Comment on "Confirmation of the Sigma Meson"

In a recent Letter [1], Törnqvist and Roos reported on a re-analysis of $\pi\pi$ *S*-wave phase shifts using a coupled channel formalism in which the dynamics is totally determined by *s*-channel resonances. They found in their solution a broad $\frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d})$ -type scalar meson at 400 MeV which they associate with the long-controversial σ meson. They also drew from their analysis certain conclusions about the controversial $f_0(980)$ and $a_0(980)$ scalar states.

While we accept some of the elements of their analysis, we wish to point out why we have reached very different conclusions in our independent analyses [2,3] which included both the complete nonet of *s*-channel resonance poles *and* strong *t*-channel forces. In particular, we find the following: (1) Most of the broad rise of the *S*-wave $\pi \pi$ phase shifts is to be associated with *t*-channel attractive forces, not an intrinsic $q\bar{q}$ pole. (2) Our *t*-channel forces are also dominant in producing the attractive forces in the $K\bar{K}$ channels that create the $f_0(980)$ and $a_0(980)$.

We begin with a quick review of the essential elements of the three analyses [1-3] under discussion. The analysis of Törnqvist and Roos assumes that pseudoscalarpseudoscalar (PP) scattering is controlled by its *s*-channel resonances, and focuses on the resonances' running mass functions $m^2(s) = m_0^2 + \Pi(s)$, with $\Pi(s)$ determined from a model for resonance \rightarrow PP \rightarrow resonance loop graphs. The distinctive feature of their approach is the use of very strong couplings to PP channels leading to sharp cusplike downward spikes in $\Pi(s)$ which allow the real part of $m^2(s)$ to intersect, or nearly intersect, *s twice*.

Our approaches [2,3], while distinct, have in common the very important role assigned to *t*-channel forces. Reference [2] grew out of a study of $qq\overline{q}\overline{q}$ systems which focused on the forces between two mesons arising from quark exchange. Reference [3] studied mesonmeson interactions in an effective Lagrangian approach incorporating scalar, pseudoscalar, and vector mesons. In this latter approach it is mainly the vector mesons which produce very strong t-channel forces. Despite these differences, both Refs. [2] and [3] conclude that the $f_0(980)$ and $a_0(980)$ are $K\overline{K}$ states dominated by *t*-channel forces, and that the strong low energy $\pi\pi$ attraction is also dominantly due to t channel forces and not an intrinsic low mass $q\bar{q} \sigma$ meson. Note that all these approaches [1-3] are unitary scattering equations, so the different conclusions arising from [1] versus [2] and [3] are due to differences in the underlying dynamics.

The main purpose of this Comment is to suggest that the neglect of *t*-channel forces of some kind in Ref. [1] is untenable, and that this neglect therefore calls into question whether the interpretation of the data given in Ref. [1] is indeed an acceptable alternative to ours. The critical oversight of Ref. [1] is its neglect of the "exotic" $I = \frac{3}{2}$ and I = 2 PP scattering channels. In a pure *s*-channel-

resonance-driven picture, the phase shifts in these channels would be zero. In Refs. [2] and [3] these channels are therefore used to set the scale of *t*-channel forces by using the data in these channels to fix the values of various crucial parameters. Indeed, one can view both Refs. [2] and [3] as having used the exotic channels to determine the t-channel forces, and then used various relations internal to the models [e.g., in Ref. [2] these are SU(6) spin-flavor Clebsch-Gordan coefficients, while in Ref. [3] they are SU(3) relations between coupling constants] to fix the *t*-channel forces in the $I = 0, \frac{1}{2}$, and 1 channels. For example, in Ref. [3], below 600 MeV *t*-channel ρ exchange dominates the $\pi\pi$ phase shifts; in the $I = 0 \ K\overline{K}$ channel the forces are even more attractive, because not only the ρ but also the ω and ϕ mesons add *coherently* to the attraction as demanded by SU(3). In Ref. [2] this attraction is somewhat weaker, but comparable. In both Refs. [2] and [3] the s-channel scalar resonances in the 1300 MeV region contribute further binding to the "KK molecules" but are not dominant.

In fact, Ref. [3] shows explicitly that *t*-channel forces lead to a broad "dynamical pole" that arises from the degrees of freedom already present in the meson-meson continuum, in contrast to an "intrinsic pole" that would arise from the insertion of a new $q\bar{q}$ degree of freedom into the dynamics [4].

We therefore suggest that the interpretation of the scalar resonances given in Ref. [1] be viewed with skepticism until their study is broadened to include in a systematic way the exotic $I = \frac{3}{2}$ and 2 channels. We are convinced that on doing so it will be discovered that the low energy attraction in $\pi\pi$ is dominated by *t*-channel forces and not by an intrinsic low mass σ meson. We also believe that it will emerge that the attractions in the $K\overline{K}$ channels leading to the $f_0(980)$ and $a_0(980)$, while not without important contributions from the *s*-channel resonances, are also dominated by ordinary *t*-channel "effective potentials."

Nathan Isgur and Joseph Speth* Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606

Received 20 May 1996 [S0031-9007(96)01090-3] PACS numbers: 14.40.Cs, 12.39.Ki, 13.75.Lb

*Permanent address: Inst. für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany.

- [1] N.A. Törnqvist and M. Roos, Phys. Rev. Lett. **76**, 1575 (1996).
- [2] J. Weinstein and N. Isgur, Phys. Rev. D 41, 2236 (1990);
 Phys. Rev. Lett. 48, 659 (1982).
- [3] G. Janssen, B. C. Pearce, H. Holinde, and J. Speth, Phys. Rev. D 52, 2690 (1995); D. Lohse, J.W. Durso, K. Holinde, and J. Speth, Nucl. Phys. A 516, 513 (1990).
- [4] L. Castillejo, R.H. Dalitz, and F.J. Dyson, Phys. Rev. 101, 453 (1956).