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Low-Temperature Upper-Ciritical-Field Anomalies in Clean Superconductors
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We interpret the upper-critical-field anomalies observed in some high-temperature superconductors
as resulting from the proximity to a zero-temperature quantum critical point. We estimate the shape
of the phase boundary between the normal and the superconducting phase by modeling the zero-
temperature critical point as the second-order end point of the first-order melting line of the vortex
lattice. [S0031-9007(96)01126-X]

PACS numbers: 74.60.Ec

In two recent Letters, Mackenzeg al. [1] and Osofsky calculation of the quantum and thermal fluctuation of the
et al.[3] observed that in overdoped high-temperaturevortex lattice to one loop order.
superconductors the upper critical field can be measured at Using standard thermodynamic identities, one can re-
very low temperature and displays a very steep rise as tHate the slope of the upper-critical-field curve separating
temperature is decreased [1]. Mackeretial. studied the the normal and the superconducting phase to the change
single layer systenT1,CuOg¢+s Which is overdoped by in entropy and magnetization across the transition line:
incorporating excess oxygen, while Osofsityal. studied S, — S, dH,»
BizSI‘CuOQ. = . 1

The positive curvature of thE., vs T curve and its rapid M, — M, dT @
anomalous low temperature cannot be explained by thg the superconductor-to-metal transition is of the first
classical WHH (Werthamer-Helfand-Hohenberg) theory.order, the latent heat and the magnetization jump are
In fact, these anomalies have triggered a large numbefite. If it is second order, the left-hand side of Eq. (1)
of theoretical interpretations. Schofield and Wheatleyshould be understood as a derivative. At zero temperature
suggested that these anomalies are a manifestation resgitr = 0, M) = 0 in the normal and the superconducting
from the Luttinger liquid behavior in the normal state phases. IfS is a regular function asM approaches
[7]. Alexandrov, Bratkovsky, and Mott [8] account for the upper-critical-field line and the temperature tends
the anomalous curvature of tifé., vs 7 curves in terms  to zero, then Eq. (1) implies that the slope of the
of bipolaron superconductivity, and Brandow suggestedipper-critical-field curve vanishes at zero temperature. In
that the negative curvature is the result of pair breakinghe experiments of Refs. [1,3] the slope of the upper-
[6]. Mackenzieet al. [2] have suggested that the upper- critical-field curves diverges rather than vanishes as the
critical-field anomalies are related to a strong tempel’aturﬁgmperature approaches zero, |mp|y|ng the existence of a
dependence of the effective mass. singularity in the free energy at zero temperature, namely,

In this paper we suggest a very different origin of the up-a quantum critical point.
per critical field: the proximity to a zero-temperature criti-  Below the upper critical dimension, a second-order
cal point. We firstargue, on very general grounds, that thgransition from an Abrikosov type Il superconductor to
observed low-temperature behavior implies the existencg normal metal as a function of field is parametrized
of a thermodynamic singularity at zero temperature, whiclhy two independent exponents and z which control
we characterize in terms of two critical exponents. Thenhe divergence of a length scale and of a time scale as
we propose a simple model for the relevant combinationhe critical point is approached. The free energy per
of exponents controlling the shape of the low-temperaturgnit volume has a singular part above and below the

upper-critical-field line which agrees well with the experi- superconducting transition which behaves as
mental observations.

The microscopic considerations involve the melting of f=AH — H,)"“). (2)
the vortex lattice, a problem which has been a subject
of intense study [4]. Most of the work in this area has
concentrated on the classical statistical mechanical aspects . B _ and+)
of this problem with the exception of the recent work S(T.H) = A(H = Ho(T = 0))
by Blatter et al.[5], which carried out a microscopic X g(T[H — Ho(T = 0)]7). 3

At finite temperature scaling implies
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The location of the upper critical field vs the tempera-nearby vortices. The square of the distance between
ture line is given by the position in the temperature-fieldthe centers of the vorticesH) defined by {/312/2 =
plane where the free energy is singular. If we denote theb,/H) is set by the external magnetic field. The area
singular point of the scaling functiomby x., we obtain a covered by normal region surrounding the core is given
connection between the shape of the upper critical field dby /(3)i2/2 with 1. = I(H.,(T)). The quantityd? =

low temperatures and the critical exponents: 12 — [2 vanishes a$l approacheg/,,:
H(T) — H

_ _ _ 1/vz a2 =2 A . 5

H(T) H (T 0) x.T . (4) v H(T) )

The steep decrease iH., observed experimentally is oyr modification of the Lindemann criteria is based on
exponent and the correlation length exponent of thescillations of the vortex cores, each vortex is associated
zero-temperature critical point. The scaling assumptionyith an area+/3/2/2 + constX{(u2) of normal phase

2 .

connects the shape of the critical line to singularitiesyje|ting occurs when these normal areas cover the whole
in other physical quantities. We expect the linear termgample, that is,

in the normal-state specific heat to have a singular
part behaving asy =~ (H — H.,)"'"?, while the ac 2y = ad, . (6)
susceptibility acquires a singularity of the form = Y
(H — H.)"'?*972 as we approach the upper critical field Here « is a dimensionless constant similar in spirit to the
at low temperatures. Lindemann number. Based on this analogy we expect it
To estimate the exponent which determines the shapg be smaller than 1.
of the upper critical line at low temperatures we need a We stress that this is our main assumption and is of a
more detailed picture of the critical point. Presently, therephenomenological nature. In Eq. (B).»(T) is the upper
is no microscopic theory of the superconductor-to-metatritical field computed without taking into account the
phase transition in the presence of a magnetic field in threghvermal fluctuations which are responsible for the melting
dimensions. To make progress we assume that at any finitg the vortex lattice.
temperature the superconductor-to-normal-metal transition The thermal contribution to the root-mean-square dis-
is (weakly) first order, an assumption which is supportethlacement,/(u2) is proportional to the temperature and
by some renormalization group calculations [11], and thainversely proportional to a typical elastic constant. For
this first order line ends at zero temperature in a quanturthe Abrikosov lattice this estimate is complicated by the
critical point, whose existence is strongly suggested byact that some elastic moduli are highly nonlocal [9,12]
the experimental data. Then at any finite temperatureand softer at short wavelengths than at long wavelengths.
we are dealing with the first-order melting transition of At zero wave vector the bulk modulus;; (0) and the
the vortex lattice, and the proximity to the second-ordetiit modulus c(0) are noncritical, while the elastic shear
zero-temperature critical point is taken into account bymodulus is given by(0) = (H., — H)>. The expected
using a renormalized parameters in the determination ofoftening of the bulk and tilt moduli does occur at large
the melting line. wave vectors. Forg > kj, with k, = (He, — H)'/?,
More precisely, we regard the phase transition at finite,,(¢) =~ (k,/q)*c4(0), andci1(q) = (kn/q)*c11(0) giv-
temperatures as a (weakly first order) melting of theing rise to strong infrared divergences in the evaluation
Abrikosov lattice of ananisotropic three-dimensional of J{u?). Fortunately, the relevant estimate of the vortex
superconductor. Then we estimate the locus of thgattice mean displacement taking into account the nonlo-
transition line by a modified version of the Lindemann cality of the bulk moduli has been carried out by Brandt
criterion [15] that takes into account the zero-temperature1 2] and by Houghtoret al. [13] in the anisotropic case.
critical behavior neart{.,(0). Our basic idea is that at They showed that asl approachesi,, the most diver-
any finite temperature we can integrate out the quanturgent contribution to the thermal displacement has the form
fluctuations to obtain an effective action that describe§u2> = B\2k*{Ho(T)/[Ho(T) — HIP2kT with B, =
the finite-temperature transition. After this integration[A2/0(0)44C(0)66]1/2(Mz/M)l/zK%_ HereM andM. are
of the quantum fluctuations is carried out the proximityihe masses in the Landau_szgurg Hamiltonig) de-
to the quantum critical point is contained solely in two note the elastic constantsg@t= 0, A is an ultraviolet cut-
(renormalized by quantum fluctuations ) parameters: gtf of the order of the vortex lattice zone boundary wave
renormalized stiffness and a renormalized LindemanRector, andx is the ratio of the penetration depth to the
number. _ coherence length. Inserting the field dependence of the
We assume that melting occurs when the root mean — ( elastic moduli they obtained [13]
square displacement of a vortek(u2) due to thermal 12
fluctuations becomes of the order &f a quantity related (u?y =~ Bﬂ,g(ﬂ) _L (7)
to the distance between the normal regions surrounding M (%)3/2
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whereB is a constant equal 226 X 103K,

To obtain the melting curve, which we dendig,(T),
we insert Egs. (5) and (7) into the generalized Lindemann
equation (6). 140 L

The main difference between our equation and the usual
Lindemann criterion which taked, to be a noncritical
constant of the order of the magnetic length is the critical 12,0 |
field dependence af, and(u?).

Our assumption for (5), which in a more general case ¢
could involve an arbitrary exponent, is akin to a mean- 10 ¢
field approximation incorporating the physics of the proxi-
mity to the zero-temperature critical point. Temperature
appears explicitly in Egs. (7) and (5) and also implicitly 8or
in H,(T). This temperature dependence only introduces
analytic [proportional to(T/T.)?] corrections which are

Hec2 (T) vs T (K)

2 (T)

negligible compared with the nonanalytic terms that we “0.0 0.2 04 0.6 08 1.0
derive below. We therefore evaluaté.,(T) at zero T
temperature and obtain an equation #y(7) given the FIG. 1. Upper critical field in tesla vs temperature. The
value of H.,(T = 0). continuous line is given by Eq. (7) witHc2(0) = 17.4 T and
2/5 T* = 3.99, while the stars are the experimental points from
Hm(T) -1 - <l> (8) Ref. [1]
HCZ(O) T

the elastic moduli have to be recalculated in a consistent
A plot of (5) together with the data of Mackenzie fashion so that they vanish when the field equals the
et al.[1] in a range including two decades of reducedrenormalizedvalue ofH,,.
temperature is shown in Fig. 1. The theoretical fit used Other scenarios, such as the naive application of the
the valuesHc2(0) = 174 T and T* = 399 K. We ordinary Lindemann criterion, or the theory of Kosterlitz-
find that this estimate fits the low-temperature portionThouless two-dimensional melting [10], give an exponent
of the data of Ref.[1] remarkably well. At higher of 2/3 and do not agree well with the experimental data.
temperatures and lower fields the curves depart from We now turn to the reasons why the upper-critical-field
this simple power law behavior, but we do not expectsingularity was observed in only Refs. [1,3] and not in
our considerations to apply far from the zero-temperatur@ther high-temperature superconductors where fluctuations
critical point. At the lowest temperatures measuredare clearly important. For our considerations to be appli-
there is a hint of a crossover to a power law withcable a sharp phase transition should take place between
a power much closer to 1. More experimental datahe superconducting and normal phases without an inter-
with smaller error bars in the low-temperature region ismediate wide crossover region, the so-called “vortex lig-
needed to determine whether our theory holds in the veryid regime.” In the materials we discuss in this paper
low-temperature region or whether there is a relevansharp resistive transitions take place. The sharpness is
perturbation such as disorder which is responsible fodue to a combination of the purity of the samples and
another type of critical behavior. The theory has a fregheir strong anisotropy which eliminates the kinetic bar-
parameter which is the value af in Eq. (5). This riers responsible for the vortex liquid phase. Disorder and
is very similar to the parameter in the Lindemann the smaller anisotropy of YBCO cause pinning and vortex
theory of melting [15]. It determines the characteristicentanglement which result in a new intermediate asymp-
temperaturel™ via T* =~ 0.44 X 108a/[x2(M./M)"/?].  totic regime, the vortex liquid, broadening the transition
Using the experimental values for the anisotropy ratiobetween the superconducting and the normal phases.
in T1,Ba;CuOg+s, M/M, = 31.6 [14], and a Ginzburg Our ideas relating theH., anomalies to a zero-
parameterx = 200 [16], we find that our value off* temperature quantum critical point can be tested
corresponds ta = 0.1. experimentally by looking for critical behavior in specific
The zero point motion gives, of courseTandependent heat and susceptibility measurements.
contribution to the mean-square displacement, which If the quantum critical point is connected to melting, we
can be added to the right-hand side of the Lindemanexpect that controlled addition of impurities to the sample
criterion. If it is only weakly field dependent, it can be will result in a broadening of the transition.
considered as merely a renormalization of the core radius, The considerations in this paper are largely phenomeno-
or effectively a renormalization ofi., at T = 0. The logical and motivated by experiments. To justify these
one-loop calculation of Blatteet al. shows that this is ideas from microscopic considerations, one is led to the
the case [5]. We stress that once quantum correctiongroblem of the quantum melting of the vortex lattice. If the
are explicitly included in a renormalized value Bf,(0),  considerations presented here are correct, quantum effects
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