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Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases
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The Bose-Einstein condensates of alkali atomic gases are spinor fields with local “spin-gauge”
symmetry. This symmetry is manifested by a superfluid veloaity(or gauge field) generated by
the Berry phase of the spin field. In “static” traps, splits the degeneracy of the harmonic energy
levels, breaks the inversion symmetry of the vortex nucleation frequéhgy and can lead twortex
ground states [S0031-9007(96)01231-8]

PACS numbers: 03.75.Fi, 05.30.Jp

The recent discoveries of Bose-Einstein condensatiotheories, which model the alkali systems as interacting di-
in atomic gases of’Rb [1], "Li [2], and *Na [3] have lute spinlessBose gases in harmonic potentials. Within
achieved a long sought goal in atomic physics. They havéhese models, the effective Hamiltonian for the scabar
also provided condensed matter physicists opportunitieBas a global U(1) gauge symmetry, as'khe.
to study interacting Bose systems at a wide range of The actual symmetry of the spinor field [Eq. (1)],
densities. The realizations of these condensates are maddewever, is much larger than U(1). We call ldcal
possible by the invention of a number of special magnetispin-gauge symmetry. It represents that a local gauge
traps which trap alkali atoms inF =2 (or F = 1) changee’*™*" of (4,) can be undone by a local spin
hyperfine spin states, with spins maximally aligned withrotation e ~/x/F)Bx)F — Ag e shall see, because of this
the local magnetic fieldB. These hyperfine states are symmetry, the effective Hamiltonian of the scadiis not
referred to as “adiabatic” spin states. that of “He, but that of a neutral superfluid in a velocity

An immediate question is whether these alkali confield u,, or an electron in a vector potentia. The
densates differ from the familistHe condensate in any velocity (or gauge fieldy, arises from the Berry phase of
fundamental way. Unlike the spinle$sle atoms, alkali the spin field and is a direct reflection of the underlying
atoms have nonzero hyperfine spins. The condensate ofspin-gauge symmetry. The purpose of this paper is to

(hyperfine) spinF Bose gas is a spinor field discuss various forms of spin-gauge effects.
R B To begin, we first discuss the effective Hamiltonian.
(W (x,1)) = Ln(x, NP(x, 1), () For brevity, we shall refer to hyperfine spins as simply

where ¢, is the field operatorn is a label for F, ~ “SPins.” We shall consider only hyperfine spifi =
(-F =m = F), ® is a scalar, and,, is a normalized 2, as the treatment 'of the = 1 case is exactly the
spinor. The fact that condensation takes place among tH&me. The Hamiltonians of the alkali systems are of the
adiabatic spin states means tlfas aligned with the mag- form H = H; + V, whereH, = [ dxi;," (x) [—Z%W -
netic field, i.e.,B - F{ = F({, whereF is the hyperfine u,B(x,7) - Fl..¥.(x) is the single particle Hamiltonian,
spin operator. With/ specified byB, the dynamics of M andu, = —up/2 are the mass and magnetic moment
() is completely specified by that of the scalar fidld ~ of the atom,up is the Bohr magneton, and the factof21
as in*He. One might then conclude that apart from ex-is theg factor of the alkali atom.B is a sum of magnetic
trinsic factors like density and external potential, there idield configurations which can be static [2,3] or dynamic
no intrinsic symmetry difference betweeiHe and alkali [1]. V is the two-particle interaction between the atoms.
condensates. This is in fact the starting point of all currenffo form a trap, the Zeeman energyu,B (or its time
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average) must behave like a potential well. {§#"} are  vorticity (€2,) of u,, which satisfies the Mermin-Ho rela-
the spin eigenstates aloig) (B - F¢™ = n¢®, —2 < tion [5]

n = 2), then the Zeeman energyu,B - F reduces to

UM(x,1) = snupB(x,1)(n) for the states™. If uzB 1 i . .
is an attractive wellU™ is confining (deconfining) for Q, = EV X us = <ﬁ>faB73aVBB X VB, . (3)
n >0 (n =0) [4]. This means that spin flips between

n > 0 andn = 0 states can cause atoms to leave the trap

SinceV generally causes spin flips unless both atoms argquatlon (5) shows that t_he spatial _vargttpnsBpheces-
in the maximum spin state along the same quantizatioﬁary to produce the trapping potential will inevitably gen-

axis (in which case spin flips are prohibited by angularerate toa nonvanlshmg superfl_m_d veloaity. .
From the above derivation, it is clear that even in the

momentum conservation), it depletes all but the adiabaticb f varticl lisi the adiabati 1 stat
spin statest® in the trap. The resulting system is an absence of particie collisions, the adiabalic spin slales are

interacting Bose gas with spins aligned with the local fieldOnly met_astablefor the_ 'nonadlabat_|c H"’.‘m”ton'aﬂ{“ad
B(x, 1) [4]. always induces transitions of adiabatic states to other

less confined or completely deconfined spin states. The
trapping of atoms therefore requires weak nonadiabatic
effects. In the rest of this paper, we shall focus on
the phenomena associated with the adiabatic spin fields
(described byH,q only). We shall discuss nonadiabatic
effects elsewhere, but point out here that they can be
ignored if the Dirac centers of the magnetic trap are
] ) ] sufficiently far away from the atom cloud. A Dirac center
whereF:|n) = n|n). x is arbitrary. It is the gauge de- i the point whereB = 0 and where the unit vectors

gree of freedom of the system, and is usually chosey syrroundingDd wrap around the unit sphere times
to make the spino™ single valued. The effective (n is a nonzero integer). I resides in the cloud,

Hamilftonianﬁ'—[ can be E)Abtain(]'—)d b%’ rfewriting t(zr)l(e)equa- the adiabatic spin field aroun® will develop a line
tion of motionifid i, = [, H]in the formifid, ¢™ = gingularity emerging fronD (a Dirac string) which will
[¢®, H]. Onethen findsH = Hug + Howa + Hee:  cause a lot of spin flips. The field parameters discussed

3{5)61 referred to as the adiabatic Hamiltonian, containg,e|ow are all within the range to keep the Dirac center
»? only. H,,q is the spin-flip (or nonadiabatic) Hamil- sufficiently far away from the cloud.

tonian which consists of cross terms betwagf! and To be concrete, we consider “static traps” of the form
¢"*?. He. describes the transitions between differenty . g — v x B = 0)

n # 2 states and can be ignored. Denotihf and ¢
as¢ and({, respectively, we have

To construct a theory for the adiabatic spin states

we expandiy, in terms of the spin eigenstates”,
In(x,1) = 32_ 5w (x,0)f"(x,1). ExpressingB =

2cosB + sinB(Xcosa + §sina), the explicit form is

£ = (m|U|n), U = e @FgmiBE gmixFe ()

B(X) = Boi + Gl(xﬁ - yy)

_ 4| L (AY 2 +(Go/2N(% = r*/2)2 — zx],  (6)
Haa = fdm |:2M< i +M“S> ’

wherer = (x,y) andG; and G, are the first and second
order field gradients, respectively. The magnetic trap
of the form Eq. (6) is similar to that used in the.i
experiment [2]. It is convenient to express the field
gradients ass; = By(y/L), G, = By/L*. The trapping
potential'Ul in Eqg. (3) can then be expressed as

+U+W]$+V, (3)

where U = U® = ugB(x), W = (B2/2M)[|V]* +
(C*V)*] — ir{T9,, and V is the projection ofV
onto the adiabatic spin states. It is of the forMi =
JVx = )¢ (x)d T (y)d(y)(x), whereV(x — y) is a .
short range potential. The velocity; is defined as U = hQze + ;M(07r* + 072%) + OIx/LI*,  (7)

Mu, = (R/i){ V(. (4)  where iQzee = upBo, ®? = ppBo/(ML?), w,/0, =
(y2 — 1/2)"12 = A, v > 1/2. For later use, we denote

Equation (3) describes a Bose fluid in a background vethe longitudinal and transverse widths of the ground state
locity field —uy, or a charge system in a vector potential Gaussian of the harmonic well [Eq. (7)] as and a,,
A if Mug = eA/c. Under a local spin rotation ek - wherea, = (i/Mw,)"?, a, = (/Mo ,)"?. Typically
Fy(x)], uy — u, + (Fi/M)Vy(x), which is equiva- a.,a, < L. It is straightforward to show thatW =
lent to a local gauge transformatioh — exdiF y(x)]¢.  (h2/2M) (sinBVa* + [VB]?), where a, 8 are polar
This is a reflection of the underlying spin-gauge symme-angles ofB as defined earlier. This term is smaller than
try of /. The integralf. u, - ds is the Berry’s phase of the harmonic potential il by a factor(ya, /L)* and
{ around a loopC. It can be easily calculated from the can be ignored in general.
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From Eg. (5) it is straightforward to show that where R, is the transverse width of the condensate.

Wwith y =—a in Eq (2)] u, =3 — B./B) SinceQg, « N~¥5, Q  « N the inversion asymmetry

X V[tan !(B,/B,)], and of the nucleation frequencied),; — Q.)/(QS + Q)
5 5 ~ 0,/Q0, increases a&%*5. Thus for sufficiently large
= (%) ixXr+ 0x/L3), N the condition of vortex ground sta@,/Q’ = 1 can

always be met. From Egs. (8) and (11), one finds that
(8)  the ratioQ,/QY increases as the externally controllable

parametersv, G, Bgl, Aincrease.
) Figure 1 shows the ratid2,/ Q2 [calculated from
Thus for |x| < L, the spin-gauge effect generates agqs (8) and (11)] as a function of field gradieg for
constant effective “rotation* {2, alongz. _ different oblate traps = w./w, > 1) for a Na conden-

An immediate consequence dR; is that it gen- gaie withv = 5 X 10° particles. The scattering lengih

erates a Coriolis force on the alkali system. Thisgf 237 is +4.9 nm. The field at the center of the trap
force can be detected by applying an ac magnetic fielgs set atB, = 1 G. The reason that we consider oblate

A

along %, b = f?ifu_ti"ftx- This field will generate a term aps instead of prolate ones is because spin-gauge effect
(usby/2L)xe in the effective HamiltonianH.a,  tums out to be much more prominent in oblate clouds.

as if a time dependent force= (ugby/2L)e™"“'% is  For the field gradients shown, and fgr= 5 X 106, TFA
present. It is easy to see that the equation of motiofg g] is valid and Eq. (11) applies. Moreover, it is easily
of the center of mass in the-y plane,R = [ #"rd,  shown that the Dirac cente(&p. ¥p.Zp) of the static
r = (x,y), assumes the form trap Eq. (6) are located &t+-L./8y% + 2,0,2yL) and

0, - —2%(%)2 + o(xI/LY).

d*R » dR (0, xL+/8y% + 2, —2vL). For the cases we considered,
M P ~Mo R +2M dt X+ £, ) these centers lie sufficiently far above the oblate cloud that

. nonadiabatic effects are unimportant. Rf denoted the
which has resonancesat = w. * €, (for w, > €)).  \igin of the condensate alongwhich is related t®, as
The degenerate clockwise and counterclockwise harmonig ~_ R./A[6], we haveR, = 1.08 X 1073 cm,2.13 X
modesw, are split by the Coriolis force. This splitting |7-3 oy 53 % 103 cm. and ZD/R — 99 4’51' 10.2
exists in both normal and superfluid phases and can bﬁr A= 5 1'0’ 25) ' ¢ e

easily shown to be independent of particle interactions. From Fig. 1, one sees that vortex ground states can be

More pronounced effects can be found in the superﬂuiqe‘,lehed (i.e., whe),/Q°, = 1) by increasing the field
phase of alkali atoms with positive scattering length> radientGl. o'r'increaéfingac.l ForA — 10 and 25 the “criti-

0. Because of spin-gauge symmetry, the ground stat al” field gradientG] that stabilizes the vortex ground

energy functional becomes state is 463 and 1151/@m, respectively. The corre-
1 AV sponding trap frequencié® | , w,)/(27) are (60.6, 1212)
<—. + Mlls>q)
l

E@) =~ and (399, 7980) Hz. Note that even if the field gradient
+ (U + W) D> + @mh*a/M)|®|*. (10) field gradients which has sizable asymmetry in the vortex

2

2M
is below the critical valueGy, there is a large range of

Whenu, is small, Eq. (10) can be written &(d,uy) =

E(®,0) — O, L, (L, = —ihid*2- r X VD), which is 1.0 BN , e |
the Hamiltonian density of a scalar superfluid in a .
container rotating with frequenc,z. Let Q2; denote I N=5x10
the vortex nucleation frequency in the absence of spin- 08 L B,=1Gauss 4
gauge effect (i.e.{; = 0). Because of the background 0 A=125
rotation Q,, the actual vortex nucleation frequenci@s, QR A=10
for vortices with 27 circulation around=*z will be 05 | .
Q5 = Q% ¥ Q,. Inparticular, wherf), = Q}, hence A=5
Q. =0, vortex ground state will emerge in the absence I
of external rotation. 02t -
The value ofQ?, has been studied for harmonic traps
by a number of authors [6,7]. Using the Thomas-Fermi
approximation (TFA) [6,8], which is good at larg, 0.0 : ' : ' : ' :
Baym and Pethick have shown th&?, is reduced 0.0 0.5 1.0 1.5 2.0
by particle interactions from its noninteracting value G, (x10° Gauss/cm)
@, 8s FIG. 1. The increasing spin-gauge effect for increasing field
le/wL - Q*Z In QZ, gradients and increasing oblateness of the trap. The square and
(11) circle indicate the appearance of vortex ground states, i.e., when
Q = Ry/a; = (15ANa/ay)'", 0,/04 = 1.
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8.0 - . - . - G, < 50 G/cm. This splitting, though small, is within
the limit of detectability.

The field gradients considered in Figs. 1 and 2 are
typically 10 times those in current experiments. These
traps are more confining than the current ones [1-3].
Since tighter traps means higher densities at the center
of the atom cloud, it implies more frequent two- and
three-body collisions and hence a faster decay of the
condensate. The decay rate due to two- and three-body
collisions has recently been studied by Edwagtlal. [9].

It is found to bedN/dt = o [ |®* + B [ |®|°, where

a and B correspond to two- and three-body collisions.
The value ofa for both Rb and Na is about0~ !¢ to
1071 cm’sec’! [9,10], whereasg is typically of the
order of 1073 cm?sec’! [9,10]. Before estimating the
FIG. 2. The phase boundary of separating vortex and nonvotifetimes of the vortex ground states, we note that they
tex ground states for different ratios af,/w, A. The vortex gre bounded below by those of the nonvortex ground

(and nonvortex) states lie above (below) the phase boundar%‘Fates. This is because vortex ground states have a lot
The states labeled by circle and square correspond to those

Fig. 1. fewer particles at the center of the trap than the nonvortex
states because of their vortex cores, which reduces the
frequency of two-body collisions. Calculating nonvortex

nucleation frequencies, manifesting spin-gauge efground state® in TFA from Eq. (3), it is straightforward

fects. For example, forA =10, the asymmetry to calculate the integrald |®[* and [ |®|°, which are

Q4 - Q)/Qf + QL) = Q,/Q increases rapidly functions of N,G,, and A. From these functions one

beyond20% for G, = 400 G/cm. In Fig. 2 we show can integrate the equation a@fV/dt to obtain thel/e

the phase boundaries in th@-N plane (for different decay timer. In all cases considered the effect of

As) separating the vortex and nonvortex ground stateghree-particle collisions is much smaller than that of

Regions above and below the boundary (labeled)pgre  two-particle collisions and is therefore ignored. Figure 3

vortex and nonvortex ground states, respectively. Théhows the lifetimer of nonvortex ground states as a

negative slopes of these boundaries show that the vortginction of field gradientG, for different aspect ratios

ground state is easier to achieve for larger condensates, with N =5 X 10° and B = 1 G. It shows thatr

We also note that the ratid),/w,, which describes decreases with increasinG;, which implies increasing

the amount of energy level splitting in Eq. (9), is of the central density. Figure 3 also shows increases as

order of 1072 to 10~! for almost the entire range of field A increases. This is because increasingwill flatten
gradients considered in Fig. 1 except for the small rangéhe condensate towards a two dimensional disk, which
reduces the central density and hence two-body collision
effect. Figure 4 shows the lifetime of nonvortex ground

6.0

G, (x10°Gauss/cm)

5.0 6.0 7.0 8.0
log, N

5.0 : . : . . ,
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FIG. 3. The increasingl/e lifetime as a function of field log,,N

gradient for nonvortex ground states for different aspect ratios

A. The actual ground states to the left of the circle and squar&IG. 4. The 1/e lifetime along (but slightly below) the

are in fact vortex ground states, which will have lifetimes phase boundary of Fig. 2 (so that one remains in the nonvortex
longer than the nonvortex states because of the reduction @égime). The states labeled by circle and square correspond to
particle density near the vortex core. those of Fig. 1.
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