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Walking Solitons in Quadratic Nonlinear Media
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We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show
the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group
velocities between the waves. We discover that the new solitons constitute a two-parameter family,
and they exist for different wave intensities and transverse velocities. We discuss the properties of the
walking solitons and their experimental implications. [S0031-9007(96)01172-6]
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Parametric, nonlinear, three-wave interactions play ats due to different propagation directions of energy and
important role in many branches of physics. They accounphase fronts in anisotropic media. Provided that nonlinear
for resonant wave mixing in media with a weak nonlinear-quadratic optical materials are anisotropic, beam walk-off
ity, quadratic in the fields, and arise in different areas ofis always present in the experiments when birefringence-
plasma physics, fluid dynamics, water and acoustic wavesiining phase-matching techniques are used. Numerical
electronic parametric amplifiers, and nonlinear optics [1]experiments indicate that solitonlike propagation occurs
In many situations of interest, the dispersive effects takén the presence of walk-off [6], but soliton solutions
place at a much longer time or space scale length than trege not known, and a general question arises of whether
nonlinear effects. In such cases much progress in solvingtationary, non-zero-velocity solitons exist.
the governing equations can be made by using analytical In this Letter we show the existence of stationary
tools, including the inverse scattering transform methodsoliton solutions in the presence of walk-off between the
[2], and they have been extensively investigated for morevaves. We discover that the new “walking” solitons
than three decades. constitute a two-parameter family, and they exist for

However, in physical settings where the dispersive andlifferent wave intensities and soliton velocities. The
nonlinear scale lengths are comparable, the parametraplitons do not have simple traveling-wave forms. We
interactions of intense waves exhibit a much richershow the stability of physically relevant solutions and
variety of phenomena than is commonly believed. Theliscuss their implications to the experimental excitation
propagation of tightly focused beams or short pulses irof solitons with different input beams.
appropriate optical media sets such a scenario, and oneWe consider continuous wave light beams traveling in
fascinating example of the existing new phenomena is tha medium with a large quadratic nonlinearity, and here we
formation of solitons (or, more properly, solitary waves) concentrate onl(+ 1) geometries. In the slowly varying
by the mutual trapping of the interacting waves. In thisenvelope approximation, the beam evolution is described
paper we concentrate on parametric interactions of opticdly the reduced normalized equations [5]
waves in quadratic nonlinear media, and we specifically da; r *a . _
study the so-called degenerate case in which a wave at a l E T 5 a2 + ajay exp(—iBé) =0,
fundamental frequency interacts with its second harmonic. 5
This case offers the additional motivation of the potential . day @ 97ay . 0ay 2 ; —

) = i > ) + a7 expiBé) =0, (1)
important applications of the phenomena uncoveredto all- 9¢ 2 9ds ds
optical devices for the control of light by light. wherea; anda; are the amplitudes of the fundamental and

Both (1 + 1) solitons (i.e., one transverse dimensionsecond harmonic waves, and= —1 for spatial solitons.
and one propagation dimension) and higher-dimensiondlhe parametera, 8, andé are given by the ratios of the
solitons exist in bulk crystals and in optical waveguidescoherence lengthl( = 7 /|Ak|), the diffraction lengths
made of quadratic media [3—8]. Temporal solitons appeafl; = kn?/2), and the walk-off lengthi(, = /p). Here
to be more difficult to form with currently available k is the wave vector at both frequencidsy = 2k; — k»
experimental conditions, bull (+ 1) and @ + 1) bright is the wave-vector mismatcly is the walk-off angle,
spatial solitons have been recently observed in seconahd » is the beam width. One has = —1;,/l;, 6 =
harmonic generation experiments [9]. Families of zero-+21,,/1,,, and B8 = sign(Ak) 2wl /l.. The transverse
velocity soliton solutions of the governing equations arecoordinates are given in units gf and we set for the prop-
known to exist under ideal conditions, namely, whenagation coordinate/l;,; = 2£. For relevant experimen-
there is no walk-off between the interacting waves [6—tal conditions, say/. ~ 2.5 mm, p ~ 1°, n ~ 15 um,

8]. Temporal walk-off is due to different group velocities one obtainsa = —0.5, § ~ =1, andB ~ *3. For the
of the waves forming the soliton, while spatial walk-off numerics we setx = —0.5. Equations (1) also hold for
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pulsed light. Then diffraction is replaced by dispersion,the functionsU,(n) andf,(n). Namely,

beam walk-off is replaced by group velocity mismatch, and ) ] 1.
r anda are given by the group velocity dispersion at the 5 U, — |:K1 —vf] + Ef%}Uﬁ
fundamental and second-harmonic frequencies.

A great insight into the properties of the new solitons UiUcodf, — 2f1) =0, (7)

we have found can be obtained from the integrals of the .
wave evolution. Here we shall make use of three known " y : ;

— iU, + —v|U; + U U;SIn -2 =0,
integrals which can be readily obtained from Noether's 2 L Ui 1z sin(f2 v

theorem, or directly from the governing equations, namely, (8)

the total beam power or energy flow given by the Manley- .

Rowe relation EaUz + [2,(1 +B—(v+8)f — Eafzz:|U2_
P=na = [0aP e, @ U2 codfr — 21) = 0. (9)

the Hamiltonian or field energy

1 . . .
1 A |2 A, 2 —afoUy +|afy + v+ 6 |Uyt
=g [l 55 15| - ’ | |
N N .
s/ anl A Utsin(f, = 2f1) =0, (10)
+i 3 (Aza—z — A a—2> where the overdots indicate the derivative with respect to
s s n. Recall thate, 8, and § are given by linear wave
+ (A7Ay + AlA3)( ds, (3)  parameters, while the nonlinear wave-number shifand
dth | b the velocityv parametrize the sought after solutions. In
and the total transverse beam momentum the absence of walk-off one hds= 0, and zero-velocity
1 0A dA] soliton solutions of the above equations are known to exist
J:J“JZ:_”(AITI‘AIa—;) [3-8]. i
9A 9A Next we discuss the existence conditions of non-zero-
<A2 2 4 2>}ds (4) velocity soliton solutions of the system of Egs. (7)—(10).
ds Walking solitons might exist for nonlinear wave-number

where we have definetl, = a; andA; = a, exp(—iB¢). shifts k; and velocitiesv such that the soliton is not in
We shall also need the rate of power exchange betweersonance with linear dispersive waves. Otherwise the
the fundamental and second harmonic waves. Writing theoupling between the waves would lead to energy leakage
fields in the forma;, = U, expli¢;,), whereU;, and  that would appear as Cherenkov radiation emitted from
¢ are real quantities, one arrives at the soliton [10]. To calculate the resonance condition
we define the longitudinal components of the nonlinear
ah 2] U2Ussin(gs — 2¢1 — BE)ds. (5) Wwave numbers of the two waves forming the soliton as
df qua1 = dé,/d¢, SO thatQV,nl(:’]) =k, — vf,(n). The
We are looking for stationary solutions of Egs. (1) values of the phase-front tilt§,(n) far from » = 0 are
describing mutually trapped beams walking off the= 0 given by Egs. (8) and (10), and one has
axis, hence we set

. . 1
alés) = Umextdig (.l v=12, @ (0= = v L= =mr(o ).
with U and ¢ being real functionsy = s — v¢ is the  The longitudinal wave numbers of the Imear waves

transverse coordinate moving with the soliton peak, andre glven by the dispersion relationg in = 2f1 lin s
d,(&,5) = k,& + f,(n). Herewv is the soliton velocity, ¢, ;, = 2af2 in 8 f2in, Wheref,, 1in @re given by (11).
«, the nonlinear wave-number shifts induced by the waveCutoff occurs at the resonance conditiogs(n —
interaction, and the functionf$ (n) stand for the transverse «) = ¢, 1;,, and we find
phase fronts of the solitons. According to (5), to avoid 2
. 2 (6 +v) B

all power exchange between the waves, one first needs Kicut = MaXy— v, ——— — —
Ky = 2k + B. Also the phase fronts should verify either 2 4(—a) 2
f2(n) = 2f1(n) everywhere, or alternativelyy,(n) and  For given values of the various involved parameters,
f»(n) have to be symmetric and antisymmetric functionswalking solitons can exist for nonlinear wave-number
of the transverse coordinate, respectively. We shall shifts above these values.
find out that only the solutions that occur in the absence The system (7)—(10) allows a trivial traveling-wave
of walk-off fulfill the former condition, whereas with this solution having the form given by (6), with the phase-
exception all the walking solitons fulfill the latter. front f,(n) = w,7n. Substitution into (8) and (10) gives

Substitution of (6) into (1) yields the coupled nonlinear w; = v and w, = —(6 + v)/a. However, this yields
ordinary differential equations that should be fulfilled by f>(n) = 2f1(n), and the velocityv = —8/Q2a + 1).
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Because in all physically relevant situations one hadilt, defined asf,,(n), for two representative solitons.
a = —0.5, this expression gives a soliton velocity ordersin some cases, the walking solitons exhibit oscillating
of magnitude larger than the actual velocity. Thustails with fast variations of the transverse phase front, as
such solutions do not have physical relevance unlesshown in Fig. 2(d). Second, we have verified numeri-
a = —0.5 and there is no walk-off§ = 0). In such cally in selected cases by solving Egs. (1) that solutions
a case, the traveling-wave solution constitutes a zerowith increasing wave number for increasing energy
velocity transformation that is simply a consequence oflow are stable under propagation. This is consistent
the Galilean invariance of the governing equations. with Kolokolov's criterion applied to this case [12].
To investigate the existence of stationary walking soli-We have also found that solutions of the negatively
tons, we have solved Egs. (7)—(10) numerically using &loped branches in the;(/) diagrams are unstable on
band-matrix method to deal with the two-point bound-propagation, so that they either eventually spread or they
ary value problem for the four unknown functiotis (),  reshape, acquire a slightly different velocity, and decay
f»(n). We have concentrated on bright solitons. Weinto a stable walking soliton. To further confirm the
have found that families of walking solitons exist at dif- robustness of the solitons, we have verified that walking
ferent values of the material parameters 8, and §, solitons with different velocities are excited, e.g., with
with different wave intensities and soliton velocities. A appropriately tilted inputs. The rigorous stability analysis
convenient way to represent the solutions is an energgf all the solutions remains to be done. Third, even in
flow-nonlinear wave number, i.ex;(I) diagram. Fig- the presence of walk-off there are zero-velocity soliton
ure 1 shows such a diagram for different values of thesolutions. The situation is somehow similar to an unfor-
wave-vector mismatch, at a representative value of th&unate driver who owns a car that has gotten front wheels
walk-off parameter. We have included the curves correwith a default tilt towards either side of the road. In such
sponding to the nonwalking solitons known in the absencea case, it is still possible to keep the car running straight
of walk-off [8]. The properties of the families of walking ahead by applying an opposite turn to the steering wheel.
soliton solutions are different in each case and a compréA/alking soliton solutions proceed the same way, by
hensive study shall be published elsewhere. Three maimaving the appropriate phase-front curvature. However,
points follow. the excitation of such zero-velocity solitons would require
First, the shape of the walking solitons dependsan input beam that exactly matches the stationary soliton
strongly on their velocity, similarly to solitons of other solution.
non-Galilean invariant equations (e.g., [11]). In Fig. 2 Important information about the nature and properties
we have plotted the amplitude and the local phase-frondf the walking solitons we have found can be obtained
using analytical tools, as follows. We first notice that
(a) (b) Egs. (1) can be written in the canonical foid,/9& =

2 - SpJH /6pAY, i0A2/0E = 8pH /8pA5, wheredy stands
- v=0.5 for_ Fréc_het or fL_mpti_onaI_ deriv_atives anﬁz =_A2/\/§.
.é This defines an infinite-dimensional Hamiltonian system,
= 25 o5
g * v=-1 5 5 (b)
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FIG. 1. Nonlinear wave number versus energy flow of 8 (o dinate ® -8 transverse coordinate &

the walking soliton solutions for different linear wave-vector

mismatches and soliton velocities. (a) The solitons at phas€lG. 2. Amplitude and local phase-front tilt, defined as the
matching; (b) the solitons at positive phase mismatch; (c) théransverse derivative of the phase front of two walking soliton
solitons at negative phase mismatch. In all cases the walksolutions as a function of the transverse coordinate. In both
off parameted = 1. Dashed lines: unstable solutions. Dotted casesg = —3, § = 1, andk; = 3. In (a) and (cy = —0.5.
lines: nonwalking solitons foé = 0. In (b) and (d)v = —2.
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thus it can be analyzed accordingly [13]. We first find In conclusion, we have found stationary, walking soli-

that the stationary solutions with the form given by (6)tons formed by parametric wave interactions of focused
occur at the extrema of the Hamiltonian for a givenbeams or short pulses propagating in quadratic nonlin-
energy flow and a given transverse momentum, i.e.ear optical media in the presence of spatial or temporal
they occur atsz{H + x;I —vJ}=0. Now using group velocity mismatch between the waves. The new
Derrick’s theorem we find that the stationary solutions aresolitons constitute a two-parameter family, and they ex-

realized at ist for different wave intensities and transverse veloci-
3 1 4 1 ties. Our results could be also relevant to other physical
H = 3 kil + 3 Bl + 3 v] — 3 0. (13) settings where parametric three-wave interactions play a

role in scenarios where the dispersive and nonlinear scale

In the absence of walk-of6 = 0, and the last two terms
in the right-hand side of this expression vanish for zero—Ierlgths are comparable. The approach reported can also

velocity solutions. However. in the presence of walk-off be applied to similar problems in cubic nonlinear media.
y SolL ’ S P . . 'Such is the case, e.g., of highly birefringent optical fibers
only the third term vanishes for zero-velocity solitons,

'where the existence of walking vector solitons has been

is an important consequence of the fact that the transvers%gown by Soto-Crespet al. [14], by means of numerical

momentum of the walking solitons is not only related toexperiments.
. . 9 X y This work has been supported by the Spanish Govern-
their velocities, but also to their phase-front curvatures

The traveling-wave solutions that occur when= 0 ment under Grant No. TIC95-1458-E. We gratefully ac-
with @ = —0.5 have a flat phase front and a phase_knowledge support by the European Union through 'Fhe
front tilt giveﬁ by the soliton velocity, hence the beam HCM programme. ‘The numerical wprk has been carried
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momentum is proportional to the soliton velocity. In

such conditions, one finds the particlelike results= v
and H = H (v =0) + (1/2)Iv>. However, Eq. (13)
shows .that such is not the case of the walking solitons we *Permanent address: Department of Theoretical Physics,
have dlscqvered. . . Institute of Atomic Physics, Bucharest, Romania.
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