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Elastic Instability and Curved Streamlines
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Hydrodynamic instabilities occur in the motion of non-Newtonian polymeric liquids at low flow
rates that are entirely absent in the corresponding motions of Newtonian fluids. We develop a
dimensionless criterion that characterizes the critical conditions for onset of elastic instabilities in two-
dimensional, single-phase isothermal viscoelastic flows. The new dimensionless group is analogous
to classical Taylor and Gortler numbers characterizing inertial instabilities of Newtonian fluids and
guantifies both the curvature of the streamlines and the dynamics of the non-Newtonian fluid motion.
[S0031-9007(96)01132-5]

PACS numbers: 47.20.-k, 47.50.+d, 83.50.—v

The nonlinearities in the equations of motion describingmore complex geometries [11,12] that are not amenable
fluid flow can lead to the development of hydrodynamicto classical linear stability analyses due to the difficulties
instabilities stemming from the consideration of fluid in- in obtaining analytical expressions or accurate numerical
ertial effects, Coriolis effects, buoyancy, surface tensionsolutions for their base flows. In a two-dimensional flow
etc. [1]. In many flows involving macromolecular liquids, field we can characterize the relative magnitude of the
hydrodynamic instabilities are observed at low flow rategphysical length scales in each principal direction, day,
that are absent in the corresponding flow of NewtoniarandH, by the aspect ratioA = H/L. A common char-
fluids [2]. In polymeric materials, the presence of a well-acteristic of the observed elastic instabilities in such ge-
defined microstructure results in a complex rheologicabmetries is the sensitivity of the critical onset conditions
response, which in turn affects the stability of the fluidand resulting spatiotemporal dynamics to the relevant geo-
motion. Polymeric liquids exhibit significant elastic and metric aspect ratio\.
shear-thinning phenomena [3,4] which are represented by From a micromechanical viewpoint, the motion of a
nonlinear terms in constitutive relations that describe thgolymer chain along a curvilinear streamline can be rep-
state of stress in flowing polymeric materials. These vistesented schematically as shown in Fig. 1. If, as a result
coelastic constitutive equations are nonlinear functionalsf a radial perturbation, the polymer molecule does not lie
of the rate of deformation tensor; = (Vv) + (Vv)’,  along a streamline, the shearing motion stretches the chain
wherewv(x, r) is the velocity vector [4]. The complex in- nonuniformly, which in turn amplifies the non-Newtonian
teraction of nonlinear terms in the momentum equatiorfthoop stress,” i.e., th@# component of the polymer con-
and the constitutive equation give rise to a new class ofribution to the stress tensegy. The nonlinear convective
unstable flows with a rich dynamical structure [5]. terms, e.g.Av - V& and AVw - 7, which appear in vis-

One of the best-documented instabilities in Newtoniarcoelastic constitutive relations, provide the coupling with
flows is the Taylor-Couette instability [6]. In the Couette the components of the fluid momentum equation. Here,
device, fluid is placed between two concentric cylindersaA is a characteristic relaxation time of the fluid [4]. This
and flow is generated by differentially rotating the bound-perturbation to th&d component of stress enters into the
aries. The Taylor instability is characterized by the generaradial momentum balance determining the pressure field,
tion of streamwise vorticity and development of a steadyand this pressure disturbance ultimately generates a radial
secondary cellular structure in the axial direction, known
as Taylor cells [7]. The source of this instability is iner-
tial motion of material elements along curved streamlines
in which the centrifugal forces act to push the fluid outside
its circular orbit [1].

A similar Taylor-Couette instability occurs in the flow
of non-Newtonian fluids [5]; however, the destabilizing
forces arise from nonlinear interactions between inertia,
fluid shear thinning, and elasticity. Experiments with con-
stant viscosity “ideal elastic fluids” [8] have demonstrated
the presence of a purely elastic mode that occurs at neg- R
ligibly small Reynolds numbers [9], and linear stability
analyses with simple constitutive relations are able to pregiG. 1. Polymer chains in a curvilinear shear flow; uniform
dict this instability [10]. Elastic instabilities also occur in vs nonuniform chain extension.
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velocity component. The presence of a radial velocity indess stability criterion is then given by

duces an axial velocity to satisfy the continuity equation, . o . _

and the perturbation can thus be amplified. This complex (De Wi)erie = [(€/R) Wilerie = 21.17, 1)

coupling via normal stresses and curved streamlines is @hich combines dimensionless measures of the streamline

distinguishing feature of elastic instabilities [10]. radius of curvature and of fluid elasticity. Similarly, in
To characterize the onset of any instability, certainthe linear stability analysis of the Taylor-Couette flow of

critical parameters or dimensionless groups naturally arisigleal elastic liquids the stability boundaries vary with the

from dimensional analysis of the governing equation setparametefd/r;) Wi? [10], or in our notation with the same

For the Taylor instability, the relevant dimensionless grougdimensionless criterion,

is the Taylor number,

) =[5 ]
r= Z(d/rl)Rez’ <rl Wi crit ry d/rl crit
where r; is the radius of the inner cylinded is the ¢
gap separation, and Re Ur;/v is the Reynolds number. = <§ Wi) - =35.04, (2)
crit

Here, U is the linear speed of the inner cylinder and
is the kinematic viscosity. The Taylor number combineswhereU = r;w andR = r, for this problem.
measures of fluid inertia (Re) and of the streamline radius The flows in the above geometries are unidirectional,
of curvature(r;). In elastic flows, two dimensionless and the radii of curvature of the streamlines in the stable
groups quantifying the non-Newtonian nature of the flowbase flows are set by a single length scale. However, in a
may be defined; the Deborah and Weissenberg numbegdmplex two-dimensional flow the local radii of curvature
[4] which are given, respectively, by vary throughout the geometry as the characteristic velocity
De = A/fiows Wi = A/taer s U is in<_:reased. It can be inferred from dime_nsional con-
sideration of the geometry that the streamline curvature
where trio ~ L/U is a characteristic residence time in should scale with a combination of the two principal length

the flow geometry, andi; ~ 1/ is a characteristic mea- scales of the flowl. andH. The simplest such expression
sure of the local deformation time scale for a fluid ele-jg

ment. In complex flow geometries, these time scales are
not necessarily the same measure and characterize dif- I/R =a/L + B/H, (3)

ferent physical processes [4]. By analogy to the classiyhere L and H are considered as length scales for the
cal Taylor number, we seek to construct a dimensionlesgrincipal radii of curvature weighted by the dimensionless
scaling relationship for characterizing the onset of elasconstantsa and 8. Equation (3) is applicable in both
tic instabilities with a functional dependence of the formjimiting cases where\ = H/L is either very small or

F(RA, triow, taers A, M), A triow, taer ). Here,R isamea-  |arge. In such extreme cases, one length scale determines
sure of streamline radius of curvature in the flow geometrythe radius of curvature as in the Couette=€ r, H — )
andn is the fluid viscosity. and cone-plate geometries & r, H — ).

Experiments have shown that the torsional motions of As a simple way of investigating the proposed scaling
elastic fluids between a rotating cone and a plate or ben a complex geometry, we consider the flow of two dif-
tween parallel coaxial disks are unstable to spiral disferent ideal elastic fluids in a box of size, H,4L) where
turbances [13]. Linear stability analysis of the formery = 2.5 cm, andH is adjustable in the range @f/4 to
geometry shows that an oscillatory elastic instability ap47,. The elastic fluids are composed of 0.2 and 0.35 wt. %
pears when the following stability criterion is met [14]:  polyisobutylene dissolved in polybutene oils, and the re-

De Wi = A2w?/0, > 21.17, laxation times determined via standard viscometric tech-
. i i niques [4] arex = 1.6 and 2.5 s, respectively. The fluid

wherew is the rate of rotation of the cone amg is the s placed in the box and the top plate is translated with a
angle between the cone and the plate. In the limit of smaltonstant speed in thedirection as shown schematically
cone anglesfy =~ i/r wherehis the gap separationand , Fig. 2. This “lid-driven cavity” constitutes a classical

is the radial distance from the apex of the cone. Thereforepromem in fluid mechanics that has a complex dynamical

we can represent the product De Wi, structure [15-17].
Mo Aro AU . In thi; problem, the_ Deborah and Weissgnberg numbers
De Wi = - Ay, are defined, respectively, by BeAU/L, Wi = AU/H.

The maximum Reynolds number attained is Re
whereU = rw andy = rw/h. We define the distance 0(1073), indicating that inertial effects are always negli-
¢ = AU asthe characteristic distance over which per- gible. At low Deborah and Weissenberg numbers, the
turbations relax along a streamlingnd R = r asthe flow is two dimensional in thex-y plane except very
characteristic measure of the radius of curvature of thenear the end walls. At a critical value of De and Wi, a
streamlinesn this viscoelastic base flow. The dimension- cellular structure develops in the cavity as can be seen in
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FIG. 2. The schematic diagram of the driven cavity flow; flow
instability can be observed from the end view and also from
below (plan view).

the photographs presented in Fig. 3. In Fig. 4, we present
streak images of the flow in the-y plane. Pronounced
streamline curvature is present in the regions near the
upper corners of the cavity, and as the driving velocity
is increased the radius of curvature becomes smaller ir
the downstream corner. The onset of elastic instability is
initiated in this region in the form of Taylor-Gortler-like )
(TGL) disturbances in the neutral adirection [1]. The
streamline curvature in the downstream corner results in
a local deformation rate of ~ U/R, which defines the
appropriate local dynamical measure of elastic effects,
Wiz = AU/R. With this definition, our dimensionless
criterion [cf. Egs. (1) and (2)] for onset of elastic instabil-
ity reduces ta€/R )2, = const, or, equivalently,

()‘U/R)crit = Mesit (4)

whereM.,;, is a constant value for any particular fluid and

is modulated by variations in other material parameters(d)
(e.g., solvent viscosity). The constaat@andg in Eq. (3)

are unknown; however, combining Eqgs. (3) and (4), we
find

H/)‘Ucrit = 1/Wicrit = aA + Ba

i.e., the stability loci measured for each cavity should lie
on a straight line whei/Wi.; is plotted versug.. Aswe
show in Fig. 5, this scaling argument betwdéefi..;; and

A represents our experimental observations in both fluids
extremely well with a good superposition of the data. InFIG. 3. Flow visualization of the elastic instability for cavities
our characterization of the radius of curvature via Eq. (3)0of different aspect ratios. (a) End view of the stable base flow;
the constanter and 8 do not merely provide geometrical A < 1, De =025, Wi = 0.25; (b) as the driving velocity

fits to experimental data; as we show elsewhere in O%Sor{fgse%fvdeﬁgi 10\{\' |'3ne iaz) 3bsec\?vrine=sol£5tagllaen z\a/?eo\leTGL

analysis of more complex flow geometries, these constants; cavities with different aspect ratios show that the spatial
scale with the rheological parameters of the fluid and thérequency and critical conditions vary with; (c) A = 0.5,
geometrical structure of the fluid motion. Furthermore,De = 0.29, Wi = 0.58; (d) A = 0.25, De = 0.25, Wi = 1.

the dimensionless grouping/R is not equivalent to

conventional definitions of the Deborah number, and in the

case of driven cavity flow it can be written in the following € measure of curvatui® is infinite for geometries that
form: do not exhibit any curved streamlines. For example, in

the rectilinear shear flow of a viscoelastic fluiR (=
AU/R = (a + B/A)De. r; — o in the Couette device) the flow is predicted to
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IF < Ugrir U =Uerit to the local radius of curvature of fluid streamlinéR,
Our proposed dimensionless criterion can be thought of
as the viscoelastic complement of the Gortler number.
Of course, in a viscoelastic fluid there is no character-
istic local boundary layer length scale, and this is re-
placed by the scalé = AU characterizing the relaxation
of a kinematic perturbation along a viscoelastic material
line. Furthermore, the destabilizing normal stress that
provides the driving force in elastic instabilities does not
have to increase towards the center of curvature and may,
in fact, increase, decrease, or remain constant depending
on the particular geometry. For example, the viscoelas-
Stable (De = Wi =0.15) Unstable (De = Wi = 1.5) tic Taylor-Couette instability occurs when either the inner
FIG. 4. Streak images of the flow field in they plane for a or outer Cy"”d_er is rOtat?d beY‘?”d critical values. How-
cavity with A = 1: the stable versus unstable flow streamlines.€Ver, the inertial Taylor instability occurs only when the
inner cylinder rotates faster than the outer one beyond a
critical rate.
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