Unlike the spinless4He atoms, alkali
atoms have nonzero hyperfine spins. The condensate
(hyperfine) spin-F Bose gas is a spinor field

kĉmsx, tdl ­ zmsx, tdFsx, td , (1)

where ĉm is the field operator,m is a label for Fz

s2F # m # Fd, F is a scalar, andzm is a normalized
spinor. The fact that condensation takes place among
adiabatic spin states means thatz is aligned with the mag-
netic field, i.e.,B̂ ? Fz ­ Fz , whereF is the hyperfine
spin operator. Withz specified byB, the dynamics of
kĉml is completely specified by that of the scalar fieldF,
as in 4He. One might then conclude that apart from e
trinsic factors like density and external potential, there
no intrinsic symmetry difference between4He and alkali
condensates. This is in fact the starting point of all curr
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theories, which model the alkali systems as interacting
lute spinlessBose gases in harmonic potentials. With
these models, the effective Hamiltonian for the scalarF

has a global U(1) gauge symmetry, as in4He.
The actual symmetry of the spinor field [Eq. (1

however, is much larger than U(1). We call itlocal
spin-gauge symmetry. It represents that a local ga
changeeixsx,td of kĉml can be undone by a local sp
rotatione2isxyFdB̂sx,td?F. As we shall see, because of th
symmetry, the effective Hamiltonian of the scalarF is not
that of 4He, but that of a neutral superfluid in a veloci
field us, or an electron in a vector potentialA. The
velocity (or gauge field)us arises from the Berry phase o
the spin fieldz and is a direct reflection of the underlyin
spin-gauge symmetry. The purpose of this paper is
discuss various forms of spin-gauge effects.

To begin, we first discuss the effective Hamiltonia
For brevity, we shall refer to hyperfine spins as sim
“spins.” We shall consider only hyperfine spinF ­
2, as the treatment of theF ­ 1 case is exactly the
same. The Hamiltonians of the alkali systems are of
form H ­ Hs 1 V , whereHs ­

R
dxĉ1

m sxd f2 h̄2

2M =2 2

maBsx, td ? Fgmnĉnsxd is the single particle Hamiltonian
M andma ­ 2mBy2 are the mass and magnetic mome
of the atom,mB is the Bohr magneton, and the factor 1y2
is theg factor of the alkali atom.B is a sum of magnetic
field configurations which can be static [2,3] or dynam
[1]. V is the two-particle interaction between the atom
To form a trap, the Zeeman energy2maB (or its time
© 1996 The American Physical Society 2595
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average) must behave like a potential well. Ifhz sndj are
the spin eigenstates alonĝB (B̂ ? Fz snd ­ nz snd, 22 #

n # 2), then the Zeeman energy2maB ? F reduces to
Usndsx, td ­

1
2 nmBBsx, tdsnd for the statesz snd. If mBB

is an attractive well,Usnd is confining (deconfining) for
n . 0 (n # 0) [4]. This means that spin flips betwee
n . 0 andn # 0 states can cause atoms to leave the t
SinceV generally causes spin flips unless both atoms
in the maximum spin state along the same quantiza
axis (in which case spin flips are prohibited by angu
momentum conservation), it depletes all but the adiab
spin statesz s2d in the trap. The resulting system is a
interacting Bose gas with spins aligned with the local fi
Bsx, td [4].

To construct a theory for the adiabatic spin stat
we expandĉm in terms of the spin eigenstatesz snd,
ĉmsx, td ­

P2
n­22 z

snd
m sx, tdĉ sndsx, td. ExpressingB̂ ­

ẑ cosb 1 sinbsx̂ cosa 1 ŷ sinad, the explicit form is

z snd
m ­ kmjUjnl, U ­ e2iaFz e2ibFy e2ixFz , (2)

whereFz jnl ­ njnl. x is arbitrary. It is the gauge de
gree of freedom of the system, and is usually cho
to make the spinorz snd single valued. The effective
HamiltonianH can be obtained by rewriting the equ
tion of motionih̄≠tĉm ­ fĉm, Hg in the formih̄≠tf̂

snd ­
ff̂snd, H g. One then findsH ­ Had 1 Hnad 1 Hetc.
Had, referred to as the adiabatic Hamiltonian, conta
f̂s2d only. Hnad is the spin-flip (or nonadiabatic) Hami
tonian which consists of cross terms betweenf̂s2d and
f̂snfi2d. Hetc describes the transitions between differe
n fi 2 states and can be ignored. Denotingf̂s2d andz s2d

asf̂ andz , respectively, we have

Had ­
Z

dxf̂1

"
1

2M

µ
h̄=

i
1 Mus

∂2

1 U 1 W

#
f̂ 1 V , (3)

where U ­ Us2d ­ mBBsxd, W ­ sh̄2y2Md fj=z j2 1

sz 1=z d2g 2 ih̄z 1≠tz , and V is the projection ofV
onto the adiabatic spin states. It is of the formV ­R

V sx 2 ydf̂1sxdf̂1sydf̂sydf̂sxd, whereV sx 2 yd is a
short range potential. The velocityus is defined as

Mus ­ sh̄yidz 1=z . (4)

Equation (3) describes a Bose fluid in a background
locity field 2us, or a chargee system in a vector potentia
A if Mus ; eAyc. Under a local spin rotation expfiB̂ ?

Fxsxdg, us ! us 1 sFh̄yMd=xsxd, which is equiva-
lent to a local gauge transformation̂f ! expfiFxsxdgf̂.
This is a reflection of the underlying spin-gauge symm
try of z . The integral

R
C us ? ds is the Berry’s phase o

z around a loopC. It can be easily calculated from th
2596
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vorticity (Vs) of us, which satisfies the Mermin-Ho rela
tion [5]

Vs ­
1
2

= 3 us ­

µ
h̄

2M

∂
eabgB̂a=B̂b 3 =B̂g . (5)

Equation (5) shows that the spatial variations ofB neces-
sary to produce the trapping potential will inevitably ge
erate to a nonvanishing superfluid velocityus.

From the above derivation, it is clear that even in t
absence of particle collisions, the adiabatic spin states
only metastable,for the nonadiabatic HamiltonianHnad

always induces transitions of adiabatic states to ot
less confined or completely deconfined spin states.
trapping of atoms therefore requires weak nonadiab
effects. In the rest of this paper, we shall focus
the phenomena associated with the adiabatic spin fie
(described byHad only). We shall discuss nonadiabat
effects elsewhere, but point out here that they can
ignored if the Dirac centers of the magnetic trap a
sufficiently far away from the atom cloud. A Dirac cent
is the point whereB ­ 0 and where the unit vectors
B̂ surroundingD wrap around the unit spheren times
(n is a nonzero integer). IfD resides in the cloud,
the adiabatic spin field aroundD will develop a line
singularity emerging fromD (a Dirac string) which will
cause a lot of spin flips. The field parameters discus
below are all within the range to keep the Dirac cen
sufficiently far away from the cloud.

To be concrete, we consider “static traps” of the for
(= ? B ­ = 3 B ­ 0)

Bsxd ­ B0ẑ 1 G1sxx̂ 2 yŷd

1 sG2y2dfsz2 2 r2y2dẑ 2 zrg , (6)

wherer ; sx, yd andG1 andG2 are the first and second
order field gradients, respectively. The magnetic tr
of the form Eq. (6) is similar to that used in the7Li
experiment [2]. It is convenient to express the fie
gradients asG1 ; B0sgyLd, G2 ; B0yL2. The trapping
potentialU in Eq. (3) can then be expressed as

U ­ h̄VZee 1
1
2 Msv2

'r2 1 v2
z z2d 1 OjxyLj4, (7)

where h̄VZee ­ mBB0, v2
z ­ mBB0ysML2d, vzyv' ­

sg2 2 1y2d21y2 ; l, g2 . 1y2. For later use, we denote
the longitudinal and transverse widths of the ground st
Gaussian of the harmonic well [Eq. (7)] asaz and a',
whereaz ­ sh̄yMvzd1y2, a' ­ sh̄yMv'd1y2. Typically
az , a' ø L. It is straightforward to show thatW ­
sh̄2y2Md sfsinb=ag2 1 f=bg2d, where a, b are polar
angles ofB as defined earlier. This term is smaller tha
the harmonic potential inU by a factorsga'yLd4 and
can be ignored in general.
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From Eq. (5) it is straightforward to show tha
[with x ­ 2a in Eq. (2)] us ­

2 h̄
M s1 2 BzyBd

3 =ftan21sByyBxdg, and

us ­ 2
h̄
M

µ
g

L

∂2

ẑ 3 r 1 Osx2yL3d ,

Vs ­ 2ẑ
h̄
M

µ
g

L

∂2

1 OsjxjyL3d .
(8)

Thus for jxj , L, the spin-gauge effect generates
constant effective “rotation”2Vs alongẑ.

An immediate consequence ofVs is that it gen-
erates a Coriolis force on the alkali system. Th
force can be detected by applying an ac magnetic fi
along x̂, b ­ be2ivtx̂. This field will generate a term
smBbgy2Ldxe2ivt in the effective HamiltonianHad,
as if a time dependent forcef ­ smBbgy2Lde2ivt x̂ is
present. It is easy to see that the equation of mot
of the center of mass in thex-y plane,R ­

R
f̂1rf̂,

r ­ sx, yd, assumes the form

M
d2R
dt2

­ 2Mv2
'R 1 2M

dR
dt

3 Vs 1 f , (9)

which has resonances atv ­ v' 6 Vs (for v' ¿ Vs).
The degenerate clockwise and counterclockwise harmo
modesv' are split by the Coriolis force. This splitting
exists in both normal and superfluid phases and can
easily shown to be independent of particle interactions

More pronounced effects can be found in the superfl
phase of alkali atoms with positive scattering lengtha .

0. Because of spin-gauge symmetry, the ground s
energy functional becomes

E sFd ­
1

2M

É µ
h̄=

i
1 Mus

∂
F

É2
1 sU 1 W d jFj2 1 s2p h̄2ayMd jFj4. (10)

Whenus is small, Eq. (10) can be written asE sF, usd ­
E sF, 0d 2 VsLz (Lz ­ 2ih̄Fpẑ? r 3 =F), which is
the Hamiltonian density of a scalar superfluid in
container rotating with frequencyVsẑ. Let V

0
c1 denote

the vortex nucleation frequency in the absence of sp
gauge effect (i.e.,Vs ­ 0). Because of the backgroun
rotationVs, the actual vortex nucleation frequenciesV

6
c1

for vortices with 2p circulation around6ẑ will be
V

6
c1 ­ V

0
c1 7 Vs. In particular, whenVs $ V

0
c1, hence

V
1
c1 # 0, vortex ground state will emerge in the absen

of external rotation.
The value ofV0

c1 has been studied for harmonic trap
by a number of authors [6,7]. Using the Thomas-Fer
approximation (TFA) [6,8], which is good at largeN ,
Baym and Pethick have shown thatV

0
c1 is reduced

by particle interactions from its noninteracting valu
v' as

V0
c1yv' ­ Q22 ln Q2,

Q ­ R'ya' ­ s15lNaya'd1y5,
(11)
t
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where R' is the transverse width of the condensa
Since V

0
c1 ~ N22y5, Vs ~ N0, the inversion asymmetry

of the nucleation frequencies,sV1
c1 2 V

2
c1dysV1

c1 1 V
2
c1d

ø VsyV
0
c1, increases asN2y5. Thus for sufficiently large

N the condition of vortex ground stateVsyV
0
c1 $ 1 can

always be met. From Eqs. (8) and (11), one finds t
the ratioVsyV

0
c1 increases as the externally controllab

parametersN, G1, B21
0 , l increase.

Figure 1 shows the ratioVsyV
0
c1 [calculated from

Eqs. (8) and (11)] as a function of field gradientG1 for
different oblate traps (l ­ vzyv' . 1) for a Na conden-
sate withN ­ 5 3 106 particles. The scattering lengtha
of 23Na is 14.9 nm. The field at the center of the tra
is set atB0 ­ 1 G. The reason that we consider obla
traps instead of prolate ones is because spin-gauge e
turns out to be much more prominent in oblate clou
For the field gradients shown, and forN ­ 5 3 106, TFA
[6,8] is valid and Eq. (11) applies. Moreover, it is eas
shown that the Dirac centerssXD , YD , ZDd of the static
trap Eq. (6) are located ats6L

p
8g2 1 2, 0, 2gLd and

s0, 6L
p

8g2 1 2, 22gLd. For the cases we considere
these centers lie sufficiently far above the oblate cloud
nonadiabatic effects are unimportant. (IfRz denoted the
width of the condensate alongz, which is related toR' as
Rz ­ R'yl [6], we haveR' ­ 1.08 3 1023 cm,2.13 3

1023 cm, 5.3 3 1023 cm, and ZDyRz ­ 2.2, 4.51, 10.2
for l ­ 5, 10, 25.)

From Fig. 1, one sees that vortex ground states can
reached (i.e., whenVsyV

0
c1 ­ 1) by increasing the field

gradientG1 or increasingl. Forl ­ 10 and 25 the “criti-
cal” field gradientGp

1 that stabilizes the vortex groun
state is 463 and 1151 Gycm, respectively. The corre
sponding trap frequenciessv', vzdys2pd are (60.6, 1212)
and (399, 7980) Hz. Note that even if the field gradie
is below the critical valueGp

1 , there is a large range o
field gradients which has sizable asymmetry in the vor

FIG. 1. The increasing spin-gauge effect for increasing fi
gradients and increasing oblateness of the trap. The square
circle indicate the appearance of vortex ground states, i.e., w
VsyV

0
c1 ­ 1.
2597
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FIG. 2. The phase boundary of separating vortex and non
tex ground states for different ratios ofvzyv'l. The vortex
(and nonvortex) states lie above (below) the phase bound
The states labeled by circle and square correspond to tho
Fig. 1.

nucleation frequencies, manifesting spin-gauge
fects. For example, for l ­ 10, the asymmetry
sV1

c1 2 V
2
c1dysV1

c1 1 V
2
c1d ø VsyV

0
c1 increases rapidly

beyond 20% for G1 $ 400 Gycm. In Fig. 2 we show
the phase boundaries in theG1-N plane (for different
ls) separating the vortex and nonvortex ground sta
Regions above and below the boundary (labeled byl) are
vortex and nonvortex ground states, respectively.
negative slopes of these boundaries show that the vo
ground state is easier to achieve for larger condens
We also note that the ratioVsyv', which describes
the amount of energy level splitting in Eq. (9), is of t
order of1022 to 1021 for almost the entire range of fiel
gradients considered in Fig. 1 except for the small ra

FIG. 3. The increasing1ye lifetime as a function of field
gradient for nonvortex ground states for different aspect ra
l. The actual ground states to the left of the circle and squ
are in fact vortex ground states, which will have lifetim
longer than the nonvortex states because of the reductio
particle density near the vortex core.
2598
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G1 , 50 Gycm. This splitting, though small, is within
the limit of detectability.

The field gradients considered in Figs. 1 and 2
typically 10 times those in current experiments. The
traps are more confining than the current ones [1–
Since tighter traps means higher densities at the ce
of the atom cloud, it implies more frequent two- a
three-body collisions and hence a faster decay of
condensate. The decay rate due to two- and three-b
collisions has recently been studied by Edwardset al. [9].
It is found to bedNydt ­ a

R
jFj4 1 b

R
jFj6, where

a and b correspond to two- and three-body collision
The value ofa for both Rb and Na is about10216 to
10215 cm3 sec21 [9,10], whereasb is typically of the
order of 10230 cm3 sec21 [9,10]. Before estimating the
lifetimes of the vortex ground states, we note that th
are bounded below by those of the nonvortex grou
states. This is because vortex ground states have
fewer particles at the center of the trap than the nonvo
states because of their vortex cores, which reduces
frequency of two-body collisions. Calculating nonvort
ground statesF in TFA from Eq. (3), it is straightforward
to calculate the integrals

R
jFj4 and

R
jFj6, which are

functions of N , G1, and l. From these functions on
can integrate the equation ofdNydt to obtain the1ye
decay time t. In all cases considered the effect
three-particle collisions is much smaller than that
two-particle collisions and is therefore ignored. Figure
shows the lifetimet of nonvortex ground states as
function of field gradientG1 for different aspect ratios
l, with N ­ 5 3 106 and B0 ­ 1 G. It shows thatt
decreases with increasingG1, which implies increasing
central density. Figure 3 also showst increases as
l increases. This is because increasingl will flatten
the condensate towards a two dimensional disk, wh
reduces the central density and hence two-body collis
effect. Figure 4 shows the lifetime of nonvortex grou

FIG. 4. The 1ye lifetime along (but slightly below) the
phase boundary of Fig. 2 (so that one remains in the nonvo
regime). The states labeled by circle and square correspo
those of Fig. 1.
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states (NVGS) just below the phase boundaries in Fig
For l ­ 25, the lifetime is about 3 to 4 sec. It reduces
about 0.5 sec forl ­ 10. Lifetimes of the vortex ground
states, which are longer than the NVGS’s shown in Fig
are sufficiently long for measurements to be performed
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