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Sum Rule for Modified Spontaneous Emission Rates
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We show that the possible modifications of the spontaneous emission rate for an electric
transition, caused by the atomic environment, are constrained by a sum rule expressed as an
over the transition frequency. This rule is derived on the basis of causality requirements as exp
in the Kramers-Kronig relation. [S0031-9007(96)01234-3]

PACS numbers: 42.50.–p, 32.70.Fw, 78.90.+t
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It is now well established that the rate at which
excited atom or molecule undergoes spontaneous emi
depends on its environment [1]. The existence of mate
boundaries in the vicinity of the radiating species chan
the density of field modes and the spontaneous emis
rate [2]. The boundaries often take the form of
optical cavity, but more generally any material obj
in the vicinity of the atom changes the emission ra
These studies show that the inhibition of spontane
emission rates for one range of transition frequen
tends to be accompanied by enhancement of the
at other frequencies. More recently, attention has b
focused on the practical application of the phenome
in the development of efficient semiconductor devices
and it has been suggested that nearly complete co
over spontaneous emission rates might be achieve
developing photonic band-gap materials [4]. Spontane
emission rates are also modified when an excited ato
embedded in a dielectric host; the free-space rate is
scaled by the real part of the refractive index of the h
at the frequency of the transition [5].
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In this Letter we show that the allowed modifications
the variation of spontaneous emission rates with transi
frequencyva are constrained in all cases by the sim
sum rule Z `

0
dva

Gmsr, vad 2 G0svad
G0svad

­ 0 . (1)

Here G0svad is the spontaneous emission rate in fr
space andGmsr, vad is the emission rate of an atom
molecule at positionr as modified by the environmen
whose effect is assumed to vary by a negligible amo
across the extent of the emitting object. It follows that a
reduction in spontaneous emission rate over some ra
of frequenciesva must necessarily be compensated
increases over some other range of transition frequenc

The spontaneous emission rate for an electric dip
transition is calculated using Fermi’s golden rule. T
resulting expression involves the vacuum expecta
value of a product of electromagnetic field operators
the form [6]
Gsr, vad ­
1
h̄2

Z `

0
dv

Z `

0
dv0 mimjk0jÊ1

i sr, vdÊ2
j sr, v0dj0ldsv0 2 vad

­
1
h̄2

Z `

0
dv mimjvvak0jÂ1

i sr, vdÂ2
j sr, vadj0l , (2)
e
a-
ted
where m is the dipole matrix element for the transitio
We adopt the convention that repeated indicesi and j
are summed over the three Cartesian coordinates. If
field operators for an unbounded region of free space
inserted into this expression, we recover the familiar fr
space rate

G0svad ­
m2v3

a

3p´0c3
, (3)

which is of course independent of position.
The fluctuation-dissipation theorem [7,8] provides

simple relationship between the vacuum expectation va
in Eq. (2) and the vector potential Green’s function in t
e
re
-

e

form

k0jÂ1
i sr, vadÂ2

j sr, vdj0l ­ 2h̄ImGT
ijsr, r, vad

3 dsv 2 vad , (4)

where the superscriptT denotes that this is the transvers
Green’s function. It follows immediately that the spont
neous emission rate and the Green’s function are rela
by

Gsr, vad ­
2v2

a

h̄2 mimj ImGT
ijsr, r, vd . (5)
© 1996 The American Physical Society
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The form of the Green’s function is restricted by t
requirements of causality, in particular it can have
poles in the upper half of the complexv plane. However,
this observation is not immediately useful as the lead
term in an asymptotic expansion of the Green funct
for v ! ` in powers of 1yv is a constant. The
Green’s function is not therefore square integrable
this precludes the use of the standard dispersion rela
[9]. We can circumvent this difficulty by working with
D ­ G 2 G0, that is, the difference between the Gree
function G and that valid for free spaceG0. As the
dielectric function for any material object must tend
the free-space value of unity asv ! `, the constants in
the asymptotic forms ofG and G0 are the same. Th
function D is thus square integrable in addition to havi
no poles in the upper half of the complexv plane. It
follows, therefore, that it obeys conditions of the famil
Kramers-Kronig form, in particular,

2
Z `

0
dva

Im DT
ijsr, r, vad
va

­ p Re DT
ijsr, r, 0d . (6)

The Green’s function is the well-behaved solution
the partial differential equation

2

µ
=2 1

v2
a´sr, vad

c2

∂
GT

ijsr, r0, vad ­
1

´0c2
dT

ijsr 2 r0d ,

(7)

whered
T
ijsr 2 r0d is the transverse part of the delta fun

tion [10] and´sr, vad is the complex dielectric function
[11]. It follows that at zero frequency the Green’s fun
tion is independent of the surrounding medium and he
that ReDT

ijsr, r, 0d ­ 0. The sum rule (1) then follows
from Eq. (6) on using the relation (5) together with t
explicit form of the free-space decay rate (3). The s
plest example of the sum rule is given by the rate of de
for an atom embedded in an unbounded uniform dielec
for which Gmsvad ­ hsvadG0svad, wherehsvad is the
real part of the refractive index [5]. The sum rule th
takes the formZ `

0
dvafhsvad 2 1g ­ 0 , (8)

which is well-established property of dielectrics [12].
We should point out two subtleties associated with

sum rule (1). First, it is important to note that we ha
considered only the contribution to the decay proc
associated with thetransverseelectric field. Transitions
can also occur by excitation of the longitudinal field, b
the sum rule applies only to that part of the total dec
rate associated with the transverse electric field.
contribution of the longitudinal field can be important, f
example, in absorbing materials having dielectic functio
with significant imaginary parts [13].

Second, apparent violations of the sum rule can
obtained from the results of model calculations t
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do not respect the general restrictions on the fo
of the dielectric function. Consider, for example, th
spontaneous emission rate calculated for a dipole in fr
of a mirror which reflects light perfectly at all frequencie
The resulting expression for the spontaneous emission
[14] leads to a violation of the sum rule. Evaluation
the integral in Eq. (1) can, depending on the orientat
of the dipole, lead to a term inversely proportional to t
distance between the dipole and the perfect mirror.
particular, for a dipole at a distancez from a perfectly
reflecting plane and oriented perpendicular to the pl
of the mirror we find that the integral (1) gives th
result3pcy8z rather than zero. However, this departu
from the sum rule can be accounted for within t
more general result (6). For a perfectly reflecting surfa
ReDT

ijsr, r, 0d does not vanish. This is a consequen
of the fact that a transverse delta function cannot
accommodated within a half space, but must be repla
by delta functions involving both points in the half spa
and their image points in the reflecting surface [15]. T
resulting modification of the equation for the Green
function in this case produces the nonzero value
ReDT

ijsr, r, 0d in accord with the violation of the sum
rule. Nevertheless, the idea of a reflecting surface
is perfect at all frequencies is unphysical, and it is t
cause of the departure from the sum rule in this case.
more physical models of reflecting surfaces incorporat
both absorption and high-frequency transparency, the
rule (1) should be valid. We will return to this poin
elsewhere.

Our sum rule should not be confused with more famil
rules such as the Thomas-Reiche-Kuhn (TRK) sum ru
which can be expressed as a relationship between
total cross sections for absorption and stimulated emis
[16]. The TRK sum rule constrains the dipole matr
elements for all induced transitions from a given atom
state and it is therefore a property of the atom. The s
rule in Eq. (1), however, applies to spontaneous emiss
from a fixed excited state to a fixed lower level as t
frequency of this given transition is swept from zero
infinity, keeping the dipole matrix element constant. T
spontaneous emission sum rule constrains the allo
transitions from the vacuum for any possible distributi
of field modes. It is therefore a property of the transve
electromagnetic field at the position of the atom.

Finally, we emphasize that the sum rule in Eq. (1) a
plies to the spontaneous emission by an atom or m
cule in a completely arbitrary environment, which m
include, for example, metallic mirrors, Bragg reflecto
photonic band-gap materials, and absorptive dielect
or semiconductors. In all cases, the sum rule applie
model calculations of the modified spontaneous emiss
rates only if they use dielectric functions that conform
general causality and asymptotic requirements.

We are grateful to K. J. Blow who first suggested to
that a spontaneous emission sum rule might exist.
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