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Low-Temperature Upper-Critical-Field Anomalies in Clean Superconductors
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We interpret the upper-critical-field anomalies observed in some high-temperature supercond
as resulting from the proximity to a zero-temperature quantum critical point. We estimate the s
of the phase boundary between the normal and the superconducting phase by modeling the
temperature critical point as the second-order end point of the first-order melting line of the vo
lattice. [S0031-9007(96)01126-X]
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In two recent Letters, Mackenzieet al. [1] and Osofsky
et al. [3] observed that in overdoped high-temperatu
superconductors the upper critical field can be measure
very low temperature and displays a very steep rise as
temperature is decreased [1]. Mackenzieet al. studied the
single layer systemTl2CuO61d which is overdoped by
incorporating excess oxygen, while Osofskyet al. studied
Bi2SrCuO2.

The positive curvature of theHc2 vsT curve and its rapid
anomalous low temperature cannot be explained by
classical WHH (Werthamer-Helfand-Hohenberg) theo
In fact, these anomalies have triggered a large num
of theoretical interpretations. Schofield and Wheat
suggested that these anomalies are a manifestation r
from the Luttinger liquid behavior in the normal sta
[7]. Alexandrov, Bratkovsky, and Mott [8] account fo
the anomalous curvature of theHc2 vs T curves in terms
of bipolaron superconductivity, and Brandow sugges
that the negative curvature is the result of pair break
[6]. Mackenzieet al. [2] have suggested that the uppe
critical-field anomalies are related to a strong temperat
dependence of the effective mass.

In this paper we suggest a very different origin of the u
per critical field: the proximity to a zero-temperature cri
cal point. We first argue, on very general grounds, that
observed low-temperature behavior implies the existe
of a thermodynamic singularity at zero temperature, wh
we characterize in terms of two critical exponents. Th
we propose a simple model for the relevant combinat
of exponents controlling the shape of the low-temperat
upper-critical-field line which agrees well with the exper
mental observations.

The microscopic considerations involve the melting
the vortex lattice, a problem which has been a subj
of intense study [4]. Most of the work in this area h
concentrated on the classical statistical mechanical asp
of this problem with the exception of the recent wo
by Blatter et al. [5], which carried out a microscopic
0031-9007y96y77(11)y2296(4)$10.00
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calculation of the quantum and thermal fluctuation of t
vortex lattice to one loop order.

Using standard thermodynamic identities, one can
late the slope of the upper-critical-field curve separat
the normal and the superconducting phase to the cha
in entropy and magnetization across the transition line:

Sn 2 Ss

Mn 2 Ms
­

dHc2

dT
. (1)

If the superconductor-to-metal transition is of the fir
order, the latent heat and the magnetization jump
finite. If it is second order, the left-hand side of Eq. (
should be understood as a derivative. At zero tempera
SsT ­ 0, Md ­ 0 in the normal and the superconductin
phases. If S is a regular function asM approaches
the upper-critical-field line and the temperature ten
to zero, then Eq. (1) implies that the slope of th
upper-critical-field curve vanishes at zero temperature.
the experiments of Refs. [1,3] the slope of the upp
critical-field curves diverges rather than vanishes as
temperature approaches zero, implying the existence
singularity in the free energy at zero temperature, nam
a quantum critical point.

Below the upper critical dimension, a second-ord
transition from an Abrikosov type II superconductor
a normal metal as a function of field is parametriz
by two independent exponentsn and z which control
the divergence of a length scale and of a time scale
the critical point is approached. The free energy p
unit volume has a singular part above and below
superconducting transition which behaves as

f ­ AsH 2 Hc2dnsd1zd. (2)

At finite temperature scaling implies

fsT , Hd ­ AsssH 2 Hc2sT ­ 0ddddnsd1zd

3 gsssT fH 2 Hc2sT ­ 0dgnzddd . (3)
© 1996 The American Physical Society
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The location of the upper critical field vs the tempe
ture line is given by the position in the temperature-fi
plane where the free energy is singular. If we denote
singular point of the scaling functiong by xc, we obtain a
connection between the shape of the upper critical fiel
low temperatures and the critical exponents:

Hc2sTd ­ Hc2sT ­ 0d 2 xcT1ynz . (4)

The steep decrease inHc2 observed experimentally i
then a measure of the product of the dynamical crit
exponent and the correlation length exponent of
zero-temperature critical point. The scaling assump
connects the shape of the critical line to singularit
in other physical quantities. We expect the linear te
in the normal-state specific heat to have a singu
part behaving asg ø sH 2 Hc2dnsd2zd, while the ac
susceptibility acquires a singularity of the formx ø
sH 2 Hc2dnsd1zd22 as we approach the upper critical fie
at low temperatures.

To estimate the exponent which determines the sh
of the upper critical line at low temperatures we nee
more detailed picture of the critical point. Presently, th
is no microscopic theory of the superconductor-to-me
phase transition in the presence of a magnetic field in th
dimensions. To make progress we assume that at any
temperature the superconductor-to-normal-metal trans
is (weakly) first order, an assumption which is suppor
by some renormalization group calculations [11], and t
this first order line ends at zero temperature in a quan
critical point, whose existence is strongly suggested
the experimental data. Then at any finite temperat
we are dealing with the first-order melting transition
the vortex lattice, and the proximity to the second-or
zero-temperature critical point is taken into account
using a renormalized parameters in the determinatio
the melting line.

More precisely, we regard the phase transition at fin
temperatures as a (weakly first order) melting of
Abrikosov lattice of ananisotropic three-dimensiona
superconductor. Then we estimate the locus of
transition line by a modified version of the Lindema
criterion [15] that takes into account the zero-tempera
critical behavior nearHc2s0d. Our basic idea is that a
any finite temperature we can integrate out the quan
fluctuations to obtain an effective action that descri
the finite-temperature transition. After this integrati
of the quantum fluctuations is carried out the proxim
to the quantum critical point is contained solely in tw
(renormalized by quantum fluctuations ) parameters
renormalized stiffness and a renormalized Lindem
number.

We assume that melting occurs when the root m
square displacement of a vortex

p
ku2l due to thermal

fluctuations becomes of the order ofdy a quantity related
to the distance between the normal regions surroun
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nearby vortices. The square of the distance betw
the centers of the vorticeslsHd defined by (

p
3l2y2 ­

F0yH) is set by the external magnetic field. The ar
covered by normal region surrounding the core is giv
by

p
s3dl2

cy2 with lc ; lsssHc2sT dddd. The quantityd2
y ;

l2 2 l2
c vanishes asH approachesHc2:

d2
y ø l2 Hc2sTd 2 H

Hc2sT d
. (5)

Our modification of the Lindemann criteria is based
the following picture. After time averaging over man
oscillations of the vortex cores, each vortex is associa
with an area

p
3l2

cy2 1 const3ku2l of normal phase.
Melting occurs when these normal areas cover the wh
sample, that is, q

ku2l ­ ady . (6)

Herea is a dimensionless constant similar in spirit to t
Lindemann number. Based on this analogy we expec
to be smaller than 1.

We stress that this is our main assumption and is o
phenomenological nature. In Eq. (5)Hc2sT d is the upper
critical field computed without taking into account th
thermal fluctuations which are responsible for the melt
of the vortex lattice.

The thermal contribution to the root-mean-square d
placement

p
ku2l is proportional to the temperature an

inversely proportional to a typical elastic constant. F
the Abrikosov lattice this estimate is complicated by t
fact that some elastic moduli are highly nonlocal [9,1
and softer at short wavelengths than at long waveleng
At zero wave vector the bulk modulusc11s0d and the
tilt modulusc44s0d are noncritical, while the elastic she
modulus is given byc66s0d ø sHc2 2 Hd2. The expected
softening of the bulk and tilt moduli does occur at lar
wave vectors. Forq ¿ kh with kh ø sHc2 2 Hd1y2,
c44sqd ø skhyqd2c44s0d, andc11sqd ø skhyqd4c11s0d giv-
ing rise to strong infrared divergences in the evaluat
of

p
ku2l. Fortunately, the relevant estimate of the vort

lattice mean displacement taking into account the non
cality of the bulk moduli has been carried out by Bran
[12] and by Houghtonet al. [13] in the anisotropic case
They showed that asH approachesHc2 the most diver-
gent contribution to the thermal displacement has the fo
ku2l ­ B1l2k2hHc2sT dyfHc2sT d 2 Hgj3y2kT with B1 ­
fL2ycs0d44cs0d66g1y2sMzyMd1y2k

1
4p . HereM andMz are

the masses in the Landau-Ginzburg Hamiltonian,cs0d de-
note the elastic constants atq ­ 0, L is an ultraviolet cut-
off of the order of the vortex lattice zone boundary wa
vector, andk is the ratio of the penetration depth to th
coherence length. Inserting the field dependence of
q ­ 0 elastic moduli they obtained [13]

ku2l ø Bl2k2

µ
M
Mz

∂1y2 T

s Hc22H
Hc2

d3y2 , (7)
2297
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whereB is a constant equal to2.26 3 1028K21.
To obtain the melting curve, which we denoteHmsT d,

we insert Eqs. (5) and (7) into the generalized Lindema
equation (6).

The main difference between our equation and the us
Lindemann criterion which takesdy to be a noncritical
constant of the order of the magnetic length is the criti
field dependence ofdy andku2l.

Our assumption for (5), which in a more general ca
could involve an arbitrary exponent, is akin to a mea
field approximation incorporating the physics of the pro
mity to the zero-temperature critical point. Temperatu
appears explicitly in Eqs. (7) and (5) and also implicit
in Hc2sT d. This temperature dependence only introdu
analytic [proportional tosTyTcd2] corrections which are
negligible compared with the nonanalytic terms that
derive below. We therefore evaluateHc2sT d at zero
temperature and obtain an equation forHmsT d given the
value ofHc2sT ­ 0d.

HmsTd
Hc2s0d

­ 1 2

µ
T
T p

∂2y5

. (8)

A plot of (5) together with the data of Mackenz
et al. [1] in a range including two decades of reduc
temperature is shown in Fig. 1. The theoretical fit us
the valuesHc2s0d ­ 17.4 T and T p ­ 3.99 K. We
find that this estimate fits the low-temperature porti
of the data of Ref. [1] remarkably well. At highe
temperatures and lower fields the curves depart fr
this simple power law behavior, but we do not expe
our considerations to apply far from the zero-temperat
critical point. At the lowest temperatures measur
there is a hint of a crossover to a power law w
a power much closer to 1. More experimental d
with smaller error bars in the low-temperature region
needed to determine whether our theory holds in the v
low-temperature region or whether there is a relev
perturbation such as disorder which is responsible
another type of critical behavior. The theory has a fr
parameter which is the value ofa in Eq. (5). This
is very similar to the parameterc in the Lindemann
theory of melting [15]. It determines the characteris
temperatureTp via T p ø 0.44 3 108ayfk2sMzyMd1y2g.
Using the experimental values for the anisotropy ra
in Tl2Ba2CuO61d, MyMz ø 31.6 [14], and a Ginzburg
parameterk ø 200 [16], we find that our value ofTp

corresponds toa ø 0.1.
The zero point motion gives, of course, aT-independent

contribution to the mean-square displacement, wh
can be added to the right-hand side of the Lindema
criterion. If it is only weakly field dependent, it can b
considered as merely a renormalization of the core rad
or effectively a renormalization ofHc2 at T ­ 0. The
one-loop calculation of Blatteret al. shows that this is
the case [5]. We stress that once quantum correct
are explicitly included in a renormalized value ofHc2s0d,
2298
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FIG. 1. Upper critical field in tesla vs temperature. T
continuous line is given by Eq. (7) withHc2s0d ­ 17.4 T and
T p ­ 3.99, while the stars are the experimental points fro
Ref. [1]

the elastic moduli have to be recalculated in a consis
fashion so that they vanish when the field equals
renormalizedvalue ofHc2.

Other scenarios, such as the naive application of
ordinary Lindemann criterion, or the theory of Kosterlit
Thouless two-dimensional melting [10], give an expon
of 2y3 and do not agree well with the experimental dat

We now turn to the reasons why the upper-critical-fie
singularity was observed in only Refs. [1,3] and not
other high-temperature superconductors where fluctuat
are clearly important. For our considerations to be ap
cable a sharp phase transition should take place betw
the superconducting and normal phases without an in
mediate wide crossover region, the so-called “vortex l
uid regime.” In the materials we discuss in this pap
sharp resistive transitions take place. The sharpnes
due to a combination of the purity of the samples a
their strong anisotropy which eliminates the kinetic b
riers responsible for the vortex liquid phase. Disorder a
the smaller anisotropy of YBCO cause pinning and vor
entanglement which result in a new intermediate asym
totic regime, the vortex liquid, broadening the transiti
between the superconducting and the normal phases.

Our ideas relating theHc2 anomalies to a zero
temperature quantum critical point can be tes
experimentally by looking for critical behavior in specifi
heat and susceptibility measurements.

If the quantum critical point is connected to melting, w
expect that controlled addition of impurities to the sam
will result in a broadening of the transition.

The considerations in this paper are largely phenome
logical and motivated by experiments. To justify the
ideas from microscopic considerations, one is led to
problem of the quantum melting of the vortex lattice. If th
considerations presented here are correct, quantum ef
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can turn the weakly first order finite-temperature melt
transition into a continuous transition at zero temperat
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