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Sum Rule for Modified Spontaneous Emission Rates
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We show that the possible modifications of the spontaneous emission rate for an electric dipole
transition, caused by the atomic environment, are constrained by a sum rule expressed as an integral
over the transition frequency. This rule is derived on the basis of causality requirements as expressed
in the Kramers-Kronig relation. [S0031-9007(96)01234-3]

PACS numbers: 42.50.—p, 32.70.Fw, 78.90.+t

It is now well established that the rate at which an In this Letter we show that the allowed modifications in
excited atom or molecule undergoes spontaneous emissitime variation of spontaneous emission rates with transition
depends on its environment [1]. The existence of materidrequencyw, are constrained in all cases by the simple
boundaries in the vicinity of the radiating species changesum rule
the density of field modes and the spontaneous emission .
rate [2]. The boundaries often take the form of an f do L(r, @,) — To(w,) —0 1)
optical cavity, but more generally any material object 0 ¢ Fo(w,) '
in the vicinity of the atom changes the emission rate.

These studies show that the inhibition of spontaneousiere I'y(w,) is the spontaneous emission rate in free
emission rates for one range of transition frequenciespace and ,,(r, ,) is the emission rate of an atom or
tends to be accompanied by enhancement of the ratesolecule at positiorr as modified by the environment,
at other frequencies. More recently, attention has beewhose effect is assumed to vary by a negligible amount
focused on the practical application of the phenomenomcross the extent of the emitting object. It follows that any
in the development of efficient semiconductor devices [3]reduction in spontaneous emission rate over some range
and it has been suggested that nearly complete controf frequenciesw, must necessarily be compensated by
over spontaneous emission rates might be achieved bigicreases over some other range of transition frequencies.
developing photonic band-gap materials [4]. Spontaneous The spontaneous emission rate for an electric dipole
emission rates are also modified when an excited atom igansition is calculated using Fermi’'s golden rule. The
embedded in a dielectric host; the free-space rate is theresulting expression involves the vacuum expectation
scaled by the real part of the refractive index of the hostalue of a product of electromagnetic field operators in
at the frequency of the transition [5]. | the form [6]

1 * * ~ N
I'r,w,) = e ]0 dw /;) dw’,ui,uj<0|Ei+(r,w)Ejf(r,w’)|O>5(a)' - w,)

1 * A "
= ﬁfo do wipjoo0lA] (r, w)A; (r, ©,)]0), )

where u is the dipole matrix element for the transition. form

We adopt the convention that repeated indicesnd j

are summed over the three Cartesian coordinates. If the A+ A- T

: : O0|A] (r, w,)A7 (r, w)|0) = 2EIMG; (r, 1,
field operators for an unbounded region of free space are OIA] (X, a)Aj (X, )I0) (T @a)

inserted into this expression, we recover the familiar free- X 8w — ), (4)
space rate
Wl where the superscriflt denotes that this is the transverse
lo(wa) = 7 —5 (3)  Green's function. It follows immediately that the sponta-

3mrepcd’ net .
L ) . neous emission rate and the Green’s function are related
which is of course independent of position.

b
The fluctuation-dissipation theorem [7,8] provides a y
simple relationship between the vacuum expectation value 20?2 r
in Eq. (2) and the vector potential Green'’s function in the I'(r,wq) = e pipIMGi;(r,r, @). ©)
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The form of the Green'’s function is restricted by thedo not respect the general restrictions on the form
requirements of causality, in particular it can have noof the dielectric function. Consider, for example, the
poles in the upper half of the complaxplane. However, spontaneous emission rate calculated for a dipole in front
this observation is not immediately useful as the leadingf a mirror which reflects light perfectly at all frequencies.
term in an asymptotic expansion of the Green functionThe resulting expression for the spontaneous emission rate
for @ — « in powers of Jw is a constant. The [14] leads to a violation of the sum rule. Evaluation of
Green’s function is not therefore square integrable andhe integral in Eqg. (1) can, depending on the orientation
this precludes the use of the standard dispersion relatiord the dipole, lead to a term inversely proportional to the
[9]. We can circumvent this difficulty by working with distance between the dipole and the perfect mirror. In
D = G — Gy, that is, the difference between the Green’sparticular, for a dipole at a distancefrom a perfectly
function G and that valid for free spac&,. As the reflecting plane and oriented perpendicular to the plane
dielectric function for any material object must tend toof the mirror we find that the integral (1) gives the
the free-space value of unity as — o, the constants in result37c/8z rather than zero. However, this departure
the asymptotic forms of5 and G, are the same. The from the sum rule can be accounted for within the
function D is thus square integrable in addition to havingmore general result (6). For a perfectly reflecting surface
no poles in the upper half of the complex plane. It Reij(r,r,O) does not vanish. This is a consequence
follows, therefore, that it obeys conditions of the familiar of the fact that a transverse delta function cannot be
Kramers-Kronig form, in particular, accommodated within a half space, but must be replaced
" Im DL(r.x. ,) by deltq fgnctions i_nvol_ving both po_ints in the half space
2[ dw, —1—""% — . Re DL(r,r,0). (6) and their image points in the reflecting surface [15]. The
0 Wq : resulting modification of the equation for the Green’s
function in this case produces the nonzero value of
ReDf,-(r,r,O) in accord with the violation of the sum
rule. Nevertheless, the idea of a reflecting surface that
is perfect at all frequencies is unphysical, and it is the
cause of the departure from the sum rule in this case. For
(7)  more physical models of reflecting surfaces incorporating
both absorption and high-frequency transparency, the sum
wheres;(r — r') is the transverse part of the delta func- rule (1) should be valid. We will return to this point
tion [10] ande(r, w,) is the complex dielectric function elsewhere.
[11]. It follows that at zero frequency the Green’s func-  Our sum rule should not be confused with more familiar
tion is independent of the surrounding medium and henceules such as the Thomas-Reiche-Kuhn (TRK) sum rule,
that ReDiTj(r,r,O) = 0. The sum rule (1) then follows which can be expressed as a relationship between the
from Eq. (6) on using the relation (5) together with thetotal cross sections for absorption and stimulated emission
explicit form of the free-space decay rate (3). The sim{16]. The TRK sum rule constrains the dipole matrix
plest example of the sum rule is given by the rate of decaglements for all induced transitions from a given atomic
for an atom embedded in an unbounded uniform dielectristate and it is therefore a property of the atom. The sum
for which I',,(w,) = n(w,)'y(w,), wheren(w,) is the rule in Eq. (1), however, applies to spontaneous emission
real part of the refractive index [5]. The sum rule thenfrom a fixed excited state to a fixed lower level as the

The Green’s function is the well-behaved solution of
the partial differential equation

w2e(r, w,) 1
—<V2 + ”C—2a>G5(r,r',wa) = 8l —r'),

takes the form frequency of this given transition is swept from zero to
o infinity, keeping the dipole matrix element constant. The

j dw,n(w,) —1]1=0, (8)  spontaneous emission sum rule constrains the allowed
0 transitions from the vacuum for any possible distribution

which is well-established property of dielectrics [12]. of field modes. It is therefore a property of the transverse

We should point out two subtleties associated with theslectromagnetic field at the position of the atom.
sum rule (1). First, it is important to note that we have Finally, we emphasize that the sum rule in Eq. (1) ap-
considered only the contribution to the decay procesglies to the spontaneous emission by an atom or mole-
associated with théransverseelectric field. Transitions cule in a completely arbitrary environment, which may
can also occur by excitation of the longitudinal field, butinclude, for example, metallic mirrors, Bragg reflectors,
the sum rule applies only to that part of the total decayphotonic band-gap materials, and absorptive dielectrics
rate associated with the transverse electric field. Ther semiconductors. In all cases, the sum rule applies to
contribution of the longitudinal field can be important, for model calculations of the modified spontaneous emission
example, in absorbing materials having dielectic functiongates only if they use dielectric functions that conform to
with significant imaginary parts [13]. general causality and asymptotic requirements.

Second, apparent violations of the sum rule can be We are grateful to K. J. Blow who first suggested to us
obtained from the results of model calculations thatthat a spontaneous emission sum rule might exist. We
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