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Concentration Dependence of Linear Self-Assembly and Exactly Solvable Models
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Exactly solvable one-dimensional models of amphiphilic solutions are used to investigate the
concentration dependence of isodesmic chemical equilibria (linear self-assembly). Highly efficient
methods are developed for solving directly for the equation of state and for obtaining the cluster
statistics. Remarkably, at fixed pressure, it islthe concentration limit where the equilibrium constant
is both maximized and shows the strongest concentration dependence. [S0031-9007(96)01125-8]

PACS numbers: 82.60.Hc, 05.20.-y, 61.20.Qg

A famous paradigm in statistical mechanics is thattions for experiments on chain forming surfactants and
there can be no phase transition in a one-dimensionglossibly even polymerization in solution. In fact, there
short-ranged model [1]. This implies that one should notalready exists as yet unexplained data on a particular dis-
rely on standard mean field concepts when trying to incotic amphiphile, demanding a significant concentration
terpret quasi-one-dimensional phenomena, such as linedependence to isodesmic chemical equilibria at lofs].
self-assembly. Consider, as an example of a chain formFhis Letter addresses the above general issue in physical
ing amphiphilic solution, a two-componefdB) mixture  chemistry by asking what is predicted by exactly solvable
where the solutgl)-solventB) interaction is purely repul- one-dimensional models. Although methods for solving
sive and has the same range as the attractiwvend BB  for the partition function of such models have long been
interactions. As the temperatut®&) is lowered, longer available [1], here | shall develop a highly efficient ap-
and longer chains of solute are formed, but since theroach for extracting the exact equation of state and the
cost of breaking a given chain is, at most, restricted teequilibrium cluster distribution, with an absolute mini-
two unfavorableAB interactions, the entropy of mixing mum of mathematical effort. At no stage do | require
is sufficient to prevent any phase transition to an infinitealgebra beyond the solutions of a quadratic equation, and
cluster. In fact, such a model is an exact representatiothe results needed to describe isodesmic chemical equilib-
of isodesmic chemical equilibria [2]; i.e., an exponentialria can be given particularly simple analytic forms.
distribution of clusters defined by a single equilibrium Any model in liquid state physics is formally solved
constant(K). This language hides the fact that, at fixedby potential distribution theory. In either the canonical
temperature and, say, pressyrs, there still remains one ensemble [6] or, as required here, the grand canonical
thermodynamic degree of freedom in a two-componenensemble [7], one knows that the chemical potential of
mixture. Thus, even ifK were constant for a particu- speciesA is given by the sum rule
lar pair of fixed thermodynamic fields, it could not then ) e
be independent of concentratién) in any other phase pa(r)e Hamva = (e= "l (1)

space. Just what does our intuition expect for the ConHereafter, units are chosen such that all lengths are

centration dependence of an equilibrium constant? In thelven in terms of a hard-core diameter (and deBroglie

pure case, denslty depe;ndenc_e can only arise from cIusF wavelengths set to unity) and all energies and free
cluster interactions, which typically lead to an increase in

- . . energies in units okgT (with kg Boltzmann’s constant).
K as density rises. One might be tempted to naively appl ext .
. . . v ; d he symbolsp, u, and v*' denote number density,
this scenario to solution equilibria and surmise tkiawill

be a true constant at sufficiently low solute concentratior%:.hem".:al potential, :?md external field, respectively. The
(i.e., in the absence of cluster-cluster interaction) How—.rlght §|de of Eq. (1) is the average of a Boltzmann factor
e;/e.} a recent simulation study of a model discdtic am—mVOIVmg the energy of a test particle of typeplaced at

C ; . ; . the positionr; i.e., ¢ is the energy of interaction between
phiphile in solution found precisely the opposite behaworthe test particle and the fluid, but the test particle does
[3]. Attard has interpreted at least part of the simulation P ' P

picture by noting that at fixed pressure the overall densitnOt actually interact with the system. For all models

. . Y olving a hard-core contribution to the test-particle
must decrease as solute is added, or, in the language o h Lo . .
. : teraction, one can split this average into two factors:
colloidal science, the solvent pressure must decrease [4].

This implies that the low concentration limit will be at P.(r) (e ¥y )
least a local maximum in the equilibrium constant. If the

effect even partly approached the significance observedhere the first factor is the probability of inserting the
in simulation, this result would hold important implica- hard core of a real particle into the fluid at positien
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and the Boltzmann factor average is now to be carriedrinally, the same analysis applied to the measurement in
out in the presence of a hard core fixedrathence the system (lll) yields

subscriptc, which, in one-dimensional systems, | shall B

write as w (for wall). The hard-core factor controls pwase = (1 = pyap)[1 — (I = x,)py]
phenomeng such as the freez_i_ng of hard _sphere systems, X (1 + apyag), @)
whereas Ising symmetry transitions are entirely concerned

with the second factor; an average of attractive energiegnd so comparison with the analogous equation from
in the presence of a hard cavity. In any dimensionsystem (Il), at identicalu4, yields a result forp,.az

the first factor is trivially written down for lattice-gas in terms of x,, and p,. Equation (3) then follows
(LG) models; in the pure fluid case it is just — p). immediately from substitution into the result of the
In one dimension the Boltzmann factor average is alsaneasurement in system (I) and Eq. (5) from the same
exactly solvable, because the presence of a hard-comubstitution applied to the measurement in system (lI).
(wall) splits the system into two independent ensembleg&quations (4) and (6) arise from evaluating the chemical
(given finite-range interactions unable to reach across thpotential of B particles (solvent), in precisely the same
wall). Accordingly, consider a symmetric two-componentway, and, of course, are trivially related to Egs. (3) and
LG in one dimension, with equalA and BB attractive  (5) by the symmetry of the model.

well depths (denoted) and theAB interaction purely An efficient method of solving Egs. (3)—(6) follows by
repulsive; in particular, let us work explicitly with the dividing (3) by (5) and (4) by (6), giving

case in which thedB repulsive range is two lattice units.

From potential distribution theory, one can write down the Xwpwfll = (1= xw)pw + axupul + xpy = x,

exact solution of this model (and similar models) almost (8)

by inspection:

xe M = f[1 = (1 = x)pw + axyp, . (3)

(1 = x)e# = fl1 = xypw + a(l = x)puT*. (4
xwpwe = (1 = pyu)[1 = (1 = xw)pw + axwpy],

(5)

(1 - xw)pwf[l - XwPw T a(l - xw)pw]
+ 0 =x)py=1-x, (9

which add to give

ow{l - zxw(l - xw)pw + an[szv + (1 - xw)z]}

+ p,=1. (10)

(1 = xy)pwe # = (1 = p,)[1 —x . . -
v P v For example, if we want solutions within the phase space

+a(l = xy)pwl, (6) (T, p,x), simply choose the desired valuesmofnd f and
then for anyx,, one hasp,, from Eq. (10) as the solution
Pf a simple quadratic, which can then be substituted in,
say, Eq. (8) to trivially solve for (asx,, is varied from

0 to 1, so doeg). Alternatively, if one wants to work at
{xed solvent chemical potentialT, ug, x) phase space,

where the subscripiy denotes a quantity belonging to a
lattice site adjacent to a hard wall, and for convenience
have introducedh = e — 1 andf = (1 — p)/p; p =

pa + pp, x = pa/p, etc. To obtain these results |
have applied potential distribution theory to measure th

chemical potentials in three classes of systems: (I) th X ) . .
: ; : x,, from the quadratic equation defined by (6), then insert
homogeneous fluid mixture, (ll) adjacent to a hard Wa“into (10) to getf (i.e.. p) and then finally into (8) to ge.

inserted into the mixture, and (lll) adjacent to repulsive . .
walls that act as an ordinary hard wall to one componen]-he phase spadd’, p,x), beloved of physical chemists,

but repel the other component one additional lattice sitd> €ven more trivial to analyze, because one can prove the

further away (these are the hard cores of our particula?XaCt sum rule [8]

hen choosex and up and obtainp,, as a function of

model mixture). To see how this works consider the p=—Inl — py), (11)
derivation of Eq. (3). First, in system (I) the hard core
factor on the right side of Eq. (2) i — p)[1 — (1 —  which immediately gives, for any,,, the density from

x,,)pw %, where the squared factor arises from the fact that10) and therx from (8). The fact that one never needs to
type B must be excluded from the lattice site either sidesolve anything beyond a quadratic equation is consistent
of typeA. The Boltzmann factor average is by inspectionwith the absence of phase transitions in one dimension; in
(1 + ap,ap)?* determined by the density of typenextto  fact, there is never more than one physical root defined by
the inner hard wall of the cavity inserted to make systendemandingo,, to lie between 0 and 1. In the limits af,

(1. Now, consider the measurement in system (Il),tending to zero or unity, the above analysis reduces to the
where the hard core factor (s — p,,)[1 — (1 — x,)p»]  well known exact solution for the one-dimensional Ising
and the Boltzmann factor average(is+ ap,4p); there  model [1], usually solved by transfer matrix methods to
are no longer any squared factors because the hard wajkt the partition function which can then be differentiated
excludes interactions with everything to, say, the leftto obtain the order parametép), yielding the inverse
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of the equation of state obtained directly from potentialinserting this expression into the definition pf2 and
distribution theory. The simple model mixture in which Eqgs. (12) and (13) for the equilibrium constant, and
the AB repulsion is identical tcAA and BB repulsive  simplifying using Eqgs. (5) and (8), respectively, one
interactions is also readily solved; one gets Eq. (10), fronarrives at the following physically appealing results:
class (I) and (ll) measurements alone, except that the 0
middle term in brackets on the left side is absent, together Mo = —€+p, (16)
with (3)—(6), (8), and (9) minus the corresponding terms. _ _ _

Let us now turn to the cluster analysis needed to obtain Nk =e+p—Inll—=p). (17)
the concentration dependence of the isodesmic chemical The significance of constant pressure to the isodesmic
equilibria [1] + [n — 1] = [n], where [n] denotes the chemical equilibria defined by our LG model is now
concentration of chains of solute (typ&) exactly »  clearly exposed. Whereas fixirfy and p leads to con-
particles long; | shall denote the corresponding aggregatgtantu?, this then demands a significant concentration de-
density asp,. The density of isolated solute is defined pendence to I, arising from the final term in Eq. (17).
by the conditional probability that, given a solute presenilhe first two terms on the right side contribute to the en-
at one site, then there is no other solute directly on eithethalpy change on adding one monomer to a given chain,
side of it; i.e., while the entropy change is therefore contained within the

A v In(1 — p) term. It is straightforward to use the above
p1=xp(l = plap) (12) equations to obtain the dependence of the enthalpic

where the superscript on yet another wall density indicate&Nd entropic contributions to ii. The concentration de-
that the wall arises from a frozen solute. To obtain pendence of the density at fixed temperature and fixed

note from, say, periodic boundary conditions that is ~ Pressure (eqL_Jiva_Ien_t_to fixed, ) follows directly from

the probability of placing the left end of any cluster, and Eq. (10)_, and |s_5|gn|f|cant whenever the solute-solvent re-
then building a chain of length simply introduces: — 1 pglslve interactions play a key role; note that when main-
factors of the probability2,5, which hereafter is denoted taining a fixed pressure the volume of the whole system

by the symboly. Thus, one arrives at an exact model ofdgcreases when a monomer moves _into a chain. For lig-
isodesmic chemical equilibrigk, = K,n = 2,3, ...): uid state values of" and p, the density and hence kn
n ’ 9 Ty eee )

drops very rapidly as solute is added at low concentra-
pn=p1¥", K=7Y/p:. (13)  tion, partly because of the nonlinear relation between
and x,, in this region. Thus, not only is the equilibrium
constant a maximum at lowest concentration, but, in ad-
Igi_ition, so is its variation withx. The symmetry of our

The single quantityy defines the entire cluster distribu-
tion, p, = pa(1 — Y)?Y""! and note that this gives yet
another demonstration of why there can be no phase tramodel is manifest in Eq. (10), forcing to be symmetric

sition; i.e., for anyY < 1 the significance of the largest ~ o D b
clusters are always exponentially damped. The quan@bOUtx = Xy = 1/2, where it is a minimum. From (17)

tity —In K defines the configurational free energy changét follows that, at constant pressure, Andisplays these

- ) : : . ties [9]. The drop inkhasx is varied from
when a monomer joins a chain, while the configurationa ame propertie . .
free energy per monomer of an infinite chain (no endsE to 1/2is easily obtained from Egs. (10) and (17):

is ud = ua — InY. This physical chemistry language is 2
reviewed, for example, in Ref. [3]; here, let us use our AInK = In = (18)
exactly solvable model to explore the concentration de- 1+

pendence of these quantities. To obtain the key quantit'\é i ) L o
Y in terms of our solution for the equation of state, one”-0r any fixedr" (p) this expression is monotonic jn (7).

needs to evaluate the chemical potenial at the inner 1€ maximum possible change is2ywith a typical value

wall defined by freezing a solute particle: being at least half of this. A typical liquid state value for
the drop in density is about 0.1 [10].

Ye Wit = (1 = Y)[1 = (1 = xw)pul(l + apyap). In conclusion, exactly solvable one-dimensional models
(14) have an interesting story to tell conce_rning thg_co_ncentra-
tion dependence of isodesmic chemical equilibria. One
This is precisely the same use of potential distributiorfinds that at fixed pressure it is the low concentration
theory used to derive the equation of state, with the minolimit where K shows the strongest dependence on
difference that the wall now presents an attractive fieldand reaches at least a local maximum. This explicitly
(of magnitudee). Comparison with the evaluation @f4  vindicates the phenomenological analogy with colloidal
at an ordinary hard wall leads immediately to a linearscience, introduced by Attard [4], although the effect is
equation defining in terms ofq, x,,, andp,,: significantly stronger than the linear behavior that Attard
(1 + a)x obtains frqm an_ef‘fective medium approximation to gen-
wPw (15) eral one-dimensional models. Clearly, the above scenario

Y = .
[1 = (1 = xwpyw + axypy] is a key part of the story observed in simulation [3],
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although the magnitude of the total drop (but not the ini- [3] R.G. Edwards, J.R. Henderson, and R.L. Pinning, Mol.

tial rate of drop) is much less spectacular. In particular,

Phys.86, 567 (1995).

the symmetry inherent in the above model is not applica-[4] P. Attard (to be published).
ble to the moderate-to-high concentration region of the [5] N. Boden, P.J.B. Edwards, and K.W. Jolley, $truc-

simulations, where the three-dimensional nature appeared

to take over. Namely, in the simulation study, Kin

continued to fall angyr; never peaked, even at high con-
centration, where isotropic solutions resembled a jumblerg

ture and Dynamics of Supramolecular Aggregates and
Strongly Interacting Colloids and Supramolecular Aggre-
gates in Solutiongdited by S.H. Chen, J.S. Huang, and
D. Tartaglia (Klein and Dordnick, Boston, 1992).

] B. Widom, J. Chem. Phys39, 2808 (1963).

of short chains, presumably because the three-dimensiongl;] 3 r. Henderson, Mol. Phys0, 741 (1983).
freedom allowed for significant shielding of chain ends [8] The pressure is defined by the Gibbs-Duhem equa-

(note that these states were readily generated by melting
lyotropic columnar liquid crystal phases, as well as by

aggregation of dispersed monomers). Thus, whether or
not the low concentration behavior of one-dimensional
models represents the full story behind simulation and
experiment awaits an extension of the above meth-
ods to obtain the self-assembly of one-dimensional
aggregates within higher-dimensional systems. The

efficient methods described above for extracting this
type of information may well have general applicability

to a range of important conceptual issues in physical

chemistry.

[1] See, for example, C.J. ThompsoMathematical Sta-

tistical Mechanics(Princeton University, Princeton, NJ,

1972).
[2] D. Fennell-Evans and H. Wennerstrorithe Colloidal
Domain(VCH, New York, 1994), p. 136.

tion, which we can write as—(1 + f)ap/dp, =
e*49(xe #4)/0p, + e*#d[(1 — x)e ##]/dp,, and then
use Egs. (3) and (4) to rewrite entirely in terms of
a, f, x,, and p,,. If one then evaluates the quantity
1+ f)oln(1 — p,)/dp,, via repeated use of Eq. (10),
one proves equivalence, i.e., sum rule (11). This LG
sum rule is the direct equivalent of the continuum result
P = Pw-

In the simple two-component mixture model, where
AB repulsion is identical to thedA and BB repulsive
interaction, the result (17) is modified [in contrast to
Eqg. (16)], and, in particular, the symmetry & about

x = 1/2 is lost. However, the same qualitative trend
in InK is seen at low concentration, it is just that the
magnitude of the drop is less and the minimum value of
K shifts tox < 1/2. All of the analysis does, of course,
apply in the pure fluid (Ising model) limit,, = 1.

At moderate fixed pressurp? < /2/(1 + /2)] the
maximum drop in density occurs at finie[at 1 + a =

V2 (p,> = Dland is1/[(1 + V2*(1 + p.)].
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