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Spin Diffusion in 2D XY Ferromagnet with Dipolar Interaction
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In the ordered phase of 2DXY ferromagnet, the dipole force induces strong interaction between
waves in the long-wave limit. This interaction leads to transformation of the spin-wave excitation
a new soft mode in an intermediate range of wave vectors, limited in magnitude and direction, an
an anomalous anisotropic diffusion mode at long wavelengths. The dissipation of spin waves a
wavelengths is found to be highly anisotropic. [S0031-9007(96)01230-6]
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The conventional condensed matter theory deals w
elementary excitations and their interactions. The e
tations such as electrons, phonons, spin waves, etc.
a propagating, wavelike nature. The momentump and
the energyv of a single excitation are related by the d
persion relation (spectrum)v ­ espd. Weak interaction
changes slightly the spectrum and leads to a finite lifet
of the excitations [1]. The effect of strong interaction is n
so universal. Migdal [2] has shown that strong electr
phonon interaction renormalizes substantially electron
locities and, if it exceeds a critical value, reconstructs
ground state. Recently strong interaction of electron
two dimensions with gauge fields has been shown to re
in non-Fermi-liquid behavior [3].

In the long-wave (hydrodynamic) limit quasiexcitatio
turn into classical modes, such as sound or spin wave.
only the propagating waves, but also particle, heat,
spin diffusion can be considered as hydrodynamic mo
The interaction between these modes has been show
be substantial in the critical region [4], in the dynam
of liquid crystals [5,6], and in the dynamics of char
density wave interacting with impurities [7]. In all thes
systems interaction leads to a drastic reconstruction o
dispersion relation.

In this Letter we solve an experimentally feasible ma
netic model, in which dipolar interaction between sp
waves leads to the replacement of the propagating
wave by a diffusion mode and to the appearance of a
soft mode in a range of momentum. This model is the tw
dimensionalXY ferromagnet with the dipolar interaction
between spins.

The spin-diffusion mode appears naturally in the pa
magnetic phase and in the vicinity of the Curie point [
We consider the low temperature ordered phase, in w
no spin diffusion was expected so far, but rather a pro
gating, weakly dissipating spin-wave mode. Indeed, in
ferromagnets the exchange interaction between spin w
vanishes in the long-wave limit [9]. The dipole force ge
erates three spin-wave processes [8,10] and violates
total spin conservation law. This interaction is domina
in the spin-wave dissipation via decay into the two s
0031-9007y96y77(12)y2554(4)$10.00
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waves or via merging with other spin waves. Howev
this dissipation vanishes in the long-wave limit.

It was shown in Ref. [11] that in the 2DXY ferromag-
net at low temperatures the dipolar interaction is relevan
the long-wave limit, despite the low density of spin wave
The dipolar force induces an anomalous anisotropic sca
of spin-spin correlations in the ordered phase. In this L
ter we find an analogous dynamical scaling for the dif
sion mode.

First, we define the model. The dipolar force sta
lizes the ferromagnetic long-range order [12], suppress
strongXY thermal fluctuation. Therefore, we represent t
unit vector field of magnetizationS by the two spin-wave
fields—in-planefsx, td and out-of-planepsx, td ­ Sz :

S ­ s2
p

1 2 p2 sinf;
p

1 2 p2 cosf; pd , (1)

where bothp and f are small. The fieldpst, xd is ca-
nonically conjugated to the fieldfst, xd.

The quantum action of the 2DXY ferromagnet contains
three terms: the exchange and the anisotropy energies

AEA ­
X
vp

sJp2jfvpj2 1 ljpvpj2dy2 ,

as well as the dipolar force term (see, e.g., [11]),

A ­ AEA 1 g
X
vp

jpxfvp 1 pysf2y2dvpj2y2jpj , (2)

with the corresponding couplings being the exchange c
stantJ, the anisotropyl, and the dipole constantg [13].
The action (2) is written in terms of the Fourier transform
fields fvp and pvp; the abbreviationsf2y2dpv denotes
the Fourier transform off2sx, tdy2. The anisotropy is as
sumed to be weak:l ø J. Therefore the spinS averaged
over scales larger than

p
Jyl turns into the plane. The

bare spin-wave spectrum extracted from the quadratic
of the action (2) reads

e2spd ­ c2sp2 1 p0p2
xypd , (3)
© 1996 The American Physical Society



VOLUME 77, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 16 SEPTEMBER1996

um

-le

ero
a

au-
th

fi-
ei

spi
ar

t
nd
ne

tio
-

r
wi

tio

e

the
he

ion
elf
tur

icis
s

od
bare

in
op
all.
as
on
led
e
he

s

e

op
m.
wherep ­ jpj, the dipolar wave vectorp0 ­ gyJ, and the
spin-wave velocityc ­

p
Jl. In the regionp0 ø p øp

lyJ spin waves have the linear, acousticlike spectr
We call this spherical shell of momentum theA shell.

The nonquadratic part of the action (2)Aint contains the
three-leg and four-leg vertices. In particular, the three
vertex is

fsp1, p2, p3d ­
3X

i­1

pixpiyyjpij . (4)

Since the sum of momenta entering the vertex is z
it depends on two momenta. Further we denote it
fsp1, p2d.

The dynamical equation, equivalently the Land
Lifshitz spin precession equation, associated with
action (2) reads (we assumeh̄ ­ 1)µ

v2

l
2

e2spd
l

1 i
v

G0

∂
fvp ­

dAint

df2v2p
1 hvp . (5)

The thermal noisehvp and the bare dissipation coef
cient G

21
0 generate the stochastic dynamics in (5). Th

choice reflects a nonconserved nature of the in-plane
The noise-noise corelation function is related to the b
dissipation coefficient:kjhvp j2l ­ 2TyG0. It vanishes a
T ­ 0. We do not consider spin-lattice relaxation, a
spin waves dissipate only due to the interaction ge
ated by the dipole force. Hence, we setG

21
0 ­ 10,

and look for the generated so-called dissipation func
bsv, pd ­ lG21sv, pd, which has the dimension of en
ergy (frequency).

The Green functionGsv, pd is defined as the linea
response of the magnet to an external magnetic field
the frequencyv and the wave vectorp. The left hand
side of Eq. (5) represents the inverse bare Green func
l21G21

0 sv, pd.
The self-energy termSsv, pd equals G21

0 sv, pd 2

G21sv, pd by definition. We notify the real and th
imaginary part of the self-energy term asS ­ a2sv, pd 2

ivbsv, pd. Thus, the Green function reads

G21sv, pd ­ v2 2 e2spd 2 a2sv, pd 1 ivbsv, pd .
(6)

According to the fluctuation-dissipation theorem,
imaginary part of the Green function multiplied by t
factorTyv is the spin-spin correlation functionDsv, pd:

Dsv, pd ­
bsv, pd

fv2 2 e2spd 2 a2sv, pdg2 1 v2b2sv, pd
(7)

(we refer the factorT to vertices).
The pole of the Green function (6) gives the dispers

of the quasiexcitation. Thus, we have to find the s
energySsv, pd. We assume that the reduced tempera
t ­ Ty4pJ is small whereasL ­ lns

p
Jlygd is large (the
.

g

,
s

e

r
n.
e

r-

n

latter means largeA shell). Our theory is valid provided

t lns
p

Jlygd ­ tL ø 1 . (8)

We employ the standard, so-called Janssen-De-Domin
functional method [14] to account for the nonlinear term
in the stochastic Langevin equation (5). This meth
generates a diagrammatic expansion in powers of the
vertices, associated withAint. The main contribution to
the self-energy is given by one-loop diagrams shown
Figs. 1(a) and 1(b). Under the condition (8), the two-lo
correction represented by the diagram in Fig. 1(c) is sm
Neglecting the two-loop diagrams (vertex correction) w
a principal feature of the Migdal theory of electron-phon
interaction [2], and a major assumption in the so-cal
mode-coupling method in critical dynamics [8]. Later w
prove this assumption for our model. Thus, we write t
Dyson equation for our problem as follows:

SsV, qd ­ 2g2l3T
Z d2p

s2pd2

Z dv

2p
f2sp, qd

3 Dsv, pdGsv 1 V, p 1 qd 1 Sbsqd , (9)

where Sb is the real self-energy [Fig. 1(b)]; it doe
not depend on the external frequencyV. The functions
bsv, pd andasv, pd are even in both arguments [1]. Th
imaginary part of the self-energy is odd in frequencyV.
Hence, the equation for the dissipation function reads

bsV, qd ­ g2l3T
Z d2p

s2pd2

Z dv

2p
f2sp, qd

3 Dsv, pdDsv 1 V, p 1 qd . (10)
th

n

-
e
FIG. 1. (a) Main one-loop self-energy diagram. (b) One-lo
four-leg vertex diagram. (c) Two-loop self-energy diagra
Momenta of internal lines are indicated.
2555
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The integrand in (10) is positive. Thus, the main co
tribution tobsV, qd comes from the region where poles o
the twoD functions coincide. The functionDsv, pd has
poles atv ø 6espd, in theA shell [15]. Following the
terminology of the field theory we call the surfacev2 ­
e2spd the mass shell. The dissipation in theA shell is
small and theD function can be represented as a sum od

functions:

Dsv, pd ø
X
6

p

2e2spd
dsDv6d , (11)

whereDv6 ­ v 6 espd measures the deviation from th
mass shell. After integratingv out from Eq. (10) with the
D functions from (11), we recover the Fermi golden ru
for the probability of the spin-wave decay and scatteri
processes.

Looking for the long wavelength quasiexcitations, w
need the self-energy at very small momentaq ø p0
which we denote asS0. We anticipate quasiexcitation
to be soft,V ø cq, and restrict the quasiexcitation wav
vectorq to be directed along the magnetization:jqxj ø q.
An essential contribution to the integral in Eq. (9) com
from internal momentap being in theA shell and the
internal frequencyv ø espd. Integrating overv with
theD function from Eq. (11), we find [15]

S0 ­
c2p2

0t
4p

Z c4p3dp
e4spd

V sin2s2cd dc

V 2 cq cosc 1 ib1scd
,

(12)

where we have omitted anV-independent term which
contributes a negligible change to the spectrum Eq.
[16]. b1scd is the dissipation functionbsv, pd of a spin
wave inside theA shell andc is the angle between
the direction of magnetization and the internal spin-wa
wave vectorp: sinc ­ pxyp. Later we prove thatb1
depends onc only.

If cq ¿ b1, we make the integral overc in Eq. (12) to
find

S0sxd ­ c2p2
0 tL cos2 x exps22ixd , (13)

where x is defined by cosx ­ Vycq. It measures the
deviation from the mass shell. Ifq is so small thatcq ø

b1, Eq. (12) implies aq-independent constant dissipatio
function:

b0 ­ c2p2
0tL

Z dc

4p

sin2s2cd
b1scd

. (14)

To find b0, we needb1scd. An unusual feature of our
theory is that the dissipation process in theA shell is
mediated by an off mass shell, virtual spin wave. Inde
Eq. (3) does not allow for decay or merging process
because the functionespd is convex upwards in the
momentum space. Hence, the dissipation of a spin w
in the A shell (q ¿ p0) propagating in the direction
specified with the anglec (sinc ­ qxyq) is mediated by
an internal virtual spin wave in (10), with a momentu
2556
)

,
s

e

p ø p0 and a frequencyv , cp. The integration over
v, with one of theD functions in (10) taken in the form
(11), leads to following equation:

b1 ­
c2p2

0 tf2s0, qd
8pq2

Z
d2pDsssesp 1 qd 2 esqd, p ddd .

(15)

Since v ­ esp 1 qd 2 esqd, we conclude thatv ­
cp cosF, whereF ­ c 2 w is the angle between th
vectorsq and p. Invoking the definition of the “mass
shell” anglex for virtual spin wave, we find thatx ­ F.
Now we look at Eq. (15) in more detail:

b1scd ­
c2p2

0 t
2p

Im
Z sin2 c cosc dp dw

p2 sin2 c 1 p0pw2 1 S0scdyc2
,

(16)

where w2 , pyp0 ø 1 and, thus, we have substitute
x ­ c. In other words, the dissipation of a short wav
length spin wave propagating in the directionc is deter-
mined by scattering on a long virtual spin wave which li
on a specific distance off the mass shell:vycp ­ cosc.
The integration overp in (16) is confined towards the
crossover region:p , pc ­ p0

p
tL.

SubstitutingS0scd from Eq. (13) into Eq. (16), we find
the anisotropic dissipation of a spin-wave mode in theA
shell:

b1scd ­ b1t3y4cp0
sin3y2s2cd sinscy2d

L1y4 cosc
, (17)

where the direction of the spin wave is limited to th
fundamental quadrant:0 , c , py2. We foundb1 ­
G2s1y4dy4

p
2p ø 1.31.

Let us return to very low quasiexcitation momen
q ø b1yc. Plugging Eq. (17) into Eq. (14), one finds

b0 ­ b0cp0t1y4L5y4, (18)

whereb0 ø 1.24 was found numerically. The conditio
cpDM , b1 defines the crossover wave vectorpDM ,
p0t3y4yL1y4, separating ranges of validity for Eqs. (1
and (14). The self-energy (13) and the dissipation fu
tions (17) and (18) conclude the self-consistent solution
the Dyson equation (9) and (10).

Next we verify that the two-loop correction [se
Fig. 1(c)] is negligible. Note that the main contributio
to the diagram [Fig. 1(c)] comes from the two intern
momentap1 andp2, restricted to theA shell. Inside the
A shell the Green and theD functions live on the mass
shell. However, the prohibition of the three spin-wa
processes confines the arguments of the Green func
Gsv1 2 v2, p1 2 p2d off the mass shell. The Gree
function off the mass shell is small in temperature.
simple counting shows that the two-loop correction
the dissipation function isb0

0 , b0t1y4. The two-loop
correction tob1 is small in t1y4, and is also small in the
ratio p0yq ø 1.
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Having the explicit expression for the self-energ
we can analyze the dispersion relationv2 ­ e2spd 1

Ssv, pd in the range of smallv and p. New results
are expected for the regionp , pc ­ p0

p
tL in which

S0 becomes comparable withe2spd. In a range of
momentumpDM ø p ø pc and anglesc ø

p
p0tLyp

we find a new propagating soft mode with the dispersio

v ­ cpsp2 1 p0pc2d1y2yp0

p
tL . (19)

The dissipation of the soft mode grows to the bounda
of the region and becomes of the order of its ener
at c ,

p
p0tLyp or p , pDM . There is no soft mode

beyond the indicated range. The spin-wave mode pers
at p . p0

p
tL. In the momentum rangep ø pDM we

find a new diffusion mode with the dispersion

v ­ 2it21y4L5y4e2spdyb0cp0 . (20)

The angular range of the diffusion mode increases w
decreasingp and captures the entire circle atp , p0tL.

At even smaller wavelengthsp , pA ø pDM the in-
teraction between diffusion modes should be taken i
account (pA , p0t11y4 is the anomalous diffusion setu
wave vector [17]). The problem can be solved by t
renormalization group method [17]. The growing intera
tion, although leaving invariant the diffusive nature of th
spin propagation, changes the dispersion. For the pro
gation along the spontaneous magnetization it isv ~

2ip47y27, whereas for the propagation in the perpendicu
direction it isv ~ 2ip47y36. This is a dynamic analog o
the non-Gaussian fixed point found in [11].

In conclusion, we discuss the experimental feasibil
of the above considered effects in the epitaxial magne
films. The main difficulty is that all of them are confine
to rather long waves. Therefore even weak in-plane an
tropy can suppress them. One needs to use substrates
the sixfold symmetry axis. The sixfold anisotropy is mu
weaker than the tetragonal one. Moreover, it was predic
in [18] that there exists a temperature interval in which t
hexagonal anisotropy vanishes at large distances. A pro
substrate is, for example, a (111) face of Cu, Au, etc. I
recent work [19] a growth of an ultrathin RuyC(1000) film
with in-plane magnetization has been reported.

We are indebted to M. V. Feigelman, E. I. Kats, an
V. V. Lebedev for useful discussions and indicating som
references.
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