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Spin Diffusion in 2D XY Ferromagnet with Dipolar Interaction
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In the ordered phase of 2BY ferromagnet, the dipole force induces strong interaction between spin
waves in the long-wave limit. This interaction leads to transformation of the spin-wave excitation into
a new soft mode in an intermediate range of wave vectors, limited in magnitude and direction, and into
an anomalous anisotropic diffusion mode at long wavelengths. The dissipation of spin waves at short
wavelengths is found to be highly anisotropic. [S0031-9007(96)01230-6]

PACS numbers: 75.10.Hk, 75.30.Ds, 75.40.Gb

The conventional condensed matter theory deals withivaves or via merging with other spin waves. However,
elementary excitations and their interactions. The excithis dissipation vanishes in the long-wave limit.
tations such as electrons, phonons, spin waves, etc. havelt was shown in Ref. [11] that in the 2®Y ferromag-
a propagating, wavelike nature. The momentprand net at low temperatures the dipolar interaction is relevant in
the energyw of a single excitation are related by the dis- the long-wave limit, despite the low density of spin waves.
persion relation (spectrum) = e(p). Weak interaction The dipolar force induces an anomalous anisotropic scaling
changes slightly the spectrum and leads to a finite lifetimef spin-spin correlations in the ordered phase. In this Let-
of the excitations [1]. The effect of strong interaction is notter we find an analogous dynamical scaling for the diffu-
so universal. Migdal [2] has shown that strong electronsion mode.
phonon interaction renormalizes substantially electron ve- First, we define the model. The dipolar force stabi-
locities and, if it exceeds a critical value, reconstructs thdizes the ferromagnetic long-range order [12], suppressing
ground state. Recently strong interaction of electrons irstrongXY thermal fluctuation. Therefore, we represent the
two dimensions with gauge fields has been shown to resultnit vector field of magnetizatiof by the two spin-wave
in non-Fermi-liquid behavior [3]. fields—in-plane¢ (x, r) and out-of-planer(x, 1) = S%:

In the long-wave (hydrodynamic) limit quasiexcitations
turn into classical modes, such as sound or spin wave. Not S = (=1 — #?sing;V1 — w2cosp;7), (1)
only the propagating waves, but also particle, heat, and
spin diffusion can be considered as hydrodynamic modesyhere boths and ¢ are small. The fieldr(z, x) is ca-
The interaction between these modes has been shown #@nically conjugated to the field (z, x).
be substantial in the critical region [4], in the dynamics The quantum action of the 2BY ferromagnet contains

of liquid crystals [5,6], and in the dynamics of chargethree terms: the exchange and the anisotropy energies,
density wave interacting with impurities [7]. In all these

systems interaction leads to a drastic reconstruction of the
dispersion relation.
In this Letter we solve an experimentally feasible mag-
netic model, in which dipolar interaction between spinas well as the dipolar force term (see, e.g., [11]),
waves leads to the replacement of the propagating spin
wave by a diffusion mode and to the appearance of a new _— (b2 2
soft mode in a range of momentum. This model isthetwo\fq Ara ga,Zp: (Pxbup + py(6°/2)upl’/2Ip], @)
dimensionalXY ferromagnet with the dipolar interactions
between spins. with the corresponding couplings being the exchange con-
The spin-diffusion mode appears naturally in the parastant/, the anisotropyA, and the dipole constant [13].
magnetic phase and in the vicinity of the Curie point [8]. The action (2) is written in terms of the Fourier transformed
We consider the low temperature ordered phase, in whicfields ¢, and 7,,,; the abbreviation¢?/2),,, denotes
no spin diffusion was expected so far, but rather a propathe Fourier transform of*(x,7)/2. The anisotropy is as-
gating, weakly dissipating spin-wave mode. Indeed, in 30sumed to be weakt < J. Therefore the spi§ averaged
ferromagnets the exchange interaction between spin waveser scales larger thag(J/A turns into the plane. The
vanishes in the long-wave limit [9]. The dipole force gen-bare spin-wave spectrum extracted from the quadratic part
erates three spin-wave processes [8,10] and violates ti@é the action (2) reads
total spin conservation law. This interaction is dominant
in the spin-wave dissipation via decay into the two spin e2(p) = A(p* + pop?/p). (3)

Apa = D (P dupl? + Amupl?)/2,
wp
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wherep = |pl, the dipolar wave vectgs, = g/J,andthe latter means largeA shell). Our theory is valid provided

spin-wave velocitye = 4/JA. In the regionpy < p < tln(\/J_)L/g) — L <1 8)
VA/J spin waves have the linear, acousticlike spectrum. ' o
We call this spherical shell of momentum tt#& shell. We employ the standard, so-called Janssen-De-Dominicis

The nonquadratic part of the action (), contains the functional method [14] to account for the nonlinear terms

three-leg and four-leg vertices. In particular, the three-ledn the stochastic Langevin equation (5). This method
vertex is generates a diagrammatic expansion in powers of the bare
vertices, associated with;,,. The main contribution to
(4) the self-energy is given by one-loop diagrams shown in
Figs. 1(a) and 1(b). Under the condition (8), the two-loop
Since the sum of momenta entering the vertex is Zero&orrecthn represented by_the diagram in Fig. 1(C)_ is small.
eglecting the two-loop diagrams (vertex correction) was

;(Sepl))ezglds on two momenta. Further we denote it 23 principal feature of the Migdal theory of electron-phonon
1’ "

The dynamical equation, equivalently the I_(,deau_interaction [2], and a major assumption in the so-called

Lifshitz spin precession equation, associated with thénode-cquplmg met_hod in critical dynamics [8]. Lat_erwe
action (2) reads (we assumie= 1) prove this assumption for our model. Thus, we write the

Dyson equation for our problem as follows:
d’p d

Fee 6 30.g) =207 [ o F oo Fp.9)

The thermal noisey,, and the bare dissipation coeffi- X D(w,p)G(w + Q.p + q) + Zp(q), (9)
cientTy' generate the stochastic dynamics in (5). Theiwhere 3, is the real self-energy [Fig. 1(b)]; it does
choice reflects a nonconserved nature of the in-plane spimot depend on the external frequen@y The functions
The noise-noise corelation function is related to the baré(w, p) anda(w, p) are even in both arguments [1]. The
dissipation coefficient|n,,|*) = 27/T,. It vanishes at imaginary part of the self-energy is odd in frequer@y

T = 0. We do not consider spin-lattice relaxation, andHence, the equation for the dissipation function reads
spin waves dissipate only due to the interaction gener-

3
F(P1.P2.P3) = > picpiy/Ipil-
i=1

(220 o), e
A A I, 8b—wp

2
ated by the dipole force. Hence, we sBf' = +0, b(Q,q) = ¢°A°T d pzf d—wfz(p,q)
and look for the generated so-called dissipation function (2m) 2m
b(w,p) = AT (w,p), which has the dimension of en- X D(w,p)D(w + Q,p + q). (20)
ergy (frequency).

The Green functionG(w, p) is defined as the linear G(a) ,P)

response of the magnet to an external magnetic field Wit(a)

the frequencyw and the wave vectop. The left hand

side of Eq. (5) represents the inverse bare Green functic

A 1Go (@, p). (b) D
The self-energy term3(w,p) equals Gy '(w,p) —

G Y(w,p) by definition. We notify the real and the

imaginary part of the self-energy term3s= a*(w,p) — g g

iowb(w,p). Thus, the Green function reads

G Nw,p) = w? — €Xp) — d*(w,p) + iwb(w,p).
(6) D((D+Q,p+q)

According to the fluctuation-dissipation theorem, the
imaginary part of the Green function multiplied by the
factorT/w is the spin-spin correlation functiab(w, p): (c)

b(w,p)
[0? — €X(p) — a*(w,p)P + w2b*(w,p)
(7

D(w,p) =

(we refer the factof" to vertices).
The pole of the Green function (6) gives the dispersior
of the quasiexcitation. Thus, we have to find the self--;- ;| () Main one-loop self-energy diagram. (b) One-loop

energy>(w,p). We assume that the reduced temperaturgoyr-leg vertex diagram. (c) Two-loop self-energy diagram.
t = T /44J is small wherea& = In(y/JA/g) is large (the Momenta of internal lines are indicated.
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The integrand in (10) is positive. Thus, the main con-p < pg and a frequencyw < cp. The integration over
tribution to (€2, q) comes from the region where poles of w, with one of theD functions in (10) taken in the form

the two D functions coincide. The functioP(w, p) has
poles atw = *e€(p), in the A shell [15]. Following the
terminology of the field theory we call the surfageé =
€*(p) the mass shell. The dissipation in tt#& shell is
small and theD function can be represented as a sun of
functions:

- 262(p) 5(Awt) s

(11)

(11), leads to following equation:

2 potf2(0,q)

b, =
! 8mq?

d*pD(e(p + q) — €(q).p).
(15)

Since w = e(p + q) — e(q), we conclude thatw =
cp cos®, whered = ¢y — ¢ is the angle between the
vectorsq andp. Invoking the definition of the “mass-
shell” angley for virtual spin wave, we find thay = ®.

whereAw. = w * e(p) measures the deviation from the Now we look at Eq. (15) in more detail:

mass shell. After integrating out from Eq. (10) with the

D functions from (11), we recover the Fermi golden ruleb () =
for the probability of the spin-wave decay and scattering !

processes.

Looking for the long wavelength quasiexcitations, we

need the self-energy at very small momenta<k pg

Sy cosy dp dg
p2sit y + pope? + Zo()/c?’

")
(16)

where ¢? ~ p/py < 1 and, thus, we have substituted

c2pdt
27

which we denote a&,. We anticipate quasiexcitations X = #- In other words, the dissipation of a short wave-
to be soft,) < cq, and restrict the quasiexcitation wave !€ngth spin wave propagating in the directignis deter-

vectorq to be directed along the magnetizatidpq:| < ¢.

mined by scattering on a long virtual spin wave which lies

An essential contribution to the integral in Eq. (9) comes2n @ specific distance off the mass shell/cp = cosy.

from internal momentg being in the A shell and the
internal frequencyw = e(p). Integrating overo with
the D function from Eq. (11), we find [15]

] ctpidp Q sirt(2y) dy

e(p) Q — cqcosy + ibi(y)’
where we have omitted af)-independent term which

cngt
0= 4
(12)

The integration overp in (16) is confined towards the
crossover regionp ~ p. = pov/iL.

Substituting2(¢y) from Eq. (13) into Eq. (16), we find
the anisotropic dissipation of a spin-wave mode in the
shell:

sin/2(2¢) sin(y /2)
L'/4 cosys ’

bi() = Bit¥*epo (17)

contributes a neg||g|b|e Change to the Spectrum Eq (3 here the direction of the Spin wave is limited to the

[16]. bi(y) is the dissipation functiom(w,p) of a spin
wave inside theA shell andy¢ is the angle between

undamental quadrant < ¢ < 7/2. We found g, =
I'2(1/4)/4\27 =~ 1.31.

the direction of magnetization and the internal spin-wave Let us return to very low quasiexcitation momenta

wave vectorp: sings = p./p. Later we prove thab,
depends oy only.
If cq > by, we make the integral oveF in Eq. (12) to
find
S0(x) = c*pgtLcos y exp(—2ix), (13)
where y is defined by coy = Q/cq. It measures the
deviation from the mass shell. 4fis so small thatg «

g < bi/c. Plugging Eq. (17) into Eq. (14), one finds

bo = Bocpot *L*, (18)
where By = 1.24 was found numerically. The condition
cppu ~ by defines the crossover wave vectpp,, ~
pot>/*/L/*, separating ranges of validity for Egs. (13)
and (14). The self-energy (13) and the dissipation func-
tions (17) and (18) conclude the self-consistent solution of

b1, Eq. (12) implies a-independent constant dissipation the Dyson equation (9) and (10).

function:
dy sirt(2y)
47 bi(y)

To find by, we needb (/). An unusual feature of our
theory is that the dissipation process in th& shell is

by = cngtL (14)

Next we verify that the two-loop correction [see
Fig. 1(c)] is negligible. Note that the main contribution
to the diagram [Fig. 1(c)] comes from the two internal
momentap; andp,, restricted to theA shell. Inside the
A shell the Green and th® functions live on the mass
shell. However, the prohibition of the three spin-wave

mediated by an off mass shell, virtual spin wave. Indeedprocesses confines the arguments of the Green function

Eq. (3) does not allow for decay or merging processes(w;

because the functiore(p) is convex upwards in the

— wy,p1 — p2) off the mass shell. The Green
function off the mass shell is small in temperature. A

momentum space. Hence, the dissipation of a spin waveimple counting shows that the two-loop correction to

in the A shell ¢ > po) propagating in the direction
specified with the anglés (sings = ¢,/q) is mediated by

the dissipation function ish) ~ byt'/*. The two-loop
correction tob; is small inz!/4, and is also small in the

an internal virtual spin wave in (10), with a momentumratio po/q < 1.
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