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Thermal Ratchets in1 + 1 Dimensions
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The notion of thermal ratchet is extended to the- 1 dimensional case of an overdamped soliton-
bearing theory coupled to a Gaussian source of spatiotemporal noise with finite correlation time. A
stationary noise-induced current of kinks and antikinks in opposite directions is computed as a function
of the noisecorrelation timeand the kink (antikinkasymmetry [S0031-9007(96)01228-8]

PACS numbers: 05.40.+j, 03.40.Kf, 87.10.+e

In recent years, a number of authors [1-10] addresseshodel of the type (1) and (2), while serving well the
the long-standing problem of how to extract useful workpurpose of illustrating the basic mechanism at work, is
from a fluctuating environment [11]. While the secondfar too simple to be realistic [9]. In particular, there exist
law of thermodynamics excludes that heat may be transextended objects like dislocations in solids [15], which
formed back to mechanical work at thermal equilibriummay be modeled as a chain of linearly coupled particles,
(i.e., in the absence of temperature gradients [12]), theach moving in a possibly asymmetric periodic potential.
same restriction proves ineffective in the case of nonequiFor the sake of simplicity we confine ourselves to the case
librium thermal fluctuations: An asymmetric device (like of nearest neighbor coupling and assume that the chain
Feynman’s ratchet [12]) can rectify, indeed, symmetricdynamics isoverdamped In the continuum limit [16] we
guasiequilibriumfluctuations [2—4]. The implications of obtain what can be viewed ad at+ 1 dimensional version
such a mechanism in transport theory are far reachingf the process (1); namely, replacimgwith the classical
Macroscopic currents may arise even in the absence dield ¢ (x,¢) yields
external forces or gradients. Consider an overdamped 9 /

Brownian particle which is free to move in a large-scale ad = cybu = V9P + {(x.1), 3
homogeneous structure (i.e., periodic or random) charawhere « denotes the damping constang, is the sound
terized by an axial symmetry (say, its parity be broken inspeed, the functiofr[¢ ] coincides withV (x) of Eq. (1),
the x direction). The principle of detailed balance [13] and /(x,t) is a Gaussian zero-mean valued noise with
teaches us that the lack af— —x symmetry does not autocorrelation function

suffice to sustain a net average velocity in either direction.

However, if stationary nonequilibrium conditions are es- 0 NEG 1)) = 2akTd(x = xglt = 1) (4)
tablished such that the— —¢ symmetry is violated, then

the onset of a net current cannot be ruled out [14]. The

simplest example of noise induced transport is modeled il
by the stationary process
x=—V'(x) + &), 1) L

where theasymmetricpotential V(x) is periodic V(x +

27) = V(x), has minima atx = 2n + )7 with n =
0,*+1,=*2,..., two flexural points per unit cell, and one
potential barrier centered in the intervilna, (2n + o)
1)7] (see potential of Fig. 1). The — —r symmetry

of the processc(r) is broken by assuming that the zero

mean valued Gaussian noi§€) is time correlated. For

an Ornstein-Uhlenbeck noise

(£(1€0)) = (D/7) exp(—Itl/7) (2)
the net currenj = (x) is positivedefinite [4]. Note that
such a result strongly depends both on the statistics and/or —7
autocorrelation function of (¢) [4,6] and on the potential X V[e]
function vV (x) [10]. : . ) .
FIG. 1. Piecewise sine-Gordon potenti#[¢]. A and B
Asymmetry of the metastable potentié(x) and color denote nucleating pairs in the direction of increasing and

of the noise source(r) are the two requisites for the decreasingp, respectively. Arrows point in the direction &f
stochastic ratchet (1) to function. However, a one particleandJ, as labeled. The dotted line locates the potential barrier.
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and g(r) = (1/27) exp(—|t|/7); in the limit of zero cor-  /(x,t) through the time evolution of its center of mass,
relation timer — 0 the noisel(x,t) is 6 correlated both F(7,¢) may be expanded perturbatively as

in space and in time. An elastic strinb(x, r) straddled

across m potential valleys [e.g.,¢(—%,7) =0 and  F(r,t) = j (I))(CO)(x, 1){(x, t)dx

¢(+,1) = +277m] bearsm geometricalkinks or anti-

kinks, depending on the signs. Moreover, thermal ar gn . (0) .

kink-antikink pairs may be nucleated due to fluctuations, + ;(1/”!) [=XO]"[d" @7 (x, 1)/dx"]dx,

even in the absence of an external bias [17]. 7
In the present Letter, we prove that, due to the potential )

asymmetryV[¢ ] # V[—¢] and the noise color > 0, a
net field current/ = lim;_..(1/2L) ffﬁ(d)(x,t))dx, may
arise as either a noise-induced drift of the kinks an
antikinks with opposite stationary speetis [18] or an
imbalance of the forward versus the backward nucleatio
process. [For a string sitting in theth potential valley,
i.e., ¢(x,t) =2mn, let '+ be the number of pairs
nucleated per unit of time and length in the direction
27n — 27 (n * 1), respectively; the net nucleation rate
is I'r =Ty —TI'_]] These two mechanisms are not

where X(1) = (1/aMy) [, (!, )¢ (', )dx'd: and
OO (x, 1) = ®O(x — ur) denotes arunperturbedkink
ranslating with constant speed[20]. When taking the
stochastic average qf (v, r) over the different realiza-
Bons of {(x,1), we recognize immediately that the first
nonvanishing term of (7) = lim,_.{(F(7,1)) is

F(r) = — (1/aMy) fox dt'f (D)(Cg)(x,t)(bio)(x/, t')

) /
independent [17]; under stationary conditions they are X AL 0 N0, F))dxdx . (8)
related by the simple identity Here the limits — % is required to eliminate transient
I'r = —2ndur. (5) effects due to the initial conditiok (0). Correspondingly,

The kink (antikink) densityno is a function of 7 and the speedu of the unperturbedd©®(x,7) in Eq. (8) is
7 with no(T, 7 = 0) = k(Eo/kT)"/? exp(—Ey/kT) [19]; determined by the stationarity conditions of a dilute gas
here E, denotes the kink (antikink) rest energy and theof kinks and antikinks, namelyy = (kT /Mo)'/? with
constantx depends on the functioi[¢]. A net field 7 = T(7) [22]. In view of the {(x,t) autocorrelation
current J might represent the noise-induced transportfunction (4), Eq. (8) for the noise-induced force acting on
e.g., of dislocations gliding over asymmetric Peierlsa kink simplifies to
valleys on their glide plane (extended zone model) or the o
noise-induced rotation of optically active right- or left- F(r) = —2(kT/M0)] g(A)f(A)dA, 9)
handed macromolecules in solution (reduced zone model). 0
Explicit examples of the biological relevance of this classwhereg(A) = (1/27) exp(—|A|/7) and
of models are discussed in Ref. [1].

In the following we calculate the kink drift velocityy f(A) = ] q))(c())(x,())q))(g)(x, A)dx, (10a)
in the ¢ — — ¢ asymmetric theory (3) and (4). The kink
function®(x, 1) = ®(x — X(1)) is assumed to be known jith [23]
[20]: in particular, its center of mass(¢) fluctuates (in
neutral equilibrium) subjected to the noiséx, ¢) [18,21]. fA) = —f(=4). (10b)

Moreover, for our choice ofV[¢], ®(x,7) is skewed  thg fiyctuating component of (7, 1) amounts to a zero
forwards, meaning thatb(x,) crosses the top of the ean yalued random forcg(r) acting on the kink center

potential barrier on the rhs of its center of mag&). 4t mass. On restricting our analysis to the first term
On adopting a self-consistent collective variable schemg, ihe rhs of Eq. (7), we can easily check tht) is

[19,21], the dynamics of the kink center of mass can be, Gayssian noise with correlation tirfegiven by 7 =
separated from the remaining degrees of freedom, th%in{r,d(Mo/kT)l/z}, where d denotes an appropriate

leading to the Langevin equation of a Brownian particley;ni_size scale [22]. Hence (1) obeys the following
with massM, = E,/c} and coordinatex(¢). According Langevin equation:

to a simple energy conservation argument [18,21], the B .
energy dissipation rate for an individual kink coupled to MoX = —aMoX + F(1) + £(1). (11)
the noise sourcé(x, 1) is — [ ®,(x,1){(x,t)dx, whence

the forceF (7, r) associated with the kink coordinate Equations (9)—(11) summarize the main result of the

present investigation; a nontrivial prediction, indeed, pro-

F(r,1) = j D, (x, 1) (x, 1) dx . (6) Vided thatintegral (9) is not identically zero.
Before exploring the possibility that'(r) # 0, we
To derive Eq. (6) we made use of the identiby(x,#) =  consider two trivial limits: (1)White noiser = 0 (or

—X®,(x,1), implied by the very definition of the kink co- equilibrium fluctuations). In this casg(A) = §(A) and
ordinateX(¢). Sinced(x,r) depends on the perturbation F(0) = —2(kT/M,)f(0). Independently of the potential
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symmetryf(0) = (1/2)®2(x)|*= = 0, whenceF(0) = and, consequently/(r) turn out to be linear inr. It

0; no drift for a single kink and therefore, no net is worthwhile to remember that for the relat®d+ 1
field current can be induced by a white noise sourcedimensional process (1)—(2), the noise-induced current in
(2) Symmetric potentiaV[¢] = V[—¢]. The symme- the neighborhood ofr = 0 was estimated to be order
try of V[$] implies that CIDJ((O)(x,t) _ (I))(CO)(—x, 1) and 72 or higher [4]. In thestrong color limit 7 — oo,
q)(())(x /) = _q)«»(_x ), whencef(A) = 0 and, there- we replaceg(A) by (1/27)[1 — |A]|/7]. Recalling that
fore, F(7) = 0. As expected, asyinmetric soliton-bearing Jo f(A)dA >0, we recover thatF(r) is proportional

theory cannot rectify a symmetric spatiotemporal nois fo 1/7, while the 7 dependence off(r) is controlied
1eory A Sy IC Sp P yby the exponential decay afy(T, 7) [22]. Furthermore,
signal, no matter what its correlation time.

the noise-induced curredf(7) attains a maximum for a
We address now the general case of an asymmetr

potential V[ ] considered above (see also Fig. 1), the\(;alue of 7 that depends crucially on the asymmetry of

. Co . the theory. For particular potential shapes the current
function f(A) of Eq. (10), far f_rom pglng |d_er_1t|cally inversion phenomenon [10] is not ruled out either.
zero, admits one node &t = 0, is positive definitefor

. _ . (iii) On making use of Egs. (5) and (12) we conclude
.A > 0, anq vanls_h.es fOA. = Reqalllng thatg(A) that I'y > I'_: Nonequilibrium thermal nucleation in
is symmetric, definite positive, and vanishes for—» *o,

: ; ; e . an asymmetric soliton-bearing theory is favored in the
we conclude that the integral in Eq. (9) is definite positive, ;.. : . .
100, and therefor@(r) < 0. It follows immediately that direction of the net field curregt The drawings of Fig. 1

in the soliton-bearing theory of Fig. 1, the stationary'“us”ate such a mechanism. The bubble A represents

. ; . L . 7 a nucleating pair in the direction of increasing it is
noise-induced drift speed of a single kink is neg"’lt've’approximated by the linear superposition of a kink on the
namely from Eq. (11),

left and an antikink on the right-hand side. The noise

ur = F(1)/aMy < 0. (12)  induced forces (9) tend to pull the nucleating partners apart,
The consequences of Egs. (9)—(12) deserve an accurdftls helping the nucleation process. Vice versa, we realize
analysis. by inspection that the noise induced forces (9) oppose the
(i) The ensuing net current can be readily expressed nucleation process represented by the bubble B. _
in terms of ur and ng [17], that isJ = —(27)2nour, The reader might be tempted to exploit the traveling
whence nature of the solitary wave© (x, 1) = ®©(x — ur) to
J(7) = —(dmne/aMy)F(r) > 0. (13) extend our approach to the case of a spatially correlated

noise source (x, ). As a first attempt, one could try to

The noise-induced current (13) igositive as in the replace the autocorrelation function (4) by
0 + 1 dimensional models of Refs. [2,4]. A qualitative DL ) = 2akT8( — glx — x') (14)

explanation of such a behavior runs as follows: Any time

the potentialV[¢] is tilted to the right, the position of with g(x) = (1/2A)exp(—|x|/A) defining a spatial cor-

each barrier shifts to the left and vice versa. Howeverfelation lengthA [18,24]. Indeed, a simple calculation

due to the asymmetry df[¢ ], the shifts to the left are Yields

certainly more pronounced than to the right (see Fig. 1). +oo

Noting that the kink center of mass is located to the F(A) = —2(kT/Mo)f g(A)f(A)dA,  (15)

left of the corresponding potential barrier, it is clear that i N

®(x, ) undergoes larger shifts to the left than to the rightWith f(4) given by Eq. (10). However, contrary to

(the noise being symmetric), i.e,; < 0. This argument EQ- (9) for F(7), the integration oven is extended here

applies only if the tilt reverses sign over a finite time t0 the entire interva(—o, +); in view of the symmetry

scale, that is, for time correlated noise sources. Théelationf(A) = —f(A), one concludes that(a) = 0 for

stationary drift of a kink toward the string left end point 8Ny choice ofV[¢]. _

causes a global advance of the string itself toward larger N conclusion, we proved that the notion of ther-

¢ values, that i/ > 0. The same argument applies to Mal ratchet [2,4] can be extended to ther 1 dimen-

the antikinks, which drift then to the right with the same Sional case of asymmetric soliton-bearing theories. Such

consequences on the drift of the string. nonequ!llbrlum _n_0|s_e—|nduced currents could prov!de an
(ii) Although the force (9) can be determined explicitly altgrnqtlve rectl_flcatlon mechar_usm f_or the modeling of

only after the shape of the skewed kidk®(x, 1) (i.e., solltqnlc fluxes in suph_ magnetic devices as Iong Joseph-

the asymmetric potentiaV[¢]) has been chosen, two SON junction transmission lines [21] and magnetically or-

important limits of the functionF(r) can be discussed dered crystals [25].

analytically. In theweak colorlimit = — 0 the function

g(A) peaks aroundA = 0 so that the integral (9) is . . : o

domina.ted by the be.havior of(A) at the_ origin. On ,:If;}e;t’ Il_s(,)tg%% sgﬂg?ilfta?;_ Fisica Nucleare, VIRGO
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