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Temperature Dependence of the Coupling of Nucleons to the Nuclear Surface

N. Giovanardi,1 P. F. Bortignon,1 R. A. Broglia,1,2 and W. Huang3
1Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milan, It

2The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
3Institute of Nuclear Research, Academia Sinica, P.O. Box 800-204, Shangai 201800, China

(Received 20 November 1995)

The single-particle self-energy is calculated in semi-infinite nuclear matter with use of an effective
interaction of strength determined self-consistently. The resulting damping width of a particle at a Ferm
energy displays a linear dependence with temperature as a result of the coupling to surface excitatio
while the effective mass shows an exponential decay. The results are in overall agreement with detail
calculations carried in finite nuclei and with experimental findings. [S0031-9007(96)00527-3]
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Mean field theory is one of the most useful approxim
tions in nuclear physics. The many-body effects come
via the single-particle potential which is generated by t
nucleons themselves. This potential constitutes the b
of the shell model theory of the nucleus, where nucleo
feel the presence of the other nucleons through the con
ing nuclear surface. This quantity is highly dynamic.
fact, it responds collectively to external fields in terms
regular vibrational patterns of different polarity.

The nuclear surface can also be excited by a bound
cleon bouncing inelastically off the surface. For a nucle
at the Fermi surface of a nucleus in its ground state, s
a process does not conserve energy. Consequently,
possible only as a virtual excitation, where the surface
bration is reabsorbed after a finite time by, for examp
the same nucleon. Such a dressing process, depicte
Fig. 1(a), leads to a quasiparticle which still has an infin
lifetime but which displays a mass different from the ba
nucleon mass (cf., e.g., Ref. [1]). When the nucleus is
ternally excited, that is, at finite temperature, the dress
process described above provides also a finite lifetime
the quasiparticle [2–5]. Temperature can change both
rate of the collision as well as the elasticity of the nucle
surface and thus the properties of the quasiparticles.
central question in the study of nuclear structure at fin
temperature is how the properties of quasiparticles, aris
from the coupling of nucleons to small amplitude vibr
tions of the constrained mean field, change with tempe
tureT.

In the present paper we aim at giving a simple y
realistic answer to this question. For this purpose,
nucleon self-energy is studied as a function of temperat
in the slab model of Esbensen and Bertsch [6], wh
the nucleus is essentially all surface and confines nuc
matter into a semi-infinite region. It will be concluded th
the damping width of single-particle motion at the Ferm
energy depends linearly on temperature, while the effec
mass decreases exponentially withT.

The nucleons of the semi-infinite nuclear matter a
confined in the half-spacez , 0 by the potential barrier
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V szd ­ V0s1 1 e2zyad21, (1)

with a ­ 0.75 fm and V0 ­ 45 MeV . Single-particle
wave functions are thus plane waves in the directi
parallel to the surface [sx, yd plane], and are to be
calculated numerically in thez direction as eigenstates o
the single-particle Hamiltonian

H0 ­ 2
h̄2

2m
d2

dz2
1 V szd , (2)

where the sum of the nuclear kinetic energy term and
the potential energy are defined in Eq. (1).

The nucleons interact through a two-body separa
interaction, which is the product of single-particle field
peaked at the surface

usz, z 0, Kd ­ ksKdV 0szdV 0sz0d , (3)

whereV 0szd is the derivative of the potential in Eq. (1)
The coupling constant,

ksKd ­ k0f1 1 sar Kd2g21y2, (4)

is given by the Fourier transform of a Yukawa interactio
of rangear ­ 1 fm. The quantityK is relative momentum
of the interacting nucleons along the slab surface. Un
the assumption of small amplitude quantal fluctuations
the constrained mean field, the quantityk0 is determined
by the equation

k21
0 ­ 2

Z
dzr0

0szdV 0szd , (5)

FIG. 1. Lowest order self-energy process due to (a) t
coupling of the single-particle statei to a surface vibrationl
and (b) the coupling to an uncorrelated particle-hole excitati
© 1996 The American Physical Society
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obtained from the self-consistent relation existing betwe
density and potential variations associated with the norm
mode of the system. These modes have been calculate
the thermal random phase approximation (RPA).

The single-particle self-energy associated with the c
pling of nucleons to surface vibrations is described,
lowest order perturbation theory, by the process depic
in Fig. 1(a). It was calculated making use of Matsu
ara’s formalism of thermal Green’s functions (cf., e.g
[7]). The imaginary part of the retarded self-energy op
ator is

ImSret
i se, T d ­ 2

1
2

Z `

0
dK K

Z 1`

2`

dv

3 Risv, Kd s1 2 e2bse2ei2vdd

3 f1 1 nBse 2 ei 2 vd 2 nFsei 1 vdg

3 SRPA
T se 2 ei 2 v, Kd , (6)

where

SRPA
T se, Kd ­ 2

1
p

Im
P

0
T se, Kd

1 2 ksKdP0
T se, Kd

(7)

is the thermal RPA strength function,P
0
T se, Kd being the

thermal particle-hole propagator while

Risv, Kd ­
Z

def jkfjF̂jilj2dsv 2 efid . (8)

The real part ofS
ret
i sed can be calculated from the

knowledge of theImS by means of the Kramers
Krönig dispersion relation, as the Hillbert transform of th
imaginary part of the self-energy,

ReSret
i sed ­

1
p

P
Z 1`

2`
de0 ImS

ret
i se0d

e 2 e0
, (9)

where P stands for the principal part of the integra
Making use of Eqs. (6) and (9), one can calculate
strength function associated with the dressed statei,

Sised ­
1
p

ImS
ref
i sed

fei 2 e 2 ReS
ref
i sedg2 1 fImS

ref
i sedg2

.

(10)

The functions ImS
ref
i se, Td and ReS

ref
i se, T d for a

particle at the Fermi energysei ­ eF , i ­ Fd are shown
in Figs. 2(a) and 2(b), respectively, as a function
e 2 eF and for five different values ofT within the
range0 # T # 2.5 MeV . It is worth noting that above
T ­ 3 MeV the number of thermally excited surfac
modes is so high that it is likely one has to go beyo
lowest order perturbation theory in the calculation of t
single particle self-energy. Following the discussion
n
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d

-
,
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FIG. 2. Imaginary (a) and real (b) parts ofS
ret
i sv, Td for a

single-particle state at the Fermi energy. The results sho
in the figure have been obtained for temperatures in the ra
0 # T # 2.5 MeV in steps of 0.5 MeV. The continuum curve
displays theT ­ 0 MeV results while the dotted curve display
those associated withT ­ 2.5 MeV . The curves comprised
between these two extremes represent the results at 0.5
1.5, and 2 MeV, respectively. These quantities have be
multiplied by 0.1 to scale the results of the slab model
values typical for finite heavy nuclei (208Pb). In the inset of
graph (a), the behavior ofImS

ret
i sv ­ 0, T d as a function ofT

is shown (cf. Table I). The quantitymvsT dym is shown in (c)
as a function of the single-particle energy for the temperatu
of 0 MeV (continuum), 1 MeV (dashed), and 2 MeV (dash
dotted).

Ref. [8], a numerical comparison of the results of the sl
model and those of finite nuclei requires a scaling of t
squared matrix elements appearing in Eq. (8). In the c
of 208Pb this scaling factor is 0.1. This is the reaso
why the results displayed in Figs. 2(a) and 2(b) have be
multiplied by this scaling factor.

The quantityImS
ret
i displays a rather smooth behavio

with T, which can be approximately parametrized by
linear function [inset to Fig. 2(a)]. This result can b
understood analytically making use of the fact that,
25
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TABLE I. Numerical values ofImS
ret
i­Fse ­ eF , T d, mvsT dym, and DmvsT dyDmvs0d are

displayed in the range of temperatures between 0 and 2.5 MeV.

T sMeV d ImS
ret
i­Fs´ ­ ´F , T d sMeVd mvsT dym DmvsT dyDmvs0d

0.0 0.00 1.36 1.00
0.5 0.38 1.24 0.67
1.0 0.67 1.15 0.42
1.5 0.90 1.09 0.25
2.0 1.11 1.05 0.14
2.5 1.30 1.03 0.06
is
shown in Refs. [8,9],

SRPAsK, vd ø Im
1

iav 2 sK2
, (11)
e

th
k
n

f
de
te
th
es

t
in
th
er
e
te
hi

t
c

where s is the nuclear surface tension. Inserting th
expression in Eq. (6) one obtains
ImSret
i sei ­ eF , T d ­ cssd

Z `

0
dvs1 2 e2bvdfnBsvd 1 nFseF 1 vd 2 nBs2vd 2 nFseF 2 vdg

3
Z d2K

s2pd2
Im

µ
1

iv 2 K2

∂
­ cssd

Z `

0
dvs1 2 e2bvdffsbvd 2 fs2bvdg ­ cssd4 ln 2T ,

(12)
dy
d
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e
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where the constantcssd is related to the nuclear surfac
tension, whilefsxd ­ s1 2 exdysex 2 e2xd. This result
is consistent with that found by Esbensen and Bertsch
T ­ 0 (cf. Ref. [8])

ImSret
i sei , T ­ 0d ­ cssdjei 2 eF j , (13)

in keeping the fact that one can view temperature as
energy available to a particle at the Fermi energy to ma
transitions. The ratio between the slope of the functio
(12) and (13) is4 ln 2 ø 2.77, similar to the value of 2.25
found in the case of208Pb [3].

The linear T and vs­ jei 2 eF jd dependence of
ImS

ret
i are a direct consequence of the presence o

surface displaying collective modes in the spectrum un
discussion. In fact, in the dressing process depic
in Fig. 1(a), the intermediate state is described by
product of two Green’s functions. Each of them impli
summations over intermediate frequencies leading
occupation numbers. Because closed loops imply
vertices impose frequency conservation conditions,
resulting expression is linear in the occupation numb
[cf. Eq. (12)]. In the case of an infinite system, th
lowest order dressing process of single-particle sta
corresponds to the process shown in Fig. 1(b). In t
case three Green’s functions are needed to describe
intermediate state, leading to an expression quadrati
the occupation numbers,

ImSret
i sv, Td ø

Z `

0
demnFsemd

Z `

0
den

3 fgsbenmd 2 gs2benmdg ø bT 2.

(14)
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This result was first obtained by Landau in the stu
of oscillations of Fermi liquids [10] and later derive
by Morel and Nozières making use of field theoretic
methods [11].

From the knowledge ofReSret [cf. Fig. 2(b)], the
single-particle effective mass, the so calledv mass, can
calculated through the relation (cf., e.g., Ref. [1])

mv ­ m

∑
1 2

µ
dReS

dv

∂
eF

∏
­ m 1 Dmv . (15)

As seen from Fig. 2(b), the derivativedReSydvjeF is
negative for all values ofT. For T ­ 0, mv . m within
an interval of the order of65 MeV around the Fermi
energy, in keeping with the fact that to effectively dre
the nucleon, the surface modes have to display frequen
which are similar to that of the particle, and that th
isoscalar response of the slab is mainly concentrated
the lowest few MeV of excitation energy. Ate ­ eF ,
the quantitymv reaches a value of the order ofø1.4m

FIG. 3. Full width at half maximum of the strength function
of a single-particle state at the Fermi energy as a function
temperature.
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[cf. Fig. 2(c) and Table I]. The quantitydReSydvjeF

decreases markedly, in absolute value, with temperat
andDmvsT d can be accurately parametrized according

DmvsTd ­ Dmvs0de2TyT0 , (16)
with T0 ø 1.1 MeV .

Making use of the results displayed in Figs. 2(a) a
2(b), the strength function defined in Eq. (10) was c
culated. The full width at half maximum (FWHM) o
this function can be viewed as the damping width
single-particle states at the Fermi energy. The res
shown in Fig. 3 display a linear behavior with tempe
ature. The finite value atT ­ 0 is connected with the
fact thatReSse ­ eF , T ­ 0d is different from zero and
shifts the single-particle level originally at the Fermi e
ergy away from it, allowing for real transitions. The r
sults displayed in Figs. 2(c) and 3 and in Table I provi
an overall account of the experimental findings and
consistent with detailed calculations carried out in fin
nuclei (cf., e.g., Refs. [1,12,13]).

We conclude that the damping width of single-partic
levels at the Fermi energy arising from the coupling
nucleons to the nuclear surface increases linearly w
the temperature of the system. Furthermore, the nuc
effective mass due to the same coupling displays
almost exponential decrease with temperature.
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