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Radial Distribution Function of Semiflexible Polymers
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We calculate the distribution function of the end-to-end distance of a semiflexible polymer with
large bending rigidity. This quantity is directly observable in experiments on single semiflexible
polymers (e.g., DNA, actin) and relevant to their interpretation. It is also an important starting
point for analyzing the behavior of more complex systems such as networks and solutions of
semiflexible polymers. To estimate the validity of the obtained analytical expressions, we also
determine the distribution function numerically using Monte Carlo simulation and find good quantitative
agreement. [S0031-9007(96)01237-9]

PACS numbers: 87.45.—k, 05.40.+j, 36.20.-r, 83.20.Di

While we have a comparably complete theoretical pichetween monomersi(r; L) actually is the probability
ture of highly flexible chain molecules, the statistical density of finding any two monomers at relative position
mechanics of semiflexible polymers is a field with ar = r(s) — r(s’) where L = |s — 5’| is the distance
number of open questions that has received renewed atetween the monomers along the chain. For a freely
tention lately. Considerable motivation stems from thejointed phantom chaid (r; L) is known exactly [11] and
crucial importance of the elasticity of biopolymers like for many purposes is well approximated by a simple
spectrin, actin, and microtubules for the mechanical propGaussian. Complications arise when the self-avoidance
erties of cells [1]. Recent advances in visualizing andof real chains is taken into account [12]. In previous
manipulating such macromolecules have provided uniquanvestigations of the wormlike chaifi(r; L) was obtained
experimental tools for the study of the static and dynami@pproximately for almost fully flexible polymers (large
properties of single filaments [2—6]. A quantitative mea-t) in the form of corrections to the Gaussian distribution
sure for a polymer’s flexibility is its persistence length function up to order 2 [13,14]. For generat only the
¢,, which is the characteristic length governing the deJowest three even moments were calculated analytically
cay of tangent-tangent correlations. Nature provides polyfl5]. Higher even moments were obtained by numerical
mers of very different stiffness, e.gf, = 10 nm for  techniques [16]. For polymers close to the stiff limit all
spectrin [7],£, = 50 nm for DNA [8], €, = 17 um for  even moments of the distribution function were calculated
actin [4,6], and¢, = 5.2 mm for microtubules [6]. On in an expansion in [15,17], but the expressions obtained
length scales larger than a fefy a polymer with con- for G(r; L) in this limit are only given up to quadratures
tour lengthL > ¢, (flexible polymer) can be described as [17,18] and do not show the correct qualitative behavior
a self-avoiding freely jointed chain. For molecules with when integrated numerically.

t := L/{, of the order of one (semiflexible polymer) this In this Letter we determineG(r;L) in two- and

is not possible, as can be seen immediately by comparintpree-dimensional embedding space in an approximation
a typical contour (e.g., from Ref. [5]) to the random walk valid for smallr and compare the analytical expressions
corresponding to a freely jointed chain. Even for longobtained to data from a Monte Carlo simulation. The
strands of DNA withs = 1000 measurements of the mol- range of validity of our results almost extends to values
ecule’s extension at large forces have revealed significamtf the bending rigidity where the Daniels approximation
deviations from the freely jointed chain model [3], which [13,14] becomes applicable.

find their explanation in bending elasticity [8]. Thus it For our analytical calculations we adopt a continuum
is essential to consider models which take chain rigiditywersion of the wormlike chain model where the polymer is
into account. For sufficiently stiff chains effects resultingrepresented by a differentiable space cur® of length
from self-avoidance can be neglected due to the stronfy parametrized to arc length [19]. Its statistical properties
energetic suppression of configurations where the chaiare determined by an effective free energy

folds back onto itself. Furthermore, the polymers under k(L[ ot(s) 2
consideration can be regarded as inextensible [9]. The H = —f ds|: :| , ()
corresponding model is the wormlike chain introduced by 2 Jo ds

Kratky and Porod almost 50 years ago [10]. wheret(s) = dr(s)/ds is the tangent vector at arc length
A central quantity for characterizing the conformationss. The resulting persistence lengths &pe= «/kgT for

of single polymer chains is the distribution function d =3 and¥¢, = 2«/kgT for d = 2, whered is the di-

G(r; L) of the end-to-end distance for given contour mension of the embedding space [20]. The inextensibility

length L and persistence lengthi,. For models like of the chain is expressed by the local constréiy)| = 1

the wormlike chain with only short-range interactionswhich leads to non-Gaussian path integrals. Note that this
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local curvature model is equivalent to a one-dimensionallhe error caused by this approximation vanishes near full
nonlinearc model. While a few quantities lik&R?) and  extension. From here on we shall measure all lengths in
(R*) can be obtained exactly, one has to resort to somanits of L and all energies in units ofz7. With this
approximative scheme to calculate the end-to-end distrieonvention we have (fod = 3) x = €, andt = x|
bution function We also drop the second argumentdGtir; 1) and make
G(r:L) = (5(r — R)), ) rzot%tio? in\f/actlriancr(; e>;p|icit by_writifrllg(G)(r). . U:E:e) _of
. . 76(x) = [ dqgexpigx), expansion ofi,(s) anda,(s) in
}’:’J?]i:;nR i=r(L) —r(0) and 5(r) is the Dirac §  .,gine series as appropriate for the boundary conditions of

. . __open ends, and evaluation of the resulting Gaussian inte-
In order to understand the effect of possible approximaga|s jeads to
tions to Eq. (2) for stiff polymers, it is instructive to reca-
pitulate the classical problem of bending a rigid rod. The G(r) = _2K
energy of a straight rod of length and bending modulus dr N =

k is an almost linear function of its end-to-end distanceyhere " is a normalization factor compensating the
ri Eq =~ fo(L — r) where f. = xm?/L* is the critical  fajlure of the approximation used to conserve the nor-
force for the onset of the Euler instability (since the ra-malization of G(r) for finite x. Details of the calcula-
dial distribution function does not specify the direcf[iontion can be found in a forthcoming publication [22]. For
of the tangent vectors at= 0 ands = L, the appropri- (1 — ) = 0.2 the distribution function is dominated by
ate boundary conditions are open ends). Neglecting flughe ¢ = 1 term which is just our heuristic result from
tuations around the classical contour this would lead tgpqye (“Euler instability”) if the dimensional factors are
an end-to-end distribution function with maximum Weightput back in. Forr — 1, however, more and more terms
atr =L,G(r;L) = exd—f.(L — r)/(kgT)]. But, fora haye to be considered. By writing Eq. (3) as an integral
completely stretched chain there is up to global rotationgyer Fourier expanded functions it is possible to trans-
only one possible configuration and consequently the endyrm Eq. (3) to

to-end distribution function has to vanish at full exten-

oo

7T2k2(_1)k+1871<772k2(17r)’ (3)

sion. Hence it is essential to take into account entropyG(r) = ! K Z !

effects. While stiff chains are energy dominated, more 4r N 2w & [kl — r)P/2

flexible chains are mostly governed by the entropic effects (€ — 1/2)? € —1/2

with the limit being the freely jointed chain. Approach- X expg — < —1) } 2[\/,((1—_” :| (4)

ing full extension, howeverG(r; L) must vanish for all
chains. This shows that whilé(r; L) tends to the distri-
butions(L — r)/4mwL? (d = 3) for k — « andt — 0, it
can never be expanded iraround this limit (consider the
probability of full extension). For this reason, it is impos-
sible to obtain the distribution function from an expansion
of all even moments in terms of17]. Softening the con-
straint of fixed contour length affects both energetic an
entropic contributions to the distribution function in es-

sential ways. If it is relaxed to the point of fixing only » .
L, .0 ) 7 (k/2) [ds(a¢/as)?. In order to calculate (r) we again
([, ds t?(s)) by means of a single Lagrange multiplier approximate the constraints given by tlée functions

(e.g., Ref. [21]), the distribution functions obtained are es- _ - " 1
sentially Gaussian and will not show the correct qualita-'ln Eq. (3) by0 ry(.l) fdm. a.nd " ral) = 1
tive behavior for stiff polymers. Failure to reproduce the 2 [ ds¢*. Acalculation along similar lines as before [22]

vanishing ofG(r; L) near full extension also results when 1€2ds to the result

where H,(x) = 4x> — 2 is the second Hermite polyno-
mial. This series converges very quickly fel — r) =
0.2 where the behavior ofi(r) is completely dominated
by the¢ = 1 term.

In recent experiments as well as in simulations the
polymer was effectively restricted to & = 2 embed-
Oding space [4-6,23]. In this case it is convenient to
choose a parametrizatiotis) = (cos¢,sing). The re-
sulting effective free energy is quadratic i, H =

o

approximations are used which neglect essential parts of 1 2k Z 2¢ — ! 1

the fluctuational contributions as in Ref. [18]. (r) = 2eN Jm & 2000 [2k(1 — )P/
For end-to-end distancesclose enough to full stretch- )

. : ' . €+ 1/4) €+ 1/4

ing and/or large values ok, the typical configuration Xexp ———— |Dip| 2 —————— |,

of the chain will be close to a straight rod. Thus 2k(1 = 1) 2k =)

the deviations of the tangent vectors from the aver- (5)

age direction can pe treated as small variables. Fakith Ds3)»(x) a parabolic cylinder function. The conver-
d =3 we parametrize the contour through the tan-gence properties of Eq. (5) are similar to those of Eq. (4).
gent field: t(s) = (a.(s), a,(s), 1)/\/1 + al(s) + ai(s), In order to assess the quality of our approximations, we
which properly takes into account the constraint of in-have used Monte Carlo simulation to evaluété-) nu-
extensibility. We employ a harmonic approximation andmerically. We adopted the following discretized version
keep only terms up to second order # , the measure of the wormlike chain: The polymer is described as a
factor, and the arguments of th® function in Eq. (2). chain composed a¥ tethers of fixed lengtlh = 1/N and
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directiont with a bending energyH, = ka™! ?:11 t, - sions forG(0) are evaluated numerically yielding results
t;+1 [24]. The standard Metropolis algorithm was usedin agreement with our Monte Carlo data.
to measure5(r). We found that results cease to depend Another possibility to check the validity of the ob-
appreciably onV as soon as there are three to four segtained distribution functions is to compare their moments
ments in one persistence length. On the orden@®f to known results. The moment&”") can either be
Monte Carlo steps per segment were performed. Finatalculated from the given expressions f6i(r) or by
results were obtained by averaging over several indepempplying the harmonic approximation directly to the
dent runs. The accuracy GR) obtained was typically of generating functione/®). The latter method yields an
the order of 0.5%. Measured expectation val(f?d and  expansion of R") in ¢ which is seen to be correct ()
(R*) were in agreement with known exact expressions upvhen compared to the results of Ref. [17]. Calculating
to the estimated statistical errors. the moments directly from th¢ = 1 term of Eg. (4)
Figure 1 shows a comparison of the normalizéd) for «(1 — r) < 0.2 and thek = 1 term of Eq. (3) for
from Eq. (3) to the data from our Monte Carlo simulation. k(1 — r) > 0.2 produces analytical expressions which
Note that there is no free parameter to adjust the curvesan be expanded in terms©obnly up to a small correction
The curves for the@ = 2 case are qualitatively similar and vanishing like exp—constXx «]. This leads to expan-
the agreement between theory anddhe 2 Monte Carlo  sion coefficients that are not rational numbers but differ
simulation is of equal quality. It can be improved some-very slightly from the results of the generating function
what further by applying a simple correction proceduremethod (by about 0.1% far= 1). Calculation from the
specific to thel = 2 case [22]. The general observation is distribution function has the advantage that averdfé€s
that Egs. (3), (4), and (5) reproduce the data qualitativelyvith arbitraryae > —d + 1 can be obtained. The results
right and are good approximations fé5 = 0.5L, thatis, indicate that the expansion derived in [17] far= 2n
t = 2. However, even for large values af one would withn = 0,1,...isvalid foralla > —d + 1 at least up
not expect the harmonic approximation to yield acceptabléo O(z?).
results for small since the curvature of the polymer must A quantity of immediate experimental interest is the
then be large. The somewhat surprising quality of the apforce-extension relation. For sufficiently stiff polymers
proximation in this region can be attributed to the fact thaiit can be obtained from the givet(r) for arbitrary
there the distribution function is dominated by the energyforces in situations where the ends of the polymer can
E.(r) of the most probable configuration. As discussedotate freely. The well known strong-force limit (e.g.,
below Eq. (3), the dominant linear term Bf;(r) is repro-  [8]) is reproduced by our distribution functions for ar-
duced by the harmonic approximation, which correspondsitrary stiffness since it is determined by the behavior
to the well known fact thaf.. can be obtained by looking of G(r) for r — 1 where the harmonic approximation
only at infinitesimal compressions. Fer= 0, however, is expected to be good for all values ef For large
the deviations of; from the linear form get significant for forces f we haver = 1 and consequenthG(r) will
all k. While this is irrelevant for most applications of the be dominated by th¢ = 1 term of Eq. (4). The rele-
distribution function due to the small probability of such vant free energy is thug = —logG(r) + f(1 — r) =
configurations, it implies that the ring-closure probability 1/[4x(1 — r)] + f(1 — r), where we neglected logarith-
G(0) is not reproduced correctly by our approach. Insteadnic terms sincd — r — 0 for f — . Since the corre-
one should expand the configurations around the contour aiponding distribution function will be strongly peaked for
minimal energy as in Ref. [25] where the resulting expresiarge f, (r) is given by the position of the minimum g&f:
(ry =1 — 1//4«f which agrees with Ref. [8]. Force-
extension relations for small forces can be obtained from
moments of the distribution function. Our results are thus
100 f d=3 [ 1- consistent with existing linear response treatments [26,27]
to O(t?). If the polymer’s orientation at one end is fixed,
the character of the response depends on the direction of
FESRY the applied force an@(r|uy; L) is needed [22] (notation
Y of Ref. [18]). Note that the linear response can be evalu-
0.0 ,&‘ »

ated exactly for arbitrary values ofin this case [27].

e 000000 Fove o MR Using fluorescence microscopy, it is possible to visual-
0.0 02 04 06 08 1.0 ize the thermal undulations of single actin filaments con-
strained to quasi-two-dimensional configurations [4—6].
FIG. 1. Comparison o (r) from the Monte Carlo simulation Both contour lengths and distances in embedding space
(symbols) forz = 10, 5, 2, 1, and 0.5 (left to right) to Eq. (3) can be measured from the resulting images. If locality of
(solid lines). The dashed and dot-dashed lines show the secopde interactions along the chain is assumed, different seg-
Daniels distribution forr = 10 and r = 2. For r = 10 it - .
almost coincides with the numerical data while it is quite ments of one physical polymer oflengrjb are statistically
far off for + = 2. Error bars for the Monte Carlo data are independent. One can thus probe different length scales

approximately of the size of the symbols. by obtaining experimental distribution functiods(r; L)
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