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The notion of thermal ratchet is extended to the1 1 1 dimensional case of an overdamped solito
bearing theory coupled to a Gaussian source of spatiotemporal noise with finite correlation tim
stationary noise-induced current of kinks and antikinks in opposite directions is computed as a fu
of the noisecorrelation timeand the kink (antikink)asymmetry. [S0031-9007(96)01228-8]
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In recent years, a number of authors [1–10] addres
the long-standing problem of how to extract useful wo
from a fluctuating environment [11]. While the seco
law of thermodynamics excludes that heat may be tra
formed back to mechanical work at thermal equilibriu
(i.e., in the absence of temperature gradients [12]),
same restriction proves ineffective in the case of noneq
librium thermal fluctuations: An asymmetric device (lik
Feynman’s ratchet [12]) can rectify, indeed, symmet
quasiequilibriumfluctuations [2–4]. The implications o
such a mechanism in transport theory are far reach
Macroscopic currents may arise even in the absenc
external forces or gradients. Consider an overdam
Brownian particle which is free to move in a large-sca
homogeneous structure (i.e., periodic or random) cha
terized by an axial symmetry (say, its parity be broken
the x direction). The principle of detailed balance [1
teaches us that the lack ofx ! 2x symmetry does no
suffice to sustain a net average velocity in either directi
However, if stationary nonequilibrium conditions are e
tablished such that thet ! 2t symmetry is violated, then
the onset of a net current cannot be ruled out [14]. T
simplest example of noise induced transport is mode
by the stationary process

Ùx ­ 2V 0sxd 1 jstd , (1)

where theasymmetricpotential V sxd is periodic V sx 1

2pd ­ V sxd, has minima atx ­ s2n 1 1dp with n ­
0, 61, 62, . . ., two flexural points per unit cell, and on
potential barrier centered in the intervalf2np , s2n 1

1dpg (see potential of Fig. 1). Thet ! 2t symmetry
of the processxstd is broken by assuming that the ze
mean valued Gaussian noisejstd is time correlated. For
an Ornstein-Uhlenbeck noise

kjstdjs0dl ­ sDytd exps2jtjytd (2)

the net currentj ­ k Ùxl is positivedefinite [4]. Note that
such a result strongly depends both on the statistics an
autocorrelation function ofjstd [4,6] and on the potentia
functionV sxd [10].

Asymmetry of the metastable potentialV sxd and color
of the noise sourcejstd are the two requisites for th
stochastic ratchet (1) to function. However, a one part
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model of the type (1) and (2), while serving well th
purpose of illustrating the basic mechanism at work,
far too simple to be realistic [9]. In particular, there exi
extended objects like dislocations in solids [15], whi
may be modeled as a chain of linearly coupled particl
each moving in a possibly asymmetric periodic potent
For the sake of simplicity we confine ourselves to the ca
of nearest neighbor coupling and assume that the ch
dynamics isoverdamped. In the continuum limit [16] we
obtain what can be viewed as a1 1 1 dimensional version
of the process (1); namely, replacingx with the classical
field fsx, td yields

aft ­ c2
0fxx 2 V 0ffg 1 z sx, td , (3)

where a denotes the damping constant,c0 is the sound
speed, the functionV ffg coincides withV sxd of Eq. (1),
and z sx, td is a Gaussian zero-mean valued noise w
autocorrelation function

kz sx, tdz sx0, t0dl ­ 2akTdsx 2 x0dgst 2 t0d (4)
e
d

/or

le

FIG. 1. Piecewise sine-Gordon potentialV ffg. A and B
denote nucleating pairs in the direction of increasing a
decreasingf, respectively. Arrows point in the direction ofF
andJ, as labeled. The dotted line locates the potential barri
© 1996 The American Physical Society
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and gstd ­ s1y2td exps2jtjytd; in the limit of zero cor-
relation timet ! 0 the noisez sx, td is d correlated both
in space and in time. An elastic stringfsx, td straddled
across m potential valleys [e.g.,fs2`, td ­ 0 and
fs1`, td ­ 62pm] bearsm geometricalkinks or anti-
kinks, depending on the signs6. Moreover, thermal
kink-antikink pairs may be nucleated due to fluctuatio
even in the absence of an external bias [17].

In the present Letter, we prove that, due to the poten
asymmetryV ffg fi V f2fg and the noise colort . 0, a
net field currentJ ­ limL!`s1y2Ld

R1L
2Lk Ùfsx, tdldx, may

arise as either a noise-induced drift of the kinks a
antikinks with opposite stationary speeds6uF [18] or an
imbalance of the forward versus the backward nuclea
process. [For a string sitting in thenth potential valley,
i.e., fsx, td ­ 2pn, let G6 be the number of pair
nucleated per unit of time and length in the directi
2pn ! 2psn 6 1d, respectively; the net nucleation ra
is GF ­ G1 2 G2.] These two mechanisms are n
independent [17]; under stationary conditions they
related by the simple identity

GF ­ 22n2
0uF . (5)

The kink (antikink) densityn0 is a function of T and
t with n0sT , t ­ 0d ­ ksE0ykT d1y2 exps2E0ykTd [19];
here E0 denotes the kink (antikink) rest energy and t
constantk depends on the functionV ffg. A net field
current J might represent the noise-induced transp
e.g., of dislocations gliding over asymmetric Peie
valleys on their glide plane (extended zone model) or
noise-induced rotation of optically active right- or le
handed macromolecules in solution (reduced zone mo
Explicit examples of the biological relevance of this cla
of models are discussed in Ref. [1].

In the following we calculate the kink drift velocityuF

in thef ! 2f asymmetric theory (3) and (4). The kin
functionFsx, td ­ Fsssx 2 Xstdddd is assumed to be know
[20]: in particular, its center of massXstd fluctuates (in
neutral equilibrium) subjected to the noisez sx, td [18,21].
Moreover, for our choice ofV ffg, Fsx, td is skewed
forwards, meaning thatFsx, td crosses the top of th
potential barrier on the rhs of its center of massXstd.
On adopting a self-consistent collective variable sche
[19,21], the dynamics of the kink center of mass can
separated from the remaining degrees of freedom,
leading to the Langevin equation of a Brownian parti
with massM0 ­ E0yc2

0 and coordinateXstd. According
to a simple energy conservation argument [18,21],
energy dissipation rate for an individual kink coupled
the noise sourcez sx, td is 2

R
Ftsx, tdz sx, tddx, whence

the forceF st, td associated with the kink coordinate

F st, td ­
Z

Fxsx, tdz sx, td dx . (6)

To derive Eq. (6) we made use of the identityFtsx, td ­
2 ÙXFxsx, td, implied by the very definition of the kink co
ordinateXstd. SinceFsx, td depends on the perturbatio
,
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z sx, td through the time evolution of its center of mas
F st, td may be expanded perturbatively as

F st, td ­
Z

Fs0d
x sx, tdz sx, tddx

1
X
n

s1yn!d
Z

f2XstdgnfdnFs0d
x sx, tdydxngdx ,

(7)

where Xstd ­ s1yaM0d
Rt

0 F
s0d
x sx0, t0dz sx0, t0ddx0dt and

Fs0dsx, td ­ Fs0dsx 2 utd denotes anunperturbedkink
translating with constant speedu [20]. When taking the
stochastic average ofF st, td over the different realiza
tions of z sx, td, we recognize immediately that the fir
nonvanishing term ofFstd ­ limt!`kF st, tdl is

Fstd ­ 2 s1yaM0d
Z `

0
dt0

Z
Fs0d

xx sx, tdFs0d
x sx0, t0d

3 kz sx, tdz sx0, t0dldx0dx . (8)

Here the limit t ! ` is required to eliminate transien
effects due to the initial conditionXs0d. Correspondingly,
the speedu of the unperturbedFs0dsx, td in Eq. (8) is
determined by the stationarity conditions of a dilute g
of kinks and antikinks, namely,u ­ skTyM0d1y2 with
T ­ T std [22]. In view of the z sx, td autocorrelation
function (4), Eq. (8) for the noise-induced force acting
a kink simplifies to

Fstd ­ 22skTyM0d
Z `

0
gsDdfsDd dD , (9)

wheregsDd ­ s1y2td exps2jDjytd and

fsDd ­
Z

Fs0d
x sx, 0dFs0d

xx sx, Dd dx , (10a)

with [23]

fsDd ­ 2fs2Dd . (10b)

The fluctuating component ofF st, td amounts to a zero
mean valued random forcejstd acting on the kink cente
of mass. On restricting our analysis to the first te
on the rhs of Eq. (7), we can easily check thatjstd is
a Gaussian noise with correlation timet given by t ­
minht, dsM0ykT d1y2j, where d denotes an appropriat
kink-size scale [22]. HenceXstd obeys the following
Langevin equation:

M0Ẍ ­ 2aM0
ÙX 1 Fstd 1 jstd . (11)

Equations (9)–(11) summarize the main result of
present investigation; a nontrivial prediction, indeed, p
vided that integral (9) is not identically zero.

Before exploring the possibility thatFstd fi 0, we
consider two trivial limits: (1)White noiset ­ 0 (or
equilibrium fluctuations). In this casegsDd ­ dsDd and
Fs0d ­ 22skTyM0dfs0d. Independently of the potentia
2365
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symmetryfs0d ­ s1y2dFs0d
x 2sxdj1`

2` ­ 0, whenceFs0d ­
0; no drift for a single kink and therefore, no n
field current can be induced by a white noise sou
(2) Symmetric potentialV ffg ­ V f2fg. The symme-
try of V ffg implies that F

s0d
x sx, td ­ F

s0d
x s2x, td and

F
s0d
xx sx, td ­ 2F

s0d
xx s2x, td, whencefsDd ­ 0 and, there-

fore,Fstd ­ 0. As expected, a symmetric soliton-bear
theory cannot rectify a symmetric spatiotemporal no
signal, no matter what its correlation time.

We address now the general case of an asymm
potential V ffg considered above (see also Fig. 1),
function fsDd of Eq. (10), far from being identicall
zero, admits one node atD ­ 0, is positive definitefor
D . 0, and vanishes forD ! 1`. Recalling thatgsDd
is symmetric, definite positive, and vanishes forD ! 6`,
we conclude that the integral in Eq. (9) is definite posit
too, and thereforeFstd , 0. It follows immediately tha
in the soliton-bearing theory of Fig. 1, the station
noise-induced drift speed of a single kink is negat
namely from Eq. (11),

uF ­ FstdyaM0 , 0 . (12)

The consequences of Eqs. (9)–(12) deserve an acc
analysis.

(i) The ensuing netf current can be readily express
in terms of uF and n0 [17], that is J ­ 2s2pd2n0uF ,
whence

Jstd ­ 2s4pn0yaM0dFstd . 0 . (13)

The noise-induced current (13) ispositive as in the
0 1 1 dimensional models of Refs. [2,4]. A qualitati
explanation of such a behavior runs as follows: Any ti
the potentialV ffg is tilted to the right, the position o
each barrier shifts to the left and vice versa. Howe
due to the asymmetry ofV ffg, the shifts to the left ar
certainly more pronounced than to the right (see Fig
Noting that the kink center of mass is located to
left of the corresponding potential barrier, it is clear t
Fsx, td undergoes larger shifts to the left than to the ri
(the noise being symmetric), i.e.,uF , 0. This argumen
applies only if the tilt reverses sign over a finite tim
scale, that is, for time correlated noise sources.
stationary drift of a kink toward the string left end po
causes a global advance of the string itself toward la
f values, that isJ . 0. The same argument applies
the antikinks, which drift then to the right with the sam
consequences on the drift of the string.

(ii) Although the force (9) can be determined explici
only after the shape of the skewed kinkFs0dsx, td (i.e.,
the asymmetric potentialV ffg) has been chosen, tw
important limits of the functionFstd can be discusse
analytically. In theweak colorlimit t ! 0 the function
gsDd peaks aroundD ­ 0 so that the integral (9) i
dominated by the behavior offsDd at the origin. On
expanding Eq. (10a) in powers ofD, one finds that fo
small D values fsDd . D

R
F

s0d
xx 2sxd dx, whence Fstd
2366
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and, consequently,Jstd turn out to be linear int. It
is worthwhile to remember that for the related0 1 1
dimensional process (1)–(2), the noise-induced curren
the neighborhood oft ­ 0 was estimated to be orde
t2 or higher [4]. In the strong color limit t ! `,
we replacegsDd by s1y2td f1 2 jDjytg. Recalling thatR

`

0 fsDddD . 0, we recover thatFstd is proportional
to 1yt, while the t dependence ofJstd is controlled
by the exponential decay ofn0sT , td [22]. Furthermore,
the noise-induced currentJstd attains a maximum for a
value of t that depends crucially on the asymmetry
the theory. For particular potential shapes the curr
inversion phenomenon [10] is not ruled out either.

(iii) On making use of Eqs. (5) and (12) we conclu
that G1 . G2: Nonequilibrium thermal nucleation in
an asymmetric soliton-bearing theory is favored in t
direction of the net field currentJ. The drawings of Fig. 1
illustrate such a mechanism. The bubble A represe
a nucleating pair in the direction of increasingf; it is
approximated by the linear superposition of a kink on
left and an antikink on the right-hand side. The no
induced forces (9) tend to pull the nucleating partners ap
thus helping the nucleation process. Vice versa, we rea
by inspection that the noise induced forces (9) oppose
nucleation process represented by the bubble B.

The reader might be tempted to exploit the traveli
nature of the solitary waveFs0dsx, td ­ Fs0dsx 2 utd to
extend our approach to the case of a spatially correla
noise sourcez sx, td. As a first attempt, one could try t
replace the autocorrelation function (4) by

kz sx, tdz sx0, t0dl ­ 2akTdst 2 t0dgsx 2 x0d , (14)

with gsxd ­ s1y2ld exps2jxjyld defining a spatial cor-
relation lengthl [18,24]. Indeed, a simple calculatio
yields

Fsld ­ 22skTyM0d
Z 1`

2`

gsDdfsDddD , (15)

with fsDd given by Eq. (10). However, contrary t
Eq. (9) for Fstd, the integration overD is extended here
to the entire intervals2`, 1`d; in view of the symmetry
relationfsDd ­ 2fsDd, one concludes thatFsld ­ 0 for
any choice ofV ffg.

In conclusion, we proved that the notion of the
mal ratchet [2,4] can be extended to the1 1 1 dimen-
sional case of asymmetric soliton-bearing theories. S
nonequilibrium noise-induced currents could provide
alternative rectification mechanism for the modeling
solitonic fluxes in such magnetic devices as long Jose
son junction transmission lines [21] and magnetically
dered crystals [25].

*Also at Istituto Nazionale di Fisica Nucleare, VIRGO
Project, I-06100 Perugia, Italy.
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