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Complementarity and Fundamental Limit in Precision Phase Measurement
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By analyzing a single-photon interference experiment together with a quantum nondemolition
measurement scheme for the which-path information, we prove that given the total mean uwmber
of available photons, the fundamental limit in precision measurement of a phase shift is the Heisenberg
limit, i.e., 1/(n). The analysis is based on the complementarity principle and is independent of the
scheme for the measurement of the phase shift. We also show that to achieve the Heisenberg limit
states with photon number fluctuations of the order of or larger than the mean photon number have to
be exploited. [S0031-9007(96)01164-7]

PACS numbers: 03.65.Bz, 06.20.—f, 42.50.Dv

The ability to resolve an extremely small phase shift isciated with the phase distribution of this state prevent
not only of great significance in technological advancest from achieving the promised performance [8—10]. In
but also poses a strong challenge for modern quanturspite of this, it is interesting to note that for this state we
measurement theory. With an unlimited resource ohave(A?n) = A>M while (n) = A%In M so that{A’n) ~
energy, it is possible to measure a phase shift to arbitrarg? exp((n)/A?). It is also possible to find some other
precision. In practice, however, the total amount ofstates with(A%n) ~ (n)?(y > 2). Thus, previous argu-
available energy is always finite. So any analysis of thenent leading to Eq. (3) for the Heisenberg limit does not
sensitivity of phase measurement has to be made undbapld. Furthermore, the Heisenberg uncertainty relation in
such a constraint. The traditional argument for the limit inEq. (1) is derived on the basis of operator algebra in quan-
a precision phase measurement stems from the Heisenbedrgn mechanics [1], but it has been proved that there does
uncertainty relation for the fluctuations of phageand not exist a Hermitian operator for phase in quantum me-
photon number [1], chanics [11]. Infact, Eqg. (1) does not hold in general. For

ApAn =1, (1) example, Eq. (1) is violated for the vacuum state. There-

. fore, the whole argument based on the Heisenberg uncer-
where An = /(A2n) and A¢ characterizes the phase ,_. L i
fluctuation. Thus shot nois€A2n) ~ (n)) due to particle tainty relation in Eq. (1) does not hold in general and the

nature of light will place a limit on how precise one can questic_)n remains:  What is the Iimi; on the sen;itivity in
measure a small phase shift a precision phase measurement, given the available total

mean number of photons?
1 . ) In this Letter, | will discuss the phase problem through
Jn) a different approach without the need of a phase operator.
However, shot noise is not the same noise for all quanturhwill prove by a simple argument regarding the change
systems. Quantum mechanics does not set any restrictigfi state produced by a phase shift that the ultimate limit
on An. Naively, one would argue that because of theon the sensitivity of a precision phase measurement is
energy constraintAn should be bounded by the mean the Heisenberg limit. This argument is further supported
number of photons, that i§A2n) ~ O((n)?). Thus given by an analysis of a single-photon interferometer coupled
the total mean number of photons, the limit on precisiorthrough the optical Kerr effect to another single mode
phase measurement should be the so-called Heisenbepgpbe field, on which a phase measurement is performed.

Ap =

limit, The precision of the phase measurement is the main
1 concern of the analysis. We are able to connect, by
= @ . (3)  the complementarity principle, the visibility of the single-

) photon interferometer and the minimum detectable phase
Indeed, all the best measurement schemes discovered SRift that can be measured with the probe field. We

far have not been able to surpass this limit [2-5]. will derive a necessary condition for those states that
On the other hand, Shapied al. [6,7] recently proposed ¢4 achieve the Heisenberg limit in a precision phase
the following state:

v measurement.
1 First of all, since phase is a relative quantity and
V) = A M > 1, A=+J6/7?), . ’ P quantity -an
) WZO m+ 1 & < /77> its measurement has to rely on the comparison with

(4)  other fields, let us consider a single-mode figldwhich
which they claim can achievi/{n)? precision in the mea- is correlated with other fields denoted &sfor phase
surement of a phase shift. But some difficulties assoeomparison. The most general state describing fi¢lds
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has the form of || |A®)|| is indeed a good measure of whether the phase
_ shift 6 is detectable and that the minimum detectable phase
) = % Cn(A) lm)al Vs ®) shift is 1/{n). The complementarity principle of quan-

where theC,,(1) are normalized coefficients in the basis (UM mechanics [12], when applied to the phenomena of
of the Fock stateg|m)s|A)z}. Assume that the field interference, states that if it is possible to find the which-

A (characterized by the creation operafdt) undergoes path information for the two possible interfering paths of a
a phase shifts (Fig. 1). In quantum mechanics, the particle, the interference effect will disappear. In a more

phase shift can be modeled as a parameter in the frdgiantitative description, the degree of the interference ef-
propagation of fieldd and is associated with a unitary fect (e.g., the visi_bi!ity of the interference pattern) \(viII de-
propagation operator pend on the precision of our knowledge about which path

. i5AtA the particle goes through. Although a phase measurement

Us =e . relies on interferometry, it is based on the existence and

Thus the state after the phase shift is simply not on the disappearance of interference effect. It seems

, R ism that the question of how precise a phase shift can be mea-
|®7) = Us|®) = Z Cu(M)e'™ Im)slM)s. (6)  sured is not related to the complementarity principle. On

_ maA - _ _the other hand, the photon number can be determined by
Notice that the phase shift introduced here is not definedyantum nondemolition (QND) measurement without de-
through a phase operator. Equation (6) can be rearrang@foying the photons. It is known [13,14] that the optical

to become Kerr effect can be used to implement a QND measure-
D'y = |D) + |AD), (7a) ment of the photon number. In this case, the measured
with photon imposes a phase shift on another beam called the

probe beam. Measurement of the phase shift on the probe
[AD) = Z Cn(A) (™ — 1)|m)alA)g.  (7b)  beam provides the information about the photon number.
mA The knowledge of the exact photon number in one path of
Our goal is to measure the phase shiftthrough the a single-photon interferometer determines which path the
detection of the changA®) in the state. Obviously, if photon follows and thus destroys the interference effect.
the change in the state is small so that we are unable tbherefore, the accuracy of the phase measurement on the
detect it, it will be impossible to detect the phase shift probe field will influence the result of the interference.

The magnitude of the change in the state is the norm of Consider a Mach-Zehnder interferometer with a phase
|AD), difference of¢ as shown in Fig. 2. A single-photon state

is sent in one of the input ports. Without any device in the
[AD)> = (AD |AD) = 4 Z P, sirt(mé/2), (8) paths of the interferometer, the output of the interferometer
m will exhibit a sinusoidal modulation as a functiongfwith
where P,, = 3, |C,,(A)|? is the photon number distri- a visibility of one. When we place a device in one of the
bution for the fieldA. Now, let us use the inequalities paths, say path (characterized by the creation operaidr
| sinx|] = 1 and|sinx| < x to rewrite Eq. (8) as to find out which path the photon passes, this usually will
5 ) disturb the interferometer and, depending on the device,
HAD? = 4 D Pulsinmd/2)] <2ms, (9)  the visibility of the interference will degrade. In order to

. . reserve the photon, we will use the Kerr effect as the QND
where (n) is the total mean number of photon in field P P Q

A. From Eq. (9), we find that the minimum detectable
phase shift is at leasO(1/{(n)). For, otherwise, we

will have (n)6 < 1 when{(n) > 1, which indicates from |,> ,b
Eqg. (9) that|| |]A®)||*> < 1 and the change in the state is
undetectable. \ Observation
Next, we will apply the principle of complementarity a of
in quantum interference to further prove that the quantity Interference
Kerr -
' Medium
Phase
: Ph:
> Shift > Sh?;f - Phase
. S Field A S ~ | Measurement
Field A . : : , :
iSATA . FIG. 2. Single photon interferometer with a Kerr medium
|q>) e |D ) for QND measurement of the photon number in the path

Determination of the photon number in pattthrough accurate
FIG. 1. General scheme for the generation of a phase shift imeasurement of the phase shift in fieldinduced by a single
field A. photon in fielda will destroy the interference effect.
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scheme to determine the photon number (Fig. 2). In the v = <(1)|e"5/w‘|cp>| = (D | D). (14)
QND scheme, the signal field and the probe field are
coupled through a Kerr medium and the state evolution i
determined by the unitary operator [14]

isataAtA
— elﬁa aATA

he above relation was also derived by Sanders and

ilburn [15]. Although Eq. (14) is derived for the single
photon input, it can easily be shown that even with an
, (10)  arbitrary input state to the interferometer, the visibility
till takes the form of Eqg. (14). From Eg. (5), we can
ind the explicit form of the visibility. For the purpose
81‘ comparison with the unit visibility, let us calculate the
quantityl — v as follows:

UQND
where § is a parameter characterizing the strength of th
interaction. To see further the physical meaning ofet
the input state to the QND device be a single photon stat
for field a and a general staté) given in Eq. (5) for field
A. Then the output state after the QND interaction is l—v=1-|1+{(D|AD)| = (D |AD)|

Uonp | 1alPhs = [1),e 04 A|D), (11) = l1AD)], (15a)

Thus, from Eg. (6), the quantityy is the phase shift where Schwartz inequality is used, or more explicitly,
imposed on the probe field due to the input of a single
photon in fielda. Measurement is then performed onthe | — v < (O |ADP)| =2
field A to estimate the phase shift (Fig. 2). This can be
achieved by performing a homodyne detection or other =2 Z P,|sinmé/2|. (15b)
type of interferometric method. But the exact detail of the m
phase measurement is not our concern here. The followingy using the inequality sim < x in expression (15b), we
argument applies to any scheme of phase measuremeghd up with the following inequality:
If we can detect the phase shift of sizein field A
with whatever means, we will be able to tell whether the L—v<mé or §>(1-v)/n). (16
photon in the interferometer passes the pattor not.  which sets a lower limit on the minimum detectable phase
Hence, according to the complementarity principle, theshift, given the total mean number of photon available
interference effect will disappear. On the other hand, ifin the fieldA. When it is possible to resolve the phase
we can observe a 100% visibility in the single-photonshift with the fieldA, then we can tell whether the photon
interferometer, it is impossible to detect the phase shifentering the interferometer passes through patir not.
o in field A no matter what kind of method or strategy Since we know the which-path information, according
we use for the extraction of the phase shift. Thereforeto complementarity principle, the interference effect in
the visibility of the interferometer is directly related to the the interferometer will disappear or equivalently,~ 0.
ability to resolve the phase shiftin field A. Notice that  Thus from Eq. (16), we find that the minimum detectable
the phase of concern is that of the probe figlih QND  phase shift in fieldA is of the order of1/{n) or the
measurement but n@t of the interferometer. In fact, we Heisenberg limit.
are only interested in the visibility of the interferometer. Before we go any further, let us consider some exam-
Let us now examine the visibility of the single-photon ples. The first one is the coherent stdae. It is easy
interferometer with the QND device discussed above ino find from Eq. (14) thatv = |exd(e® — 1) |a|?]| =
patha. We will find out its relation with the state in field exp(—(n)62/2). If the phase shif6 can be detected, vis-
A. Assume a single-photon state is sent to one of the inpubility v must be significantly different from one, thus
ports of the interferometer. After the first beam splitter,s, ~ 1/\/@, which is the well-known limit for coherent
the state for the system becomes state interferometry [2]. For the two-photon interferome-
1 , try involving a single-mode squeezed state or a two-mode
W) = \/_§(|1>a|0>b + 100l )p)P)a.  (128)  squeezed state, we find

Z Pe™? sinmé /2
m

After passing the Kerr medium, the state of the system has V. = 1 (17a)
the form of Y [2n) + 1)2si? & + cog 8]1/4
1 P A
) = = (Dal0ye™ A + e l0)uDyl),).  forthe formerand
(12b) o, : (17b)

" [(n) + 1 — (n)cosd)? + (n)?sir? 6]1/2
From this state, we can calculate the probability of

detecting a photon at one output port. It has the fornfor the latter. Bothv, and v, are significantly different
of from 1 only if § > 1/(n). Thus both states can be

_1 (SATA B used to achieve the Heisenberg limit in a precision
P =zl = KPle lq)?lACoAs(‘ﬁ 9. (13)  easurement [2,3].
where € is the phase of®|eiA"A|P). Therefore the As another example, let us consider the state given
visibility of the interference pattern is in Eq. (4). It can be shown that = 1 — 66/, when
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(n) — ©, § < 1. Therefore, ford < 1,v = 1,anditis to resolve the phase shift, is enough to destroy the
impossible to detect a small phase shift even if we havénterference pattern in the single-photon interferometer.
an infinite amount of energy. Hence, the state in Eq. (4No actual measurement of the phase shift is required to
is not a good state for precision phase measurement.  be performed. Thus mere possibility of distinguishing the
What kind of state can achieve the Heisenberg limitawo interfering paths is enough to make interference effect
Intuitively, we find from the Heisenberg uncertainty disappear. This phenomenon can also be understood from
relation for phase and photon number in Eq. (1) that thehe backaction by fieldt on the phase of field without
state must have large photon number fluctuations withhe help of the complementarity principle. Because of
(A%n) = (n)*>. However, since Eq. (1) is not valid in backaction, the photon number fluctuation of fied
general, this argument does not hold. In the following, limposes a random phase shift on fieldn exactly the
will use the same argument that leads to Eq. (16) to proveame way whereby field does to fieldd. Such random
that the intuitive argument above is actually correct; thaphase shift will wash out the interference pattern as long
is, the Heisenberg limit cannot be achieved for those statess fieldA passes through the QND device. That is another

with (A%n) < (n)? for large(n). reason why states with a large photon number fluctuation
Consider Egs. (14) and (15) for the visibility of the are needed in field for the visibility to disappear.
interferometer, Although the above conclusions are drawn from the

derivation on the pure stai@) for field A, it is straight-
(18)  forward to show that Eq. (18) stands even for mixed state

Z Pmeimﬁ
, oom ) [15]. Therefore, all the conclusions above apply equally
Assume fieldA experiences a phase shift 6~ 1/(n)  \yell to mixed states.
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