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Exactly solvable one-dimensional models of amphiphilic solutions are used to investigate th
concentration dependence of isodesmic chemical equilibria (linear self-assembly). Highly efficie
methods are developed for solving directly for the equation of state and for obtaining the clust
statistics. Remarkably, at fixed pressure, it is thelow concentration limit where the equilibrium constant
is both maximized and shows the strongest concentration dependence. [S0031-9007(96)01125-8]
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A famous paradigm in statistical mechanics is th
there can be no phase transition in a one-dimensio
short-ranged model [1]. This implies that one should n
rely on standard mean field concepts when trying to
terpret quasi-one-dimensional phenomena, such as li
self-assembly. Consider, as an example of a chain fo
ing amphiphilic solution, a two-componentsABd mixture
where the solutesAd-solventsBd interaction is purely repul-
sive and has the same range as the attractiveAA andBB
interactions. As the temperaturesT d is lowered, longer
and longer chains of solute are formed, but since
cost of breaking a given chain is, at most, restricted
two unfavorableAB interactions, the entropy of mixing
is sufficient to prevent any phase transition to an infin
cluster. In fact, such a model is an exact representa
of isodesmic chemical equilibria [2]; i.e., an exponent
distribution of clusters defined by a single equilibriu
constantsKd. This language hides the fact that, at fix
temperature and, say, pressurespd, there still remains one
thermodynamic degree of freedom in a two-compon
mixture. Thus, even ifK were constant for a particu
lar pair of fixed thermodynamic fields, it could not the
be independent of concentrationsxd in any other phase
space. Just what does our intuition expect for the c
centration dependence of an equilibrium constant? In
pure case, density dependence can only arise from clu
cluster interactions, which typically lead to an increase
K as density rises. One might be tempted to naively ap
this scenario to solution equilibria and surmise thatK will
be a true constant at sufficiently low solute concentrat
(i.e., in the absence of cluster-cluster interaction). Ho
ever, a recent simulation study of a model discotic a
phiphile in solution found precisely the opposite behav
[3]. Attard has interpreted at least part of the simulat
picture by noting that at fixed pressure the overall den
must decrease as solute is added, or, in the languag
colloidal science, the solvent pressure must decrease
This implies that the low concentration limit will be a
least a local maximum in the equilibrium constant. If t
effect even partly approached the significance obser
in simulation, this result would hold important implica
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tions for experiments on chain forming surfactants a
possibly even polymerization in solution. In fact, the
already exists as yet unexplained data on a particular
cotic amphiphile, demanding a significant concentrat
dependence to isodesmic chemical equilibria at lowx [5].
This Letter addresses the above general issue in phys
chemistry by asking what is predicted by exactly solvab
one-dimensional models. Although methods for solvi
for the partition function of such models have long be
available [1], here I shall develop a highly efficient a
proach for extracting the exact equation of state and
equilibrium cluster distribution, with an absolute min
mum of mathematical effort. At no stage do I requi
algebra beyond the solutions of a quadratic equation,
the results needed to describe isodesmic chemical equ
ria can be given particularly simple analytic forms.

Any model in liquid state physics is formally solve
by potential distribution theory. In either the canonic
ensemble [6] or, as required here, the grand canon
ensemble [7], one knows that the chemical potential
speciesA is given by the sum rule

rAsrde2mA1y
ext
A srd ­ ke2cAsrdl . (1)

Hereafter, units are chosen such that all lengths
given in terms of a hard-core diameter (and deBrog
wavelengths set to unity) and all energies and fr
energies in units ofkBT (with kB Boltzmann’s constant).
The symbolsr, m, and yext denote number density
chemical potential, and external field, respectively. T
right side of Eq. (1) is the average of a Boltzmann fac
involving the energy of a test particle of typeA placed at
the positionr; i.e., c is the energy of interaction betwee
the test particle and the fluid, but the test particle do
not actually interact with the system. For all mode
involving a hard-core contribution to the test-partic
interaction, one can split this average into two factors:

Pcsrd ke2cAsrdlc , (2)

where the first factor is the probability of inserting th
hard core of a real particle into the fluid at positionr,
© 1996 The American Physical Society
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and the Boltzmann factor average is now to be carri
out in the presence of a hard core fixed atr; hence the
subscriptc, which, in one-dimensional systems, I sha
write as w (for wall). The hard-core factor controls
phenomena such as the freezing of hard sphere syste
whereas Ising symmetry transitions are entirely concern
with the second factor; an average of attractive energ
in the presence of a hard cavity. In any dimensio
the first factor is trivially written down for lattice-gas
(LG) models; in the pure fluid case it is justs1 2 rd.
In one dimension the Boltzmann factor average is al
exactly solvable, because the presence of a hard-c
(wall) splits the system into two independent ensembl
(given finite-range interactions unable to reach across
wall). Accordingly, consider a symmetric two-componen
LG in one dimension, with equalAA and BB attractive
well depths (denotede) and theAB interaction purely
repulsive; in particular, let us work explicitly with the
case in which theAB repulsive range is two lattice units.
From potential distribution theory, one can write down th
exact solution of this model (and similar models) almo
by inspection:

xe2mA ­ ff1 2 s1 2 xwdrw 1 axwrwg2 , (3)

s1 2 xde2mB ­ ff1 2 xwrw 1 as1 2 xwdrwg2 , (4)

xwrwe2mA ­ s1 2 rwd f1 2 s1 2 xwdrw 1 axwrwg ,

(5)

s1 2 xwdrwe2mB ­ s1 2 rwd f1 2 xwrw

1 as1 2 xwdrwg , (6)

where the subscriptw denotes a quantity belonging to a
lattice site adjacent to a hard wall, and for convenience
have introduceda ­ ee 2 1 and f ­ s1 2 rdyr; r ­
rA 1 rB, x ­ rAyr, etc. To obtain these results
have applied potential distribution theory to measure t
chemical potentials in three classes of systems: (I) t
homogeneous fluid mixture, (II) adjacent to a hard wa
inserted into the mixture, and (III) adjacent to repulsiv
walls that act as an ordinary hard wall to one compone
but repel the other component one additional lattice s
further away (these are the hard cores of our particu
model mixture). To see how this works consider th
derivation of Eq. (3). First, in system (I) the hard cor
factor on the right side of Eq. (2) iss1 2 rd f1 2 s1 2

xwdrwg2, where the squared factor arises from the fact th
type B must be excluded from the lattice site either sid
of typeA. The Boltzmann factor average is by inspectio
s1 1 arwABd2 determined by the density of typeA next to
the inner hard wall of the cavity inserted to make syste
(III). Now, consider the measurement in system (II
where the hard core factor iss1 2 rwd f1 2 s1 2 xwdrwg
and the Boltzmann factor average iss1 1 arwABd; there
are no longer any squared factors because the hard w
excludes interactions with everything to, say, the le
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Finally, the same analysis applied to the measuremen
system (III) yields

rwABe2mA ­ s1 2 rwABd f1 2 s1 2 xwdrwg

3 s1 1 arwABd , (7)

and so comparison with the analogous equation fr
system (II), at identicalmA, yields a result forrwAB

in terms of xw and rw. Equation (3) then follows
immediately from substitution into the result of th
measurement in system (I) and Eq. (5) from the sa
substitution applied to the measurement in system
Equations (4) and (6) arise from evaluating the chem
potential of B particles (solvent), in precisely the sam
way, and, of course, are trivially related to Eqs. (3) a
(5) by the symmetry of the model.

An efficient method of solving Eqs. (3)–(6) follows b
dividing (3) by (5) and (4) by (6), giving

xwrwff1 2 s1 2 xwdrw 1 axwrwg 1 xrw ­ x ,

(8)

s1 2 xwdrwff1 2 xwrw 1 as1 2 xwdrwg

1 s1 2 xdrw ­ 1 2 x , (9)

which add to give

rwfh1 2 2xws1 2 xwdrw 1 arwfx2
w 1 s1 2 xwd2gj

1 rw ­ 1 . (10)

For example, if we want solutions within the phase sp
sT , r, xd, simply choose the desired values ofa andf and
then for anyxw one hasrw from Eq. (10) as the solution
of a simple quadratic, which can then be substituted
say, Eq. (8) to trivially solve forx (asxw is varied from
0 to 1, so doesx). Alternatively, if one wants to work a
fixed solvent chemical potential,sT , mB, xd phase space
then choosea and mB and obtainrw as a function of
xw from the quadratic equation defined by (6), then ins
into (10) to getf (i.e.,r) and then finally into (8) to getx.
The phase spacesT , p, xd, beloved of physical chemists
is even more trivial to analyze, because one can prove
exact sum rule [8]

p ­ 2 lns1 2 rwd , (11)

which immediately gives, for anyxw , the density from
(10) and thenx from (8). The fact that one never needs
solve anything beyond a quadratic equation is consis
with the absence of phase transitions in one dimension
fact, there is never more than one physical root defined
demandingrw to lie between 0 and 1. In the limits ofxw

tending to zero or unity, the above analysis reduces to
well known exact solution for the one-dimensional Isi
model [1], usually solved by transfer matrix methods
get the partition function which can then be differentia
to obtain the order parametersrd, yielding the inverse
2317
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of the equation of state obtained directly from potent
distribution theory. The simple model mixture in whic
the AB repulsion is identical toAA and BB repulsive
interactions is also readily solved; one gets Eq. (10), fr
class (I) and (II) measurements alone, except that
middle term in brackets on the left side is absent, toget
with (3)–(6), (8), and (9) minus the corresponding term

Let us now turn to the cluster analysis needed to ob
the concentration dependence of the isodesmic chem
equilibria f1g 1 fn 2 1g ­ fng, where fng denotes the
concentration of chains of solute (typeA) exactly n
particles long; I shall denote the corresponding aggreg
density asrn. The density of isolated solute is define
by the conditional probability that, given a solute pres
at one site, then there is no other solute directly on eit
side of it; i.e.,

r1 ­ xrs1 2 rA
wABd2, (12)

where the superscript on yet another wall density indica
that the wall arises from a frozen solute. To obtainrn,
note from, say, periodic boundary conditions thatxr is
the probability of placing the left end of any cluster, a
then building a chain of lengthn simply introducesn 2 1
factors of the probabilityrA

wAB, which hereafter is denote
by the symbolY . Thus, one arrives at an exact model
isodesmic chemical equilibriasKn ­ K, n ­ 2, 3, ...d:

rn ­ r1Yn21, K ­ Yyr1 . (13)

The single quantityY defines the entire cluster distribu
tion, rn ­ rAs1 2 Y d2Yn21, and note that this gives ye
another demonstration of why there can be no phase t
sition; i.e., for anyY , 1 the significance of the larges
clusters are always exponentially damped. The qu
tity 2ln K defines the configurational free energy chan
when a monomer joins a chain, while the configuratio
free energy per monomer of an infinite chain (no en
is m0

` ­ mA 2 ln Y . This physical chemistry language
reviewed, for example, in Ref. [3]; here, let us use o
exactly solvable model to explore the concentration
pendence of these quantities. To obtain the key quan
Y in terms of our solution for the equation of state, o
needs to evaluate the chemical potentialmA at the inner
wall defined by freezing a solute particle:

Ye2smA1ed ­ s1 2 Yd f1 2 s1 2 xwdrwg s1 1 arwABd .

(14)

This is precisely the same use of potential distribut
theory used to derive the equation of state, with the mi
difference that the wall now presents an attractive fi
(of magnitudee). Comparison with the evaluation ofmA

at an ordinary hard wall leads immediately to a line
equation definingY in terms ofa, xw , andrw:

Y ­
s1 1 adxwrw

f1 2 s1 2 xwdrw 1 axwrwg
. (15)
2318
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Inserting this expression into the definition ofm0
` and

Eqs. (12) and (13) for the equilibrium constant, a
simplifying using Eqs. (5) and (8), respectively, on
arrives at the following physically appealing results:

m0
` ­ 2e 1 p , (16)

ln K ­ e 1 p 2 lns1 2 rd . (17)

The significance of constant pressure to the isodes
chemical equilibria defined by our LG model is no
clearly exposed. Whereas fixingT and p leads to con-
stantm0

`, this then demands a significant concentration
pendence to lnK, arising from the final term in Eq. (17)
The first two terms on the right side contribute to the e
thalpy change on adding one monomer to a given ch
while the entropy change is therefore contained within
lns1 2 rd term. It is straightforward to use the abov
equations to obtain thex dependence of the enthalpi
and entropic contributions to lnK. The concentration de
pendence of the density at fixed temperature and fi
pressure (equivalent to fixedrw) follows directly from
Eq. (10), and is significant whenever the solute-solvent
pulsive interactions play a key role; note that when ma
taining a fixed pressure the volume of the whole syst
decreases when a monomer moves into a chain. For
uid state values ofT and p, the density and hence lnK
drops very rapidly as solute is added at low concent
tion, partly because of the nonlinear relation betweenx
and xw in this region. Thus, not only is the equilibrium
constant a maximum at lowest concentration, but, in
dition, so is its variation withx. The symmetry of our
model is manifest in Eq. (10), forcingr to be symmetric
aboutx ­ xw ­ 1y2, where it is a minimum. From (17)
it follows that, at constant pressure, lnK displays these
same properties [9]. The drop in lnK asx is varied from
0 to 1y2 is easily obtained from Eqs. (10) and (17):

D ln K ­ ln

0B@ 2

1 1
12r2

w

11ar2
w

1CA . (18)

For any fixedT spd this expression is monotonic inp sT d.
The maximum possible change is ln2, with a typical value
being at least half of this. A typical liquid state value fo
the drop in density is about 0.1 [10].

In conclusion, exactly solvable one-dimensional mod
have an interesting story to tell concerning the concen
tion dependence of isodesmic chemical equilibria. O
finds that at fixed pressure it is the low concentrati
limit where K shows the strongest dependence onx
and reaches at least a local maximum. This explic
vindicates the phenomenological analogy with colloid
science, introduced by Attard [4], although the effect
significantly stronger than the linear behavior that Atta
obtains from an effective medium approximation to ge
eral one-dimensional models. Clearly, the above scen
is a key part of the story observed in simulation [3
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although the magnitude of the total drop (but not the i
tial rate of drop) is much less spectacular. In particu
the symmetry inherent in the above model is not appli
ble to the moderate-to-high concentration region of
simulations, where the three-dimensional nature appe
to take over. Namely, in the simulation study, lnK
continued to fall andr1 never peaked, even at high co
centration, where isotropic solutions resembled a jum
of short chains, presumably because the three-dimensi
freedom allowed for significant shielding of chain en
(note that these states were readily generated by me
lyotropic columnar liquid crystal phases, as well as
aggregation of dispersed monomers). Thus, whethe
not the low concentration behavior of one-dimensio
models represents the full story behind simulation a
experiment awaits an extension of the above me
ods to obtain the self-assembly of one-dimensio
aggregates within higher-dimensional systems. Th
efficient methods described above for extracting t
type of information may well have general applicabili
to a range of important conceptual issues in phys
chemistry.
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