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Complementarity and Fundamental Limit in Precision Phase Measurement
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(Received 4 March 1996)

By analyzing a single-photon interference experiment together with a quantum nondemolitio
measurement scheme for the which-path information, we prove that given the total mean numberknl
of available photons, the fundamental limit in precision measurement of a phase shift is the Heisenbe
limit, i.e., 1yknl. The analysis is based on the complementarity principle and is independent of the
scheme for the measurement of the phase shift. We also show that to achieve the Heisenberg lim
states with photon number fluctuations of the order of or larger than the mean photon number have
be exploited. [S0031-9007(96)01164-7]

PACS numbers: 03.65.Bz, 06.20.–f, 42.50.Dv
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The ability to resolve an extremely small phase shif
not only of great significance in technological advan
but also poses a strong challenge for modern quan
measurement theory. With an unlimited resource
energy, it is possible to measure a phase shift to arbi
precision. In practice, however, the total amount
available energy is always finite. So any analysis of
sensitivity of phase measurement has to be made u
such a constraint. The traditional argument for the limi
a precision phase measurement stems from the Heise
uncertainty relation for the fluctuations of phasef and
photon numbern [1],

DfDn $ 1 , (1)

where Dn ;
p

kD2nl and Df characterizes the pha
fluctuation. Thus shot noiseskD2nl , knld due to particle
nature of light will place a limit on how precise one c
measure a small phase shift,

Df $
1p
knl

. (2)

However, shot noise is not the same noise for all quan
systems. Quantum mechanics does not set any restr
on Dn. Naively, one would argue that because of
energy constraint,Dn should be bounded by the me
number of photons, that is,kD2nl , Osknl2d. Thus given
the total mean number of photons, the limit on precis
phase measurement should be the so-called Heise
limit,

Df $
1

knl
. (3)

Indeed, all the best measurement schemes discover
far have not been able to surpass this limit [2–5].

On the other hand, Shapiroet al. [6,7] recently propose
the following state:

jCl ­ A
MX

m­0

1
m 1 1

jml
≥
M ¿ 1, A .

p
6yp2

¥
,

(4)
which they claim can achieve1yknl2 precision in the mea
surement of a phase shift. But some difficulties as
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ciated with the phase distribution of this state prev
it from achieving the promised performance [8–10].
spite of this, it is interesting to note that for this state
havekD2nl ­ A2M while knl . A2 ln M so thatkD2nl ,
A2 expsknlyA2d. It is also possible to find some oth
states withkD2nl , knlgsg . 2d. Thus, previous argu
ment leading to Eq. (3) for the Heisenberg limit does
hold. Furthermore, the Heisenberg uncertainty relatio
Eq. (1) is derived on the basis of operator algebra in qu
tum mechanics [1], but it has been proved that there d
not exist a Hermitian operator for phase in quantum m
chanics [11]. In fact, Eq. (1) does not hold in general. F
example, Eq. (1) is violated for the vacuum state. The
fore, the whole argument based on the Heisenberg un
tainty relation in Eq. (1) does not hold in general and
question remains: What is the limit on the sensitivity
a precision phase measurement, given the available
mean number of photons?

In this Letter, I will discuss the phase problem throu
a different approach without the need of a phase opera
I will prove by a simple argument regarding the chan
of state produced by a phase shift that the ultimate li
on the sensitivity of a precision phase measuremen
the Heisenberg limit. This argument is further suppor
by an analysis of a single-photon interferometer coup
through the optical Kerr effect to another single mo
probe field, on which a phase measurement is perform
The precision of the phase measurement is the m
concern of the analysis. We are able to connect,
the complementarity principle, the visibility of the singl
photon interferometer and the minimum detectable ph
shift that can be measured with the probe field. W
will derive a necessary condition for those states t
can achieve the Heisenberg limit in a precision ph
measurement.

First of all, since phase is a relative quantity a
its measurement has to rely on the comparison w
other fields, let us consider a single-mode fieldA, which
is correlated with other fields denoted asB for phase
comparison. The most general state describing fieldsA, B
© 1996 The American Physical Society
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has the form of

jFl ­
X
m,l

Cmsld jmlAjllB , (5)

where theCmsld are normalized coefficients in the bas
of the Fock stateshjmlAjllBj. Assume that the field
A (characterized by the creation operatorÂy) undergoes
a phase shiftd (Fig. 1). In quantum mechanics, th
phase shift can be modeled as a parameter in the
propagation of fieldA and is associated with a unitar
propagation operator

Ûd ­ eidÂyÂ.

Thus the state after the phase shift is simply

jF0l ­ ÛdjFl ­
X
m,l

Cmsldeidm jmlAjllB . (6)

Notice that the phase shift introduced here is not defi
through a phase operator. Equation (6) can be rearran
to become

jF0l ­ jFl 1 jDFl , (7a)

with

jDFl ­
X
m,l

Cmsld seimd 2 1d jmlAjllB . (7b)

Our goal is to measure the phase shiftd through the
detection of the changejDFl in the state. Obviously, if
the change in the state is small so that we are unabl
detect it, it will be impossible to detect the phase shiftd.
The magnitude of the change in the state is the norm
jDFl,

k jDFlk2 ; kDF j DFl ­ 4
X
m

Pm sin2smdy2d , (8)

where Pm ­
P

l jCmsldj2 is the photon number distri
bution for the fieldA. Now, let us use the inequalitie
j sinxj # 1 andj sinxj , x to rewrite Eq. (8) as

k jDFlk2 # 4
X
m

Pmj sinsmdy2dj , 2knld , (9)

where knl is the total mean number of photon in fie
A. From Eq. (9), we find that the minimum detectab
phase shift is at leastOs1yknld. For, otherwise, we
will have knld ø 1 whenknl ¿ 1, which indicates from
Eq. (9) thatk jDFlk2 ø 1 and the change in the state
undetectable.

Next, we will apply the principle of complementarit
in quantum interference to further prove that the quan
ift

m

FIG. 1. General scheme for the generation of a phase sh
field A.
e

d
ed

to

f

k jDFlk is indeed a good measure of whether the ph
shift d is detectable and that the minimum detectable ph
shift is 1yknl. The complementarity principle of quan
tum mechanics [12], when applied to the phenomena
interference, states that if it is possible to find the whi
path information for the two possible interfering paths o
particle, the interference effect will disappear. In a m
quantitative description, the degree of the interference
fect (e.g., the visibility of the interference pattern) will d
pend on the precision of our knowledge about which p
the particle goes through. Although a phase measurem
relies on interferometry, it is based on the existence
not on the disappearance of interference effect. It se
that the question of how precise a phase shift can be m
sured is not related to the complementarity principle.
the other hand, the photon number can be determine
quantum nondemolition (QND) measurement without
stroying the photons. It is known [13,14] that the optic
Kerr effect can be used to implement a QND measu
ment of the photon number. In this case, the measu
photon imposes a phase shift on another beam called
probe beam. Measurement of the phase shift on the p
beam provides the information about the photon num
The knowledge of the exact photon number in one pat
a single-photon interferometer determines which path
photon follows and thus destroys the interference eff
Therefore, the accuracy of the phase measurement o
probe field will influence the result of the interference.

Consider a Mach-Zehnder interferometer with a ph
difference off as shown in Fig. 2. A single-photon sta
is sent in one of the input ports. Without any device in
paths of the interferometer, the output of the interferome
will exhibit a sinusoidal modulation as a function off with
a visibility of one. When we place a device in one of t
paths, say patha (characterized by the creation operatorâ),
to find out which path the photon passes, this usually
disturb the interferometer and, depending on the dev
the visibility of the interference will degrade. In order
preserve the photon, we will use the Kerr effect as the Q
y

in

FIG. 2. Single photon interferometer with a Kerr mediu
for QND measurement of the photon number in the patha.
Determination of the photon number in patha through accurate
measurement of the phase shift in fieldA induced by a single
photon in fielda will destroy the interference effect.
2353
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scheme to determine the photon number (Fig. 2). In
QND scheme, the signal fielda and the probe fieldA are
coupled through a Kerr medium and the state evolutio
determined by the unitary operator [14]

ÛQND ­ eidâyâÂyÂ, (10)

whered is a parameter characterizing the strength of
interaction. To see further the physical meaning ofd, let
the input state to the QND device be a single photon s
for field a and a general statejFl given in Eq. (5) for field
A. Then the output state after the QND interaction is

ÛQNDj1lajFlA ­ j1laeidÂyÂjFlA , (11)

Thus, from Eq. (6), the quantityd is the phase shif
imposed on the probe fieldA due to the input of a singl
photon in fielda. Measurement is then performed on
field A to estimate the phase shift (Fig. 2). This can
achieved by performing a homodyne detection or o
type of interferometric method. But the exact detail of
phase measurement is not our concern here. The follo
argument applies to any scheme of phase measure
If we can detect the phase shift of sized in field A
with whatever means, we will be able to tell whether
photon in the interferometer passes the patha or not.
Hence, according to the complementarity principle,
interference effect will disappear. On the other hand
we can observe a 100% visibility in the single-pho
interferometer, it is impossible to detect the phase s
d in field A no matter what kind of method or strate
we use for the extraction of the phase shift. Theref
the visibility of the interferometer is directly related to t
ability to resolve the phase shiftd in field A. Notice that
the phase of concern is that of the probe fieldA in QND
measurement but notf of the interferometer. In fact, w
are only interested in the visibility of the interferomete

Let us now examine the visibility of the single-phot
interferometer with the QND device discussed abov
patha. We will find out its relation with the state in fie
A. Assume a single-photon state is sent to one of the i
ports of the interferometer. After the first beam split
the state for the system becomes

jCl ­
1

p
2

sj1laj0lb 1 eifj0laj1lbdjFlA . (12a)

After passing the Kerr medium, the state of the system
the form of

jCl ­
1

p
2

sj1laj0lbeidÂyÂjFlA 1 eifj0laj1lbdjFlAd .

(12b)

From this state, we can calculate the probability
detecting a photon at one output port. It has the f
of

P ­
1
2 f1 6 jkFjeidÂyÂjFlj cossf 2 edg , (13)

where e is the phase ofkFjeidÂyÂjFl. Therefore the
visibility of the interference pattern is
2354
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y ­ kFjeidÂyÂjFlj ­ jkF j F0lj . (14)

The above relation was also derived by Sanders
Milburn [15]. Although Eq. (14) is derived for the singl
photon input, it can easily be shown that even with
arbitrary input state to the interferometer, the visibili
still takes the form of Eq. (14). From Eq. (5), we ca
find the explicit form of the visibility. For the purpos
of comparison with the unit visibility, let us calculate th
quantity1 2 y as follows:

1 2 y ­ 1 2 j1 1 kF j DFlj # jkF j DFlj

# k jDFlk , (15a)

where Schwartz inequality is used, or more explicitly,

1 2 y # jkF j DFlj ­ 2

Ç X
m

Pmeimdy2 sinmdy2

Ç
# 2

X
m

Pmj sinmdy2j . (15b)

By using the inequality sinx , x in expression (15b), we
end up with the following inequality:

1 2 y , knld or d . s1 2 ydyknl . (16)

which sets a lower limit on the minimum detectable pha
shift, given the total mean number of photon availa
in the field A. When it is possible to resolve the pha
shift with the fieldA, then we can tell whether the photo
entering the interferometer passes through patha or not.
Since we know the which-path information, accordi
to complementarity principle, the interference effect
the interferometer will disappear or equivalently,y , 0.
Thus from Eq. (16), we find that the minimum detectab
phase shift in fieldA is of the order of1yknl or the
Heisenberg limit.

Before we go any further, let us consider some exa
ples. The first one is the coherent statejal. It is easy
to find from Eq. (14) thaty ­ j expfseid 2 1d jaj2gj .
exps2knld2y2d. If the phase shiftd can be detected, vis
ibility y must be significantly different from one, thu
dm , 1y

p
knl, which is the well-known limit for coheren

state interferometry [2]. For the two-photon interferom
try involving a single-mode squeezed state or a two-m
squeezed state, we find

ys ­
1

fs2knl 1 1d2 sin2 d 1 cos2 dg1y4 (17a)

for the former and

yt ­
1

fsknl 1 1 2 knl cosdd2 1 knl2 sin2 dg1y2
(17b)

for the latter. Bothys and yt are significantly different
from 1 only if d . 1yknl. Thus both states can b
used to achieve the Heisenberg limit in a precis
measurement [2,3].

As another example, let us consider the state gi
in Eq. (4). It can be shown thaty ø 1 2 6dyp, when
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knl ! `, d ø 1. Therefore, ford ø 1, y ø 1, and it is
impossible to detect a small phase shift even if we h
an infinite amount of energy. Hence, the state in Eq.
is not a good state for precision phase measurement.

What kind of state can achieve the Heisenberg lim
Intuitively, we find from the Heisenberg uncertain
relation for phase and photon number in Eq. (1) that
state must have large photon number fluctuations w
kD2nl $ knl2. However, since Eq. (1) is not valid in
general, this argument does not hold. In the following
will use the same argument that leads to Eq. (16) to pr
that the intuitive argument above is actually correct; t
is, the Heisenberg limit cannot be achieved for those st
with kD2nl ø knl2 for largeknl.

Consider Eqs. (14) and (15) for the visibility of th
interferometer,

y ­

Ç X
m

Pmeimd

Ç
. (18)

Assume fieldA experiences a phase shift ofd , 1yknl
due to the passing of a single photon in patha and
the field A is in some state withkD2nl ø knl2. Since
Pm is a distribution with a width of

p
kD2nl ø knl,

the photon probability distributionPm is significantly
different from zero only for thosem with jm 2 knlj &p

kD2nl. Therefore, most of the contributions to th
summation in Eq. (18) come from terms withjm 2

knlj &
p

kD2nl and Eq. (18) becomes

y ø

É X
jm2knlj&

p
kD2nl

Pmeimd

É
. (19)

On the other hand, because
p

kD2nl ø knl and d ,
1yknl, we have d

p
kD2nl ø 1 and therefore we can

approximateeimd in Eq. (19) with eiknld. Equation (19)
then becomes

y ø
Ç X

m
Pmeiknld

Ç
­ 1 . (20)

Hence, the interference pattern has a visibility of one a
from the complementarity principle, we cannot tell whi
path the photon passes in the interferometer, which me
that we cannot resolve a phase shift ofd , 1yknl from
the measurement on fieldA in this kind of state. So, thos
states with

p
kD2nl ø knl at largeknl cannot achieve the

Heisenberg limit in a precision phase measurement. T
the necessary condition is

p
kD2nl * knl for the states to

achieve the Heisenberg limit.
In summary, we have proved with a simple argum

that the sensitivity in precision phase measuremen
limited by 1yknl given the total mean photon number
knl. The argument is based on the general principle
complementarity in quantum interference and thus app
to any scheme of phase measurement. We have
found a necessary condition for the state that can ach
the fundamental limit.

In applying the complementarity principle, we fin
that the existence of fieldA, which has the ability
e
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to resolve the phase shift, is enough to destroy
interference pattern in the single-photon interferome
No actual measurement of the phase shift is require
be performed. Thus mere possibility of distinguishing
two interfering paths is enough to make interference ef
disappear. This phenomenon can also be understood
the backaction by fieldA on the phase of fielda without
the help of the complementarity principle. Because
backaction, the photon number fluctuation of fieldA
imposes a random phase shift on fielda in exactly the
same way whereby fielda does to fieldA. Such random
phase shift will wash out the interference pattern as l
as fieldA passes through the QND device. That is anot
reason why states with a large photon number fluctua
are needed in fieldA for the visibility to disappear.

Although the above conclusions are drawn from
derivation on the pure statejFl for field A, it is straight-
forward to show that Eq. (18) stands even for mixed s
[15]. Therefore, all the conclusions above apply equa
well to mixed states.
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