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Asymptotic Integrability of Water Waves
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The asymptotic integrability of the idealized water waves is formally established. Namely, it is
shown that in the small amplitude, long wave limit there exists an explicit transformation which maps
these equations to a system of two integrable equations. It is also shown that the concepts of master
symmetries and of bi-Hamiltonian structures can be used to obtain similar results for other physical
systems. [S0031-9007(96)01167-2]

PACS numbers: 03.40.Gc, 47.35.+i, ,

One of the most extensively studied physical system#in)>” f»,,/(2m)!, where f,, = " f/dx™. We assume
is the motion of a two-dimensional, inviscid, incompress-that O(B) = 0(A), and then, without loss of generality,
ible fluid. Let us consider the simplest possible case ofve letA = 2¢/3 andB = 6¢e. The functionsn(x, t) and
a body of water lying above a horizontal flat bottom lo- w(x, ) = f, satisfy [1]
cated aty = —hy, hy constant, and let there be air above 2 )
the water. For such a system if the vorticity is zero ini- 7+ @x F 7€(nw)y — €wpe + 0(e7) =0, (1)
tially, it remains zero. The irrotational flow is character- o, + 7, + %ewwx — 3ewyy + 0(€?) = 0. (1b)
ized by two parameters, = a/hy andB = hi/I2, where
a and| are typical values of the amplitude and of the Let K(v) denote
vyavelength of the waves. Let the d_i_mensionless guanti- K@) = vey + 600, . )
ties n(x,t) and¢(x, t) denote the position of the free sur-
face and the velocity potential, respectively. The functionUnder the additional assumption that waves travel only in
¢(x,1) can be expanded in the forg = > ;(—B)"(1 + | one direction, the water wave equations reduce to [1]

N+ Ny + €K(n) + €X(a1 Mo + QNN + @3N + agn’ny) + 0(€¥) =0, (3

wherea; = 19/10, a; = 10, a3 = 23, oy = —6. Us- ! ically integrable toO(e) [3]. Kodama [4] has formally

ing a moving frame of reference and rescalxgndt, extended the asymptotic integrability of this system to

Eq. (3) reduces to 0(€%): He has found an explicit transformation which

maps Eqg. (4) to the integrable equatien + K(v) +

e+ K(n) + el + @20 + 3727 ea K (v) = 0, whereK;(v) is the next commuting flow
+ aum’n,) + 0(%) = 0. (4)  of the KdV hierarchy, i.e.,

As € — 0, Eq. (4) becomes the Korteweg—de Vries Ki(¥) = Vi + 1000 + 200,05 + 30v%v,. (5)
(KdV) equation, which is an integrable equation [2]. In this Letter we present the following: (i) Present a
Thus, unidirectional idealized water waves asymptot- generalization of Kodama'’s transformation which maps
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Eq. (4) to the KdV equation itself. Furthermore, we show n=v+ ev?+ vy + 3v.0 ),  (7)

that Eq. (4) can be mapped to several other integrable

equations. These equations are integrable generalizatioW§iere A1 = 59/15, A, = 22/15, A3 = 26/15. Thenn

of the KdV equation and of the Gardner equation (aSOlves Eq. (4). _ _

linear combination of KdV and of the modified KdV equa- _ (i) Let v solve the generalized integrable KdV equa-

tions). (ii) Establish formally the asymptotic integrability tlon

of two-dimensional water waves @(e%): We use certain

bi-Hamiltonian structures to derive a new system of two

integrable equations, and then present an explicit transfor- VE(Viy + 20U4 + dv,vy) = 0. (8)

mation which maps Egs. (1) to this new integrable system. i

(iii) Discuss how the concepts of master symmetries and€t 7 be defined by Eq. (7), whera, =7/5, A, =

of bi-Hamiltonian structures can be used to obtain similarl/3: A3 = —4/5, and lety = —19/10. Then7 solves

results for other physical systems. Eq.___4 ] ] ,
Proposition 1—(i) Let v solve the KdV equation (iii) Let_v solve.the genera!lzed Gardner equation, i.e.,

v, + K(v) = 0, whereK(v) is defined in Eq. (2). Let the equation obtained by adding the terms

n be defined by

Uy + Uy T VUt

3p6v2vx + pvez(vzvxm + 4vv, vy, + vz)
n=v + e[Aqv? + vy + Av.0 v + MxK@)],

©) to the left-hand side of Eq. (8). Let be defined byy =
where A} = 59/15, Ay = 22/15, A3 = 26/15, Ay = v + 6(/\11}2 + )szxa_lv), where A = 26/3, Ay =
—19/30, and 9~ ! denotes integration with respect 0o —4/5, and let v = —19/10, p = 218/15. Then g
Then n solves Eq. (4). This result is equivalent to the solves Eq. (4).
following: Let v(x,T) solve the KdV equation, where  Proposition 2—Let €, 81, B2, B3, B4 be arbitrary con-
T =1t — Mex, Ay = —19/30. Let n be defined by | stants, and leBi # 1. The system of the equations

2 302 2
+ pr e’ (Viven t 2vu.v5),

up + vy + €381 + 2B4)Bauuy + 2 + B1B4)B3(uv)y + B1B3vvy + (B1 + Ba)Barttrxt
(I + B1B4)Brvs] =0, (99)

v + uy + €[(2 + 3B1B4)B3vvs + (B1 + 2B4)B3(uv), + B1B3Bauux + (1 + B1B4)B2Baviu+
(B1 + B4)B2Paurc] =0  (9b)

is integrable in the sense that it can be written as the bi-Hamiltonian system,
w,v)] + 06 '(u,v)] =0, (10)
where the compatible Hamiltonian operatérand ¢ are2 X 2 matrices with the entries

1 1
011 = 1—,828 + €B20° + €B3(ud + u), 02 = 1—,826 + €Bafi’ + €B3Ba(va + dv),
- 1 - 1
02 = —- BIBZ 0+ €BaPud’ + eBsBaud + eBrdv,  On = —0h,
- 1
Bi 1
— o — a, = ———a, 11
¢11 ¢22 B% _ 1 ¢12 ¢21 B% _ 1 ( )

andt denotes the adjoint.
Proposition 3—Let u andv solve the integrable equations (9), wh@e # 1, 81 # 0, B2 # 0,

i, 3§+2&+1=0. (12)
B

B+ 2B4B1 + 1= 5

Let » andw be defined by
n=u-+ 6[A1u2 + Auv + /\3112 + )L4ux8_1u + )L5ux8_1v + )L6vx8_1u + /\7vX8_1v

+ AUy + Aovye + x(Ajou + A v)uy + x(Aov + Aju)v, ], (13a)
w=v + 6[)\121}2 + Apzuv + A14u2 + Asv, 0 v+ Aqved tu A d v+ g d
+ Aisvy + Agltye + x(Agou + Av)vye + x(Aov + Auuy], (13b)

2348



VOLUME 77, NUMBER 12 PHYSICAL REVIEW LETTERS 16 BPTEMBER1996

where Ay, Ay, A4, As, Ag, Ag are arbitrary, and\; = Ay + (5) The usefulness of starting with the other integrable
[3(1 + B1B4)B3s — 11/6, A¢ = As + (B1 + B4)B3/2, equations of proposition 1 as opposed to KdV is ques-
A7 = Aq + [3(1 + B1B4)B3 — 1]/6, Ao = [3(1 +  tionable. A possible argument in favor of some of these
B1B4)B3 — 11/2, Aiy = 3(B1 + Ba)B3/2, A2 = (A, —  equations is that their dispersion relation matches that of
B3B4)/2, A3 =22 + B3 — 1/3, Ay = (A, +  the full water wave, for both small and large wave num-

B1B3)/2, Ais = Ag + (1 + B1B4)Br — 1, Ajg = Ao + bers. The dispersion relation of the KdV, of the regular-

(B1 + B4)B2. Thenn andw solve Egs. (1). ized long wave equation, of the generalized KdV, and of

This result is equivalent to the following: Le{X,7T) the full water wave equations are given by
andv(X, T) solve Eqgs. (9) wher@? # 1, 81 # 0, B, #

_ 3 _ 2
0, Egs. (12) are valid, an& = x + ex(Ajou + Ajv), k+ ek ’3 k/Q 5+ €k).
T =1t — ex(Ajpv + Aju). Let n andw be defined by —k(1 + §6k2)/(1 + 5€k?),
Egs. (13) but without th& dependent terms. Thep and
o solve Egs. (1). —k\/l + eBk? / \/1 + 3eBk2, B constant
Before discussing the derivation and the generalization ]
of these results we first make some remarks. (6) We emphasize that the results presented here are

(1) The generalized KdV equation (8) was first derivedfPrmal- In particular, it is not cle_ar_ .if these transforma-
in [5] using the bi-Hamiltonian approach (see also [6]).tions can.be used to study t'he initial value proble.m. of
The Lax pair of Eq. (8) and an interesting class ofthe associated physical equations. The long wave limit of
its solutions, called peakons, are given in [7]. The.the solitary wave interaction of Eq. (4) has been studied
linearization of Eq. (8) using the inverse spectral method" [13]. ) )
is given in [8]; if » = O(1) the spectral theory of the  (7) The Kaup model [14] is a particular case of Egs. (9)
equation is very similar to that of the KdV equation. Bi = B4 = 0). However, this model is linearly ill

(2) The results of proposition 1 can be generalized afosed. In contrast, Egs. (9) with general ZCOfoICIGHtS are
follows. Letv, + M(v) = 0 denote the KdV, or the gen- Well posed2 provided thatl + 28,84 + B4l = |8 +
eralized KdV, or the generalized Gardner equation. LeBs + B18il > 0.

v solve the equatiow;, + M(v) + eM;(v) = 0, where We now discuss proposition 1 and its generalizations.
M,(v) denotes the first commuting flow of the Kdv, Unidirectional water waves are integrable@ge). This

or of the generalized KdV, or the Gardner hierarchiessituation arises in the asymptotic analysis of a large class of
Then it is possible to find a transformation of the form physical systems. For a subclass of such systeme tag

n = v + €P(v), such thaty solves (4). In the case of €quation is either the KdV or the nonlinear Schrddinger
M = K and M, = K,, whereK and K, are defined by gquations. For systems for which thi¥&e) gquation is
Egs. (2) and (5)P(v) is of the form of Eq. (7), and this mtegrable, the concept of me_ls_ter symmetrles'prowde.s an
is precisely Kodama’s result. In the other two cagés) algorithm approach for obtaining transformations which
involves A;v2 + A,v,, and A v?, respectively. formally extend the asymptotic integrability of these sys-

(3) The case of unidirectional idealized water wavegems t00(e?) [i.e., finding transformations analogous to
with O(B) < O(A) is studied in [9]. This case is simpler EQ. (6)]: A candidate for such a transformation can be
than the case of(B) = O(A) since the higher dispersive constructed from the master symmetry of the associated
terms can be neglected. It was shown by Kodamantegrable equation by replacing the numerical coeffi-
[10] that if O(B) = O(A) it is impossible to extend the cients in the master symmetry WI'Fh arbitrary constants.
asymptotic integrability of the unidirectional idealized This is a consequence of the following observation: ket
water waves [i.e., Eq. (4)] t0(e?). However, ifO(B) <  solve the equation
0O(A) this extension is possible [9]. + M) + e -0 14

(4) There exists a transformation similar to that of _ v @) + eMi(v) ' (14)

Eq. (6) which is valid for the Burgers equation. This Letu be defined by

transformation has been u'sed. to solve rigorously t_he u=uv + eP(v). (15)
Cauchy problem for decaying initial data of a certain

physical equation describing acoustic waves [11]. It was'heu solves

shown in [11] that although it is po§S|bIe to handle the Cw + M) + el (u) + e[P,M], (1) + O(?) =0,
dependent term of the transformation using an appropri-

ate weighted space, the rigorous analysis is much simpler (16)
if this term is absen_t.. In this sense, the equivalent form,hare the commutatdr, ] is defined by

of part (i) of proposition 1, where the dependent term

is absorbed in the variable, is more convenient. This [A,B], = A'B — B'A,

transformation has also been used in [12]. We emphasizg,q

that given Eq. (6) it is elementary to rewrite the trans-

formation in an equivalent-independent form. Indeed, g =94 04 9A

2 J, +
v+ exK(v) = v — exv; = v(x,t — ex) + O(€?). ou Oty Uy

P2+
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Let the functionr(x, t) denote the master symmetry of the where all the parameters appearing in these equations are
integrable equation; + M(v) = 0. This conceptwasin- constants. Demanding that the operatas Hamiltonian
troduced by one of us and Fuchssteiner [15]. The definand using a Maple solver [16], one finds a set of possible
ing property of the master symmetry is thatM];, = M,, constraints satisfied by the's. One such solution is
whereM, is the next commuting flow of the associated hi-c14 = cg, co = c3, c6 = cacs/c3, €12 = cac3/c3, ca =
erarchy of integrable equations. We illustrate the impor<; = cy9 = ¢13 = 0, ¢y, ¢2, ¢3, 5, cg, c11 arbitrary. The

tance of the master symmetry in connection with the aboveperator¢ with ¢, = ¢,9, ¢» = —d)zﬁ = 050, P =
observation by using KdV as an example. ket= K and  ¢;,9, where the¢'s are constants, is also Hamiltonian.
M, = 0in Eqg. (14), and leP = 7 in Eq. (15), where Furthermore, since:,cs,cy; are arbitrary,0 + A¢ is

also Hamiltonian. Thus the system of equatitns,)” +
0A(u,v)T = 0, where the components of the matrix
a7 A are given byA|; = o1, A = Ay = 1, Ay = o,
o1, 0, arbitrary constants, is integrable. Demanding
Then Eq. (16) becomes:; + K(u) + e€a1Ki(u) =0,  that the coefficients ofv, and u, in the first and

where K and K, are defined in Egs. (2) and (5). The the second equations are 1,0 and 0,1, respectively, it
terms inK; differ from the O(e) terms of Eq. (4) only  foliows thato; = a2, ¢5 = —c1o1, ¢ = ¢11 = 1/(1 —

in their numerical coefficients. Thus, in order to find the ;2)  Renamings; = B, cs/c3 = Ba, c2 = €Ba, c3 =
form of the transformatio®(v) in Eq. (6), it is natural to €35 these equations become ‘Eqs. 9).

replace the numerical coefficients in (17) with arbitrary "\we now discuss proposition 3. The form of the

constants; in this wayr of Eq. (17) becomes(v) of  ransformation (13) follows from the form of the master

Eq. (6). _ B , symmetry of Egs. (9). It is straightforward to show that
We now discuss propositions 2 and 3 and their genys ,, 4 solve

eralizations. The asymptotic integrability of Egs. (1) is
not immediately apparent. This situation also arises in a
large class of physical systems. In order to establish the
asymptotic integrability of such systems one must find + As5Uye T @gVUrrr] = 0,
the following: (i) The associated integrable system (if
such a system exists). (ii) The transformation that maps
this integrable system to the physical one. If question + @11V + @12l ] = 0,

(i) can be answered, question (ii) can be approached

using, as before, the master symmetry of the integrablg,q if n andw are defined by Egs. (13), thep » solve
system found in (i). There exist several methods for
approaching question (i). Here we use a method based
oﬁpthe bi—Ela?niItonianQ[heory of integrable equations.” T @ elarnne + mnor + ano + aoo,
This method is based on the following theorem [5]. Let + a5 + gy ] + 0(€?) =0,

6 + A¢ be a Hamiltonian operator for all constams
Then the equatiorny; + 8¢ 'u, = 0 is an integrable
equation, in the sense that it possesses infinitely many + a1 @y + apux] + O} =0,
conserved quantities in involution. The bi-Hamiltonian

method of finding an integrable equation associated witkyhere A, Ao, Aa, As, Ag, Ao are arbitrary, as + &1y =
a given physical system consists of the following StePSys + @y, g + @ = ag + ap, Az = A + (@ —
(1) Seek a matrix Hamiltonian operatystarting withthe 4. 4 4, — 4,0)/4, As = As + (& — &y — ag + do)/
ansatz that its components are the natural generalizations ). — ), + (—a, + a3 + a7 — @10)/4, Ay =
of the Hamiltonian operator of the underlying scalar(a, + a; + a7 + a50)/4, Ay = (&) + &g + ag +
integrable system. (2) Determine the relevant scalars i@9)/4, Mo = A/2 + (s — ag)/4, Az =271 +
this ansatz by using a Maple solver to satisfy the Jacol:{iél2 — @10)/2, A= AJ2 + (@1 — @9)/4, A5 =
identity. (3) Among the Hamiltonian operatofsfound ) "4 4. A6 = Ao + &s, and &; are defined by

T = %al[sz + dvy + 20,0 v + x(Vy + VY]

u; + vy + e€lajuu, + druvy + azuv + @vv,

v, + u, + elavv, + dgu v + aouv, + ajouy

w; t MNx + 6[a7wwx + agyw + agT Wy + aoMMNx

in (2), choose those that give rise to a bi-HamiItonian&j =a; —a;, j=1,...,12. Proposition 3 follows
system. from the above and the fact that in our particular
method: Let Egs. (1). The equivalent formulation follows from the
011 = c1d + 03 + 9+ 9u) + 9+ v), observation thakv, and xu, in (13a) and (13b) can be
e = 5 es(u u) + calv v) replaced by—xu, and —xv;, respectively, and that +
0 = c11d + c120” + c13(ud + du) + cu(vd + dv), ex(Aou + Apv)uy — ex(Apv + Apuwu, = u(x +
0y, = _(621)1 GX()ll()u + )\11U),l — ex()lmv + /\1114)) + 0(62).
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