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Molecular Dynamics Simulation of Spinodal Decomposition
in Three-Dimensional Binary Fluids
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Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three
dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary
fluids reaches a viscous scaling regime with a growth exponentn ­ 1, in agreement with experiments
and a theoretical analysis for viscous growth. [S0031-9007(96)01177-5]
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The dynamics of phase separation in multicompon
fluids involves very rich and general phenomena and
therefore been the subject of intensive studies in rec
years. The dynamics of first-order phase transitions
general, besides being of technological importance
particularly interesting because of the emergence of
characteristic length scaleRstd during the late times of
the dynamics.Rstd is related to the average domain si
of the ordering phase and displays a simple power-
dependence with timeRstd , tn, wheren is the growth
exponent. The presence of one characteristic length s
during the late times leads to an interesting dynam
scaling behavior, as can be detected from the dens
fluctuation pair-correlation functionGsr, td ­ gfryRstdg,
or the structure factorSsq, td ­ RstddFsxd, where d is
the spatial dimension andx ­ qRstd is the scaled wave
vector [1].

Whereas the dynamics of phase separation in allo
with conserved order parameter, is quite well understo
in terms of the Lifshitz-Slyozov theory [2] and is cha
acterized by a growth exponentn ­ 1y3, independent of
spatial dimension, volume fraction [1], and even the nu
ber of coexisting phases [3], the dynamics in fluids is
more complicated phenomenon due to the coupling of
additional velocity field (which is absent in alloys) to th
ordering field. Consequently various competing effe
may appear in phase-separating fluids leading to var
growth exponents depending on the strength of the c
pling between the velocity field and the ordering field,
the volume fraction [4–6], on the spatial dimension, a
even on the number of components [7].

There is no satisfactory theory for the phase separa
dynamics in fluids. Thus our understanding of the ph
nomenon is achieved essentially through numerical s
ies and dimensional analysis of the relevant dynam
model. Using heuristic arguments, Siggia [4] was the fi
to propose that the growth exponent isn ­ 1 in phase-
separating binary fluids with relatively comparable vo
ume fractions of the two components. This growth regi
is due to an instability of the tubular domain structure
binary fluids, leading to the transport of material from t
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necks to the bulges. The numerical studies of the p
nomenon are mainly carried out by means of three dif
ent methods: numerical integration of the correspond
kinetic phase-field model known as model H [8]; lattic
Boltzmann (LB) simulations [9]; and molecular dynam
ics (MD) simulations [10]. In contrast to the first tw
methods, in a molecular dynamics simulation, the hyd
dynamic modes arise naturally from the microscopic
teractions between the molecules subsequent to a qu
into the fluid phase. There have been some concerns
regard to the validity of molecular dynamics in studyi
the late-time dynamics of phase separation due to the
small time scale involved. It should be noted that ph
separation in simple fluids is naturally a very fast proce
Therefore in order to probe the dynamics, experimenta
must perform very shallow quenches using the advan
of the increased time scale due to critical slowing dow
In contrast, quenches are very deep in a typical molec
dynamics simulation.

The numerical integration of model H leads to
asymptotic growth exponentn ­ 1, in agreement with
Siggia’s prediction. LB simulations also find the sam
result [9]. However, a recent MD simulation on th
two-component Lennard-Jones potential by Maet al. [10]
suggests a growth regime with an exponent very clos
2y3. As we will see later, such an exponent is due
inertial effects and can be calculated from dimensio
analysis. A more recent model H simulation by Lookm
et al. [11] finds that by decreasing the shear viscos
of the fluid, a growth exponent ofn ­ 2y3 can be
observed. We are therefore faced with the probl
that whereas numerical simulation calculations in
case of phase separation in alloys agree with the
oretical predictions, numerical simulations which a
expected to most faithfully describe the true dynam
i.e., molecular dynamics simulations, are not in agr
ment with theoretical predictions in the case of ph
separation in binary fluids. In order to elucidate this a
parent discrepancy between the previous numerical stu
and the MD simulations of Maet al.,we have carried out a
large-scale and systematic molecular dynamics simula
© 1996 The American Physical Society 2253
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of the two-component Lennard-Jones model and fou
results which disagree with the MD simulation of M
et al. but are fully consistent with experiments and pr
vious model H and lattice-Boltzmann simulations. It
worth noting that the present study is the first large-sc
MD simulation on three-dimensional binary fluids
which the viscous regime is observed.

In our simulation model, we considerN monoatomic
molecules interacting through the following two
component Lennard-Jones potential:

Uai ,aj
srijd ­ 4e

Ω∑µ
s

rij

∂12

2

µ
s

rij

∂6∏
2

∑µ
s

rc
aiaj

∂12

2

µ
s

rc
aiaj

∂6∏æ
3 usrc

ai ,aj
2 rijd , (1)

with ai ­ 1 if i is an A molecule, andaj ­ 2 if i is a
B molecule. In Eq. (1),rij is the distance separating th
ith molecule from thejth molecule, andrc

aiaj
is a cutoff

distance which is equal to2.5s for ai ­ aj and 21y6s

for ai fi aj. usxd is the standard Heaviside function
The phase diagram of this model, which has recently b
calculated by means of mean field theory and Monte Ca
simulation, has a consolute point atTc , s4.7 6 0.2de for
a fluid density ofr ­ 0.8s23 [12]. We have performed
critical quenches at temperatureskBT ­ 2, 3, 3.5, 3.75,
and 4e as well as off-critical quenches atkBT ­ 2e.
Notice that we have not made quenches to very l
temperatures in order to avoid the solid-gas coexiste
region. The temperature is controlled by a Nosé-Hoo
thermostat [13], and the Hamilton equations are integra
using the leap-frog algorithm with a time step ofDt ­
0.005t where the time scale ist ­

p
ms2ye, m being

the molecular mass. In all of our simulations, t
total number of molecules isN ­ 343 000, an order of
magnitude larger than the largest system size consid
by Ma et al. [10]. Our simulations were performe
on an IBM SP2 parallel machine using 12 processo
Furthermore, a statistical average is performed for e
quench; 16 runs forkBT ­ 2e and 4 runs for all other
quenches.

We have calculated the correlation functionGsr, td ­
kfsr, tdfs0, tdl, wherefsr, td ­ frAsr, td 2 rBsr, tdgyr

is the order parameter andrA and rB are the local den-
sities of the two components. We have also calcula
the structure factorSsq, td ­ kjf̃sq, tdj2lyV , wheref̃sqd
is the Fourier-mode of the order parameter andV is the
system volume. Both the structure factor and the corr
tion function are then spherically averaged. The aver
domain size is then defined as the first zero of the corr
tion functionRGstd and as thenth moment of the structure
factorRnstd ­ 2pf

R
dqSsq, tdy

R
dqqnSsq, tdg1yn.

The time evolution of the pair-correlation function
shown in the inset of Fig. 1 for a quench atkBT ­ 2e.
The presence of the decaying oscillations inGsr , td in-
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dicates the occurrence of phase-separated domains w
are correlated within short distances, due to the conse
tion of the ordering field. The first zero of the correlatio
function increases with time implying a coarsening of t
domain structure. We have verified that the system
reached a dynamical scaling regime by observing the s
ing of the correlation function, shown in Fig. 1, for time
larger than aboutt ­ 80t. Good scaling is also observe
in the structure factor (not shown). The presence o
unique length scale in the system at late times implies
the width of the interfaces become vanishingly small co
pared to the domain size. As a result, the structure fa
should scale asq2sd11d for large q, which is known as
Porod’s law and is usually observed in phase-separa
systems at late times. Indeed we found that the struc
factor is consistent with Porod’s law, implying that th
phase separation process in our simulations is well wit
a dynamical scaling regime.

Now that we are confident that the systems we
dealing with in our simulations are safely within a scali
regime, we turn to the discussion of the nature of
growth law. In Fig. 2, the time dependence of the aver
domain size, as calculated from the various definitions
shown. Notice the linear dependence ofRstd at late times
indicating that the growth regime should be viscous,
agreement with Siggia’s prediction [4]. However, wh
plotting the data in a double-logarithmic plot, we fin
that the late-time growth exponent is more consistent w
2y3, possibly indicating that the observed growth regim
is inertial, as suggested by the MD simulation of M
et al. [10]. It should be pointed out, however, that th
growth law Rstd ­ Rs0d 1 at investigated over a finite
time range may show a growth exponent which is sma
than one due to a nonnegligible value ofRs0d and possible
other nonalgebraic dependences.

FIG. 1. Scaled pair-correlation functiongsxd versus the scaled
distancex ­ ryRstd for a quench atkBT ­ 2e. The data
shown range fromt ­ 80t to 220t. The inset shows the time
evolution of the correlation function fromt ­ 20t to 220t in
steps of20t.
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FIG. 2. The average domain size as a function of time
a quench atkBT ­ 2e. RGstd is the first zero of the pair-
correlation function, andR1std is calculated from the first
moment of the structure factor. The two dots indicate
typical size of the error bars in the numerical data, and
two dotted lines are straight lines.

In order to determine the true asymptotic growth la
we have to consider the relevant dynamical model a
analyze our results in light of its implications. Th
dynamics of phase separation in fluids can be descr
by the so-called model H [14], corresponding to
generalized Cahn-Hilliard equation coupled to the Navi
Stokes equation. The appropriate dynamical equat
can then be written as follows:

≠fsr, td
≠t

1 v ? =fsr, td ­ M=2 dF hfj
dfsr, td

, (2)

r

∑
≠vsr, td

≠t
1 fvsr, td ? =gvsr, td

∏
­ h=2vsr, td

2 =psr, td 2 fsr, td

3 =
dF hfj
dfsr, td

, (3)

where fsr, td, vsr, td, and psr, td are the local order
parameter, the velocity field, and the pressure fie
respectively. The constantsM, r, and h correspond to
the order parameter mobility, the fluid density, and t
shear viscosity, respectively.F is the usualf4 free
energy functional [1]. The difference between Eq. (
and the usual Cahn-Hilliard equation is the presence
the second term on the left-hand side, which accounts
the transport of the order parameter by the velocity fie
Equation (3) is different from the usual Navier-Stok
equation by the presence of the additional force act
on the fluid due to gradients in the chemical potential.

The set of equations (2) and (3) is very difficult
solve, but one can obtain various growth regimes
means of simple dimensional analysis. Here we will lim
ourselves to three dimensions. At relatively early tim
but late enough so that the domains are well defined
much larger than the interfacial width, the velocity field
or
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decoupled from the order parameter leading to the us
Lifshitz-Slyozov growth law usually observed in alloy
Rstd , sMgtd1y3, whereg is the interfacial tension [2].
This regime will be referred to as the diffusive regim
At later times, the coupling betweenf and v cannot be
neglected but the inertial term in Eq. (3), can be neglec
so thatv becomes slaved byf. One thus obtains the
following growth law, Rstd , sgtyhd, which will be
associated with a viscous regime and has been pred
by Siggia [4] as a consequence of a necking-do
instability of the tubular (interconnected) domain structu
due to the transport of material from the necks to
bulges. This regime has been observed in several sim
binary fluids and binary homopolymer blends [15,16]
well as in numerical simulations [8,9]. At even lat
times, the inertial term in the Navier-Stokes equation c
no longer be neglected, and one finds the growth law
the inertial regimeRstd , sgyrd1y3t2y3 [5]. The two last
regimes can be observed only for interconnected dom
structures. For dilute binary solutions, the domains
dropletlike, and the domain growth is essentially due
their coalescence leading to a growth lawRstd , t1y3, but
with a prefactor which is larger than that in the diffusiv
regime. The inertial regime has not been observed exp
mentally, but it has been observed in several numer
simulations in two dimensions [9,17,18]. Introducing tw
time scales,ty ­ sgyhdt and ti ­ sgyrd1y3t2y3 for the
viscous regime and the inertial regime, respectively,
ty dependence (ti dependence) ofRstd during the viscous
(inertial) regime must be linear and independent of
quench depth, except maybe for interference withRs0d.

We have therefore calculated, by molecular dyna
ics simulations, the interfacial tensiong and the shear
viscosity h for the various quench temperatures cons
ered in the present study. We obtain a shear visc
ity which is practically independent of temperature a
equal toh ­ 1.65. However, the interfacial tension i
found to decrease with temperature, almost linearly fr
s1.85 6 0.07deys2 for kBT ­ 2e to s0.39 6 0.13deys2

for kBT ­ 4e, since the present model belongs to t
Ising universality class ind ­ 3. In Fig. 3(a), Rstd is
plotted versusty ­ sgtyhd, and in Fig. 3(b),Rstd is plot-
ted versusti ­ sgyrd1y3t2y3 for all quench temperatures
Although the data are almost linear withti for all tem-
peratures, the slope ofRstd versusti depends strongly on
T , whereas the slope ofRstd versusty is independent of
temperature. This, therefore, strongly indicates that
growth regime found in this system cannot be inertial,
contrast to the prediction by Maet al. [10], but in agree-
ment with the other numerical studies and experime
In our simulations, dynamical scaling is observed sta
ing from t ­ 80t at the lowest quench temperatures.
higher temperatures, the scaling regime is delayed to l
times. This is to be contrasted to the study of Maet al.,
in which it was found that the scaling regime starts
early as20t [10]. Of course, the fact that we did no
2255
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FIG. 3. The average domain size as a function ofty ­
sgyhdt. Data lines from bottom to top correspond tokBT ­
2e, 3e, 3.5e, 3.75e, and 4e, respectively. For the sake o
clarity, data have been shifted vertically upward. (b) T
average domain size as a function ofti ­ sgyrd1y3t2y3. Data
from top to bottom correspond tokBT ­ 2e, 3e, 3.5e, 3.75e,
and4e, respectively.

observe an inertial regime does not disprove the prese
of this regime at even later times, as predicted by the s
ing analysis. The inertial regime has been observed
previous numerical studies in two dimensions [11,17], a
in a recent model H simulation in three dimensions [1
In order to detect such a regime, we must simulate m
larger systems.

Another reason, making us even more confident that
dynamical regime found in the present study is viscous
the value of the prefactor of the growth law in terms
ty. Siggia predicted that this prefactor is 0.6, whereas
Miguel, Grant, and Gunton [6] find that it should be 0.2
from a linear stability analysis of the tubular structur
However, a detailed experimental study by Guenounet al.
finds that the prefactor is0.138 6 0.006 [16]. In our
simulation we find the prefactor to be0.11 6 0.01, which
is very close to the experimental value of Guenounet al.,
but disagrees with the two theoretical predictions whi
however, are quite crude in nature. The differen
between the value of our prefactor and that of Gueno
et al. might be due to the finite size of our system
leading to a cutoff of the long-range hydrodynam
modes. Indeed, one expects that this prefactor decre
linearly with 1yL from its thermodynamics-limit value
[19]. Moreover, we found that the prefactor ofty is
independent of volume fraction for quenches at volu
fractions around 0.5. However, for volume fractio
smaller than about 0.3, we found a growth expon
consistent with 1y3. We note that recently Nikolaye
et al. have predicted that a sharp transition from t
viscous growth to coalescence-dominated growth occ
at a volume fraction around 0.3 [20].

In conclusion, we have performed a large-scale s
tematic molecular dynamics study of the phase sep
2256
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tion dynamics in binary fluids in three dimensions whic
faithfully accounts for hydrodynamic modes. During la
times, the system reaches a dynamical scaling regime
ing which the average domain size grows linearly w
time in agreement with Siggia’s prediction, previous n
merical integration of model H, and lattice-Boltzman
simulations. The discrepancy with a previous molecu
dynamics study has been clarified.
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