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The asymptotic integrability of the idealized water waves is formally established. Namely, it is
shown that in the small amplitude, long wave limit there exists an explicit transformation which maps
these equations to a system of two integrable equations. It is also shown that the concepts of master
symmetries and of bi-Hamiltonian structures can be used to obtain similar results for other physical
systems. [S0031-9007(96)01167-2]
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One of the most extensively studied physical syste
is the motion of a two-dimensional, inviscid, incompre
ible fluid. Let us consider the simplest possible case
a body of water lying above a horizontal flat bottom
cated aty ­ 2h0, h0 constant, and let there be air abo
the water. For such a system if the vorticity is zero i
tially, it remains zero. The irrotational flow is characte
ized by two parameters,A ­ ayh0 andB ­ h2

0yl2, where
a and l are typical values of the amplitude and of t
wavelength of the waves. Let the dimensionless qua
tieshsx, td andwsx, td denote the position of the free su
face and the velocity potential, respectively. The funct
wsx, td can be expanded in the formw ­

P`
0 s2Bdms1 1
ies
2].
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Ahd2mf2mys2md!, where fm ­ ≠mfy≠xm. We assume
that OsBd ­ OsAd, and then, without loss of generality
we letA ­ 2ey3 andB ­ 6e. The functionshsx, td and
vsx, td ­ fx satisfy [1]

ht 1 vx 1
2
3 eshvdx 2 evxxx 1 Ose2d ­ 0 , (1a)

vt 1 hx 1
2
3 evvx 2 3evxxt 1 Ose2d ­ 0 . (1b)

Let Ksyd denote

Ksyd ­ yxxx 1 6yyx . (2)

Under the additional assumption that waves travel only
one direction, the water wave equations reduce to [1]
ht 1 hx 1 eKshd 1 e2sa1hxxxxx 1 a2hhxxx 1 a3hxhxx 1 a4h2hxd 1 Ose3d ­ 0 , (3)
to
ch

t a
aps
wherea1 ­ 19y10, a2 ­ 10, a3 ­ 23, a4 ­ 26. Us-
ing a moving frame of reference and rescalingx and t,
Eq. (3) reduces to

ht 1 Kshd 1 esa1hxxxxx 1 a2hhxxx 1 a3hxhxx

1 a4h2hxd 1 Ose2d ­ 0 . (4)

As e ! 0, Eq. (4) becomes the Korteweg–de Vr
(KdV) equation, which is an integrable equation [
Thus, unidirectional idealized water waves areasymptot-
ically integrable toOsed [3]. Kodama [4] has formally
extended the asymptotic integrability of this system
Ose2d: He has found an explicit transformation whi
maps Eq. (4) to the integrable equationyt 1 Ksyd 1

ea1K1syd ­ 0, whereK1syd is the next commuting flow
of the KdV hierarchy, i.e.,

K1syd ­ yxxxxx 1 10yyxxx 1 20yxyxx 1 30y2yx . (5)

In this Letter we present the following: (i) Presen
generalization of Kodama’s transformation which m
© 1996 The American Physical Society 2347
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Eq. (4) to the KdV equation itself. Furthermore, we sh
that Eq. (4) can be mapped to several other integra
equations. These equations are integrable generaliza
of the KdV equation and of the Gardner equation
linear combination of KdV and of the modified KdV equ
tions). (ii) Establish formally the asymptotic integrabili
of two-dimensional water waves toOse2d: We use certain
bi-Hamiltonian structures to derive a new system of t
integrable equations, and then present an explicit trans
mation which maps Eqs. (1) to this new integrable syst
(iii) Discuss how the concepts of master symmetries
of bi-Hamiltonian structures can be used to obtain sim
results for other physical systems.

Proposition 1.—(i) Let y solve the KdV equation
yt 1 Ksyd ­ 0, whereKsyd is defined in Eq. (2). Le
h be defined by

h ­ y 1 efl1y2 1 l2yxx 1 l3yx≠21y 1 l4xKsydg ,

(6)

where l1 ­ 59y15, l2 ­ 22y15, l3 ­ 26y15, l4 ­
219y30, and ≠21 denotes integration with respect tox.
Then h solves Eq. (4). This result is equivalent to t
following: Let ysx, Td solve the KdV equation, wher
T ­ t 2 l4ex, l4 ­ 219y30. Let h be defined by
2348
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h ­ y 1 esl1y2 1 l2yxx 1 l3yx≠21yd , (7)

where l1 ­ 59y15, l2 ­ 22y15, l3 ­ 26y15. Then h

solves Eq. (4).
(ii) Let y solve the generalized integrable KdV equ

tion

yt 1 yxxx 1 6yyx1

nesyxxt 1 2yyxxx 1 4yxyxxd ­ 0 . (8)

Let h be defined by Eq. (7), wherel1 ­ 7y5, l2 ­
1y5, l3 ­ 24y5, and letn ­ 219y10. Then h solves
Eq. (4).

(iii) Let y solve the generalized Gardner equation, i.
the equation obtained by adding the terms

3rey2yx 1 rne2sy2yxxx 1 4yyxyxx 1 y3
xd

1 rn2e3sy2
xyxxx 1 2yxy2

xxd ,

to the left-hand side of Eq. (8). Leth be defined byh ­
y 1 esl1y2 1 l2yx≠21yd, where l1 ­ 26y3, l2 ­
24y5, and let n ­ 219y10, r ­ 218y15. Then h

solves Eq. (4).
Proposition 2.—Let e, b1, b2, b3, b4 be arbitrary con-

stants, and letb2
1 fi 1. The system of the equations
ut 1 yx 1 efs3b1 1 2b4db3uux 1 s2 1 b1b4db3suydx 1 b1b3yyx 1 sb1 1 b4db2uxxx1

s1 1 b1b4db2yxxxg ­ 0 , (9a)

yt 1 ux 1 efs2 1 3b1b4db3yyx 1 sb1 1 2b4db3suydx 1 b1b3b4uux 1 s1 1 b1b4db2b4yxxx1

sb1 1 b4db2b4uxxxg ­ 0 (9b)

is integrable in the sense that it can be written as the bi-Hamiltonian system,

su, ydT
t 1 uf21su, ydT

x ­ 0 , (10)

where the compatible Hamiltonian operatorsu andf are2 3 2 matrices with the entries

u11 ­
1

1 2 b
2
1

≠ 1 eb2≠3 1 eb3su≠ 1 ≠ud, u22 ­
1

1 2 b
2
1

≠ 1 eb2b2
4≠3 1 eb3b4sy≠ 1 ≠yd ,

u12 ­ 2
b1

1 2 b
2
1

≠ 1 eb2b4≠3 1 eb3b4u≠ 1 eb3≠y, u21 ­ 2u
y
12 ,

f11 ­ f22 ­
b1

b
2
1 2 1

≠, f12 ­ f21 ­ 2
1

b
2
1 2 1

≠ , (11)

andy denotes the adjoint.
Proposition 3.—Let u andy solve the integrable equations (9), whereb

2
1 fi 1, b1 fi 0, b2 fi 0,

b2
4 1 2b4b1 1 1 ­

2
b2

, b2
4 1 2

b4

b1
1 1 ­ 0 . (12)

Let h andv be defined by

h ­ u 1 efl1u2 1 l2uy 1 l3y2 1 l4ux≠21u 1 l5ux≠21y 1 l6yx≠21u 1 l7yx≠21y

1 l8uxx 1 l9yxx 1 xsl10u 1 l11ydux 1 xsl10y 1 l11udyxg , (13a)

v ­ y 1 efl12y2 1 l13uy 1 l14u2 1 l5yx≠21y 1 l4yx≠21u 1 l7ux≠21y 1 l6ux≠21u

1 l15yxx 1 l16uxx 1 xsl10u 1 l11ydyx 1 xsl10y 1 l11uduxg , (13b)
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wherel1, l2, l4, l5, l8, l9 are arbitrary, andl3 ­ l1 1

f3s1 1 b1b4db3 2 1gy6, l6 ­ l5 1 sb1 1 b4db3y2,
l7 ­ l4 1 f3s1 1 b1b4db3 2 1gy6, l10 ­ f3s1 1

b1b4db3 2 1gy2, l11 ­ 3sb1 1 b4db3y2, l12 ­ sl2 2

b3b4dy2, l13 ­ 2l1 1 b3 2 1y3, l14 ­ sl2 1

b1b3dy2, l15 ­ l8 1 s1 1 b1b4db2 2 1, l16 ­ l9 1

sb1 1 b4db2. Thenh andv solve Eqs. (1).
This result is equivalent to the following: LetusX, Td

andysX, Td solve Eqs. (9) whereb2
1 fi 1, b1 fi 0, b2 fi

0, Eqs. (12) are valid, andX ­ x 1 exsl10u 1 l11yd,
T ­ t 2 exsl10y 1 l11ud. Let h andv be defined by
Eqs. (13) but without thex dependent terms. Thenh and
v solve Eqs. (1).

Before discussing the derivation and the generaliza
of these results we first make some remarks.

(1) The generalized KdV equation (8) was first deriv
in [5] using the bi-Hamiltonian approach (see also [6
The Lax pair of Eq. (8) and an interesting class
its solutions, called peakons, are given in [7]. T
linearization of Eq. (8) using the inverse spectral meth
is given in [8]; if n ­ Os1d the spectral theory of the
equation is very similar to that of the KdV equation.

(2) The results of proposition 1 can be generalized
follows. Letyt 1 Msyd ­ 0 denote the KdV, or the gen
eralized KdV, or the generalized Gardner equation.
y solve the equationyt 1 Msyd 1 eM1syd ­ 0, where
M1syd denotes the first commuting flow of the KdV
or of the generalized KdV, or the Gardner hierarchi
Then it is possible to find a transformation of the for
h ­ y 1 ePsyd, such thath solves (4). In the case o
M ­ K and M1 ­ K1, whereK and K1 are defined by
Eqs. (2) and (5),Psyd is of the form of Eq. (7), and this
is precisely Kodama’s result. In the other two casesPsyd
involvesl1y2 1 l2yxx andl1y2, respectively.

(3) The case of unidirectional idealized water wav
with OsBd , OsAd is studied in [9]. This case is simple
than the case ofOsBd ­ OsAd since the higher dispersiv
terms can be neglected. It was shown by Koda
[10] that if OsBd ­ OsAd it is impossible to extend the
asymptotic integrability of the unidirectional idealize
water waves [i.e., Eq. (4)] toOse3d. However, ifOsBd ,

OsAd this extension is possible [9].
(4) There exists a transformation similar to that

Eq. (6) which is valid for the Burgers equation. Th
transformation has been used to solve rigorously
Cauchy problem for decaying initial data of a certa
physical equation describing acoustic waves [11]. It w
shown in [11] that although it is possible to handle thex
dependent term of the transformation using an appro
ate weighted space, the rigorous analysis is much sim
if this term is absent. In this sense, the equivalent fo
of part (i) of proposition 1, where thex dependent term
is absorbed in thet variable, is more convenient. Thi
transformation has also been used in [12]. We empha
that given Eq. (6) it is elementary to rewrite the tran
formation in an equivalentx-independent form. Indeed
y 1 exKsyd ­ y 2 exyt ­ ysx, t 2 exd 1 Ose2d.
n

.
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(5) The usefulness of starting with the other integra
equations of proposition 1 as opposed to KdV is qu
tionable. A possible argument in favor of some of the
equations is that their dispersion relation matches tha
the full water wave, for both small and large wave nu
bers. The dispersion relation of the KdV, of the regul
ized long wave equation, of the generalized KdV, and
the full water wave equations are given by

2k 1 ek3, 2kys1 1 ek2d ,

2ks1 1
3
2 ek2dys1 1

5
2 ek2d ,

2k
q

1 1 ebk2

¡ q
1 1 3ebk2 , b constant.

(6) We emphasize that the results presented here
formal. In particular, it is not clear if these transform
tions can be used to study the initial value problem
the associated physical equations. The long wave lim
the solitary wave interaction of Eq. (4) has been stud
in [13].

(7) The Kaup model [14] is a particular case of Eqs.
sb1 ­ b4 ­ 0d. However, this model is linearly il
posed. In contrast, Eqs. (9) with general coefficients
well posed provided thatj1 1 2b1b4 1 b

2
4 j $ jb1 1

2b4 1 b1b
2
4 j . 0.

We now discuss proposition 1 and its generalizatio
Unidirectional water waves are integrable toOsed. This
situation arises in the asymptotic analysis of a large clas
physical systems. For a subclass of such systems theOsed
equation is either the KdV or the nonlinear Schrödin
equations. For systems for which theOsed equation is
integrable, the concept of master symmetries provide
algorithm approach for obtaining transformations wh
formally extend the asymptotic integrability of these s
tems toOse2d [i.e., finding transformations analogous
Eq. (6)]: A candidate for such a transformation can
constructed from the master symmetry of the associ
integrable equation by replacing the numerical coe
cients in the master symmetry with arbitrary constan
This is a consequence of the following observation: Ley

solve the equation

yt 1 Msyd 1 eM̂1syd ­ 0 . (14)

Let u be defined by

u ­ y 1 ePsyd . (15)

Theu solves

ut 1 Msud 1 eM̂1sud 1 efP, MgLsud 1 Ose2d ­ 0 ,

(16)

where the commutatorf , gL is defined by

fA, BgL ­ A0B 2 B0A ,

and

A0 ­
≠A
≠u

1
≠A
≠ux

≠x 1
≠A

≠uxx
≠2

x 1 · · · .
2349
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Let the functiontsx, td denote the master symmetry of th
integrable equationyt 1 Msyd ­ 0. This concept was in
troduced by one of us and Fuchssteiner [15]. The de
ing property of the master symmetry is thatft, MgL ­ M1,
whereM1 is the next commuting flow of the associated
erarchy of integrable equations. We illustrate the imp
tance of the master symmetry in connection with the ab
observation by using KdV as an example. LetM ­ K and
M̂1 ­ 0 in Eq. (14), and letP ­ t in Eq. (15), where

t ­
1
3 a1f8y2 1 4yxx 1 2yx≠21

x y 1 xsyxxx 1 6yyxdg .

(17)

Then Eq. (16) becomesut 1 Ksud 1 ea1K1sud ­ 0,
where K and K1 are defined in Eqs. (2) and (5). Th
terms in K1 differ from the Osed terms of Eq. (4) only
in their numerical coefficients. Thus, in order to find t
form of the transformationPsyd in Eq. (6), it is natural to
replace the numerical coefficients in (17) with arbitra
constants; in this wayt of Eq. (17) becomesPsyd of
Eq. (6).

We now discuss propositions 2 and 3 and their g
eralizations. The asymptotic integrability of Eqs. (1)
not immediately apparent. This situation also arises
large class of physical systems. In order to establish
asymptotic integrability of such systems one must fi
the following: (i) The associated integrable system
such a system exists). (ii) The transformation that m
this integrable system to the physical one. If quest
(i) can be answered, question (ii) can be approac
using, as before, the master symmetry of the integra
system found in (i). There exist several methods
approaching question (i). Here we use a method ba
on the bi-Hamiltonian theory of integrable equation
This method is based on the following theorem [5]. L
u 1 lf be a Hamiltonian operator for all constantsl.
Then the equationut 1 uf21ux ­ 0 is an integrable
equation, in the sense that it possesses infinitely m
conserved quantities in involution. The bi-Hamiltoni
method of finding an integrable equation associated w
a given physical system consists of the following ste
(1) Seek a matrix Hamiltonian operatoru, starting with the
ansatz that its components are the natural generaliza
of the Hamiltonian operator of the underlying sca
integrable system. (2) Determine the relevant scalar
this ansatz by using a Maple solver to satisfy the Jac
identity. (3) Among the Hamiltonian operatorsu found
in (2), choose those that give rise to a bi-Hamilton
system.

The integrable system (9) was found by the abo
method: Let

u11 ­ c1≠ 1 c2≠3 1 c3su≠ 1 ≠ud 1 c4sy≠ 1 ≠yd ,

u22 ­ c11≠ 1 c12≠3 1 c13su≠ 1 ≠ud 1 c14sy≠ 1 ≠yd ,

u12 ­ 2su21dy

­ c5≠ 1 c6≠3 1 c7u≠ 1 c8≠u 1 c9y≠ 1 c10≠y ,
2350
-

-
e

-

a
e

s
n
d
le
r
d

.
t

y

h
:

ns

in
i

e

where all the parameters appearing in these equations
constants. Demanding that the operatoru is Hamiltonian
and using a Maple solver [16], one finds a set of possi
constraints satisfied by thec’s. One such solution is
c14 ­ c8, c9 ­ c3, c6 ­ c2c8yc3, c12 ­ c2c2

8yc2
3, c4 ­

c7 ­ c10 ­ c13 ­ 0, c1, c2, c3, c5, c8, c11 arbitrary. The
operatorf with f11 ­ ĉ1≠, f12 ­ 2f

1
21 ­ ĉ5≠, f22 ­

ĉ11≠, where theĉ’s are constants, is also Hamiltonian
Furthermore, sincec1, c5, c11 are arbitrary,u 1 lf is
also Hamiltonian. Thus the system of equationssu, ydT

t 1

uAsu, ydT ­ 0, where the components of the matr
A are given byA11 ­ s1, A12 ­ A21 ­ 1, A22 ­ s2,
s1, s2 arbitrary constants, is integrable. Demandi
that the coefficients ofyx and ux in the first and
the second equations are 1, 0 and 0, 1, respectively
follows thats1 ­ s2, c5 ­ 2c1s1, c1 ­ c11 ­ 1ys1 2

s
2
1 d. Renamings1 ­ b1, c8yc3 ­ b4, c2 ­ eb2, c3 ­

eb3 these equations become Eqs. (9).
We now discuss proposition 3. The form of th

transformation (13) follows from the form of the mast
symmetry of Eqs. (9). It is straightforward to show th
if u, y solve

ut 1 yx 1 efã1uux 1 ã2uyx 1 ã3uxy 1 ã4yyx

1 ã5uxxx 1 ã6yxxxg ­ 0 ,

yt 1 ux 1 efã7yyx 1 ã8uxy 1 ã9uyx 1 ã10uux

1 ã11yxxx 1 ã12uxxxg ­ 0 ,

and if h andv are defined by Eqs. (13), thenh, v solve

ht 1 vx 1 efa1hhx 1 a2hvx 1 a3hxv 1 a4vvx

1 a5hxxx 1 a6vxxxg 1 Ose2d ­ 0 ,

vt 1 hx 1 efa7vvx 1 a8hxv 1 a9hvx 1 a10hhx

1 a11vxxx 1 a12hxxxg 1 Ose2d ­ 0 ,

where l1, l2, l4, l5, l8, l9 are arbitrary, ã5 1 ã11 ­
a5 1 a11, ã6 1 ã12 ­ a6 1 a12, l3 ­ l1 1 sâ2 2

â3 1 â7 2 â10dy4, l6 ­ l5 1 sâ1 2 â4 2 â8 1 â9dy
4, l7 ­ l4 1 s2â2 1 â3 1 â7 2 â10dy4, l10 ­
sâ2 1 â3 1 â7 1 â10dy4, l11 ­ sâ1 1 â4 1 â8 1

â9dy4, l12 ­ l2y2 1 sâ4 2 â8dy4, l13 ­ 2l1 1

sâ2 2 â10dy2, l14 ­ l2y2 1 sâ1 2 â9dy4, l15 ­
l8 1 â6, l16 ­ l9 1 â5, and âj are defined by
âj ­ ãj 2 aj, j ­ 1, . . . , 12. Proposition 3 follows
from the above and the fact that in our particul
caseu and y satisfy Eqs. (9), whileh and v satisfy
Eqs. (1). The equivalent formulation follows from th
observation thatxyx and xux in (13a) and (13b) can be
replaced by2xut and 2xyt, respectively, and thatu 1

exsl10u 1 l11ydux 2 exsl10y 1 l11udut ­ usssx 1

exsl10u 1 l11yd, t 2 exsl10y 1 l11udddd 1 Ose2d.
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