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Perturbation Theory for Classical Solids
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The first well founded perturbation theory for classical solid systems is presented. Theoretical
approaches to thermodynamic and structural properties of the hard-sphere solid provide us with the
reference system. The traditional difficulties of all previous approaches are overcome. The perturbation
is a first order term in an expansion of the Helmholtz free energy functional instead of an additive
hocterm and the proper solid reference structure is used instead of some kind of mapping into the fluid
structure at some effective density. As the theory reduces to the usual liquid perturbation theory in the
uniform limit, it can describe consistently the complete phase diagram. Excellent results are obtained
when applied to different model systems. [S0031-9007(96)01105-2]

PACS numbers: 64.60.—, 64.70.Dv, 64.70.Kb

In the last two decades, we have witnessed a continuowgphere solid [4]. At present, there are different functional
progress in the theory of nonuniform classical fluids [1,2].approaches for the Helmholtz free energy which describe
Inside this context, where classical solids are regardethe solid phase and reduce to that of the fluid in the homo-
as an extremely nonuniform system, a considerable effogeneous limit [2]. Recently, it has been showed that the
has been devoted to develop a theory for solids. Fronequation of state obtained from these functionals repro-
this point of view, the theory would provide not only a duces the simulation results quite well even up to almost
description of solids but a unified view of classical systemslose packing [5]. For all that, the thermodynamics of the
[2]. However, due to the inherent difficulties in the hard-sphere system can be accurately described from low
nonuniform systems, this progress is still not comparabl@ensities to almost close packing, including the crystalliza-
to that reached in uniform liquids. tion phase transition.

An important part of the enormous progress of the the- However, up to very recently, there was neither an
ory of simple uniform liquids has been due to the devel-accessible theoretical approach to the structural properties
opment of perturbation theories. Within this scheme, thef the hard-sphere solid nor a proper perturbation theory
liquid properties are described by those of a reference sy$6]. All the perturbation approaches proposed by different
tem (usually built with the repulsive part of the interac- authors, two of us included, are rather primitive [7—9].
tion potential) modified by a perturbation (usually due toBasically, they follow the same scheme: the Helmholtz
the attractive part of the interaction potential). The usefree energy of the solid is written as a sum of two terms,
fulness of these theories is based on the knowledge afamely, the reference and perturbation free energies. The
the thermodynamic and structural properties of the referformer is assumed to be any of the available density
ence system. The foremost, if not the unique, referenctunctionals for the free energy of the hard-sphere solid
system is the hard-sphere fluid, which describes many ofhile the perturbation is aad hocterm built without any
the essential features of realistic interacting repulsive poeonnection with the hard-sphere potential which is being
tentials. For this reason, much effort has been devotedssumed as the reference potential. Furthermore, the
to understanding its properties. Nowadays, the virial exstructure of the reference hard-sphere solid is substituted
pansion, the analytically solvable Perkus-Yevick approxin the perturbative term by some kind of mapping into the
imation and semiempirical approximations supply quitestructure of the hard-sphefleid at some effective density.
accurate results for thermodynamics and structure up to theypically, the Anderseret al. (WCA) criterium is used
crystallization density [1]. The seminal article by Ander-to divide the interacting potential, whereas the Barker-
senet al. [3] establishes the relation between the propertiesienderson criterium [1,10] is used to fix the hard-sphere
of a hard-sphere fluid and those of realistic repulsive interdiameter of the reference solid. To worsen things, the
actions, completing the scheme of the perturbation theorBarker-Henderson criterium does not distinguish uniform
for simple liquids. from nonuniform systems. Any intent to do a consistent

The same strategy has been pursued in the solid phaspproach gives disastrous results.
of classical systems. The aims of the theory are essen- In spite of the crudeness and the fragility of these
tially two: the formal development of the theory itself and approaches, all pieces assembled achieved to describe
the determination of accurate thermodynamic and struche phase diagram of the Lennard-Jones system reason-
tural properties of the reference system. To this end, thably well [8]. This success is not completely understood
density functional formalism has been successfully elabothough some clues have been suggested [9]. It seems
rated to describe thbermodynamiproperties of the hard- that for large-ranged attractive interactions some kind of
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numerical error cancellation should occur. When they ar@mecessary. The procedure is analogous to that of the the-
applied to systems with slightly more sophisticated po-ory of liquids. Lete(r;,r;) = exp(—B¢Ir; — ry|) be the
tentials, they merely give a qualitative description of theBoltzmann factor. It depends only ony,, but for clear-
thermodynamic properties or even fail completely. Thisness in some of the expressions below it is convenient to
is what happens when short-ranged attractive interactiorieeep the formal dependence on the two locatipnand
are present. In any case, these theories are far from beimg. As in the liquid theory, lee(ry, ry) be the blip func-
satisfactory. tion, i.e., the difference of the Boltzmann factors of the
The first step in order to develop a proper theory ofreference potential and the hard-sphere potential of diam-
perturbations for solids has been carried out recently bgterdys, e, (Ir; — r2]) — ens(lr; — ra2]). If this diame-
determining theoretically the averagdr) of the pair ter is comparable to the range of the reference potential,
distribution function p@(r;,r;) [6]. This average is the blip function is different from zero in a small range of
defined by the order ofédys with ¢ < 1. We can then expand the

1 ) Helmholtz free energy functional of the reference system
g(rip) = Wf dQ[ drip@(ri,r2), (1) in powers of the blip function

whereV is the volume,p is the mean density, and() F.[p(r)] = Fus[p(r)]
the differential solid angle aperture around. Excellent 1 8Fus[p ()]
results are obtained for the hard-sphere solid up to almost + = | dry | dro———Ae(r, 1)

_ 2 dens(ry,r2)
close packing.

In this Letter, we develop a perturbation theory where, + higher-order terms (6)

to first order, all the structural information needed is pre- ) o

cisely the functiong(r). As it is usually done in pertur- The functional derivative of the Hel'mholt'z free energy
bation theories for uniform liquids, we divide the interact- With respect to the Boltzmann factor is easily obtained
ing potential into the reference and the perturbative parts: _LOF[p(r)] _ 1

#(r) = ¢.(r) + ¢,(r). Then, we start from the general Se(ri,ry) 2 p(r)p2)y(re, 1), (7
expression for the Helmholtz free energy of a nonuniform

system as a functional of the densityr) which is written Wwhere they (rl’r?) fun'ction Is the generaljzation of thg
exactly as [4,11] y(r12) function in uniform systems. This last one is

defined bye #¢(2)g(r},), whereas the former is defined

Flp(r)] = F,[p(r)] + F,[p(r)], (2)  py e(rl,r2);’£:(;p"(ré)). Introducing Eq. (7) into Eq. (6) and
beingF,[ p(r)] the Helmholtz free energy of the reference after some simple algebraic steps, it is found that
system at density (r) and F,[p(r)] = Fus[p(r)]

1 1

= — (2 .

Fﬂ[p(r)] 2 L daf drl erP (rlers a)¢]7(r12)9 + 277pr dr rzj}HS(r)Ae(r)

3)

where « is the coupling parameter for the interaction
potential ¢(r; @) = ¢,(r) + a¢,(r) and pP(r;,ry;)  wheregys(r) is the average of theys(ri,rz) function
is the pair distribution function when the potential is which can also be expressed as

;) but the density i®(r). To lowest order, Eq. (3 - .
gz Vi) %@ Fus(r) = extBous(r)]gns(r).

1 @ Until here, the hard-sphere diameter has remained arbi-

Fyplp(r)] = E[ drydryp,”(r1,12)$,(r12), (4 trary. Now we specify it by imposing that the first order
term in the functional expansion Eg. (8) be zero. This
yields

+ higher-order terms (8)

which after an appropriate integration becomes exactly

Flp()] = 2mpN [ dr %, (Ng,(r),  (5) f " dr us(r) = j " dr 2us(r) exd B, ()] (9)
dus 0

whereN is the number of particles anglr) is precisely  Notice that it is analogous to the well known WCA
the average of the pair distribution function given by criterium [3] in liquid theory except that thg(r) function

Eq. (1). Forany realistic system, the reference interactinghstead of they(r) function is used. From Egs. (6) and
potential is chosen to describe the rapidly varying short(7) and after averaging, we find

ranged repulsive part of the interacting potential. How- N N .

ever, the thermodynamic and structural properties of these yr(r) = yus(r) + higher-order terms (1)
systems are unknown. Therefore, a treatment to relatehich can be used to lowest order to evaluate the
these properties to those of a hard-sphere solid is evidentlyerturbation term Eg. (5). It is interesting and easy to
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prove that, if Eq. (9) holds, the convergence properties of 3 I I I I I T
the expansions (8) and (10) are similar to those found in
the uniform limit [12], i.e.,
Fylp(0)] = Fus[p(®)] &
+ 277'pr dr r*yus(r)Ae(r) oL
w
~
+0(£Y, (11) o .
5,() = Sus(r) + 0(&). (12) s
With the above expressions the theoretical formalism is ’
completed. It is straightforward to see that in the uniform 1 b
limit the theory reduces to the WCA perturbation theory
of simple liquids. Observe also that all the problems of [ .- T
previous approaches are automatically overcome: the for- 05 | | ! | L L
malism provides a proper expansion of the free energy 07 08 09 1 1.1 12 1.3 14

with precise thermodynamic and structural properties of pd3
a reference solid, namely, any of the functionals for the HS

Helmholtz free energy and the correlation functigfr), FIG. 1. Phase diagram of the square well system for the well
and the criterium to determine the appropriate referenc#idth §/dys = 0.02. The temperature is given in well depth

; units. The solid line is the prediction of the present theory.
system enhances the convergence of the expansion. he dashed line corresponds to the simulations by Bolhuis and

We have applied the theory to the Lennard-Jones (Lgrenkel [15]. The dotted line is the prediction of the PWDA.
system and to an extremely short-ranged square well po-

tential. In Table | we show the LJ liquidp() and solid
(ps) densities at coexistence at several temperatures (all1 in Table I. H he i int is th
in LJ parameter units) obtained from the present theory? own In Table |. However, the important point is that,

using the Tarazona functional [13] for the reference hardfor, the first time, & classigal system can be studied with a
ynique, proper, and consistent theory.

sphere solid, compared to simulation data of Hansen an Much ! X h | btained by th
Verlet [14]. The theoretical predictions are quite good MUCh more impressive are the results obtained by the

and the small deviations are quantitatively similar to those€ory when it is applied. to a system With an extremely
obtained by previousd hocapproaches. Nevertheless, short-ranged attractive interaction. Simulation results
contrary to what it is predicted by the latter, the presenpaye r_ecently_pro_ved [15] that th's. kind .Of system presents
theory gives the correct slopes of the coexistence densfluite interesting isostructural solid-solid transitions. Up
ties as functions of the temperature. This improvement i& NOW. as one could expect, no theory had been able

undoubtfully due to the adequate dependence of the hard2 9ive @ reasonable quantitative account of this behavior
sphere diameter with the density. Table | also shows ther6:17]- Therefore, these systems offer an interesting and

solid Lindemann parameter at coexistence. It is signifi—szingegt_ test for :hﬁ present the(l)lry. Figgrle iShOWS‘.ch
cantly smaller than the simulation result. This is due tgP"@S€ diagram o the square well potentia ¢ aracterlze
y ?y a short widths /dys = 0.02. The dashed lines of this

the functional approach we have used for the referenc i . .
PP igure, which correspond to simulation results [15], show

hard-sphere solid, as it is well known. If any other func- n , densit f the liquid-solid "
tional were used, the Lindemann parameter would im{N€ coexistence densities of the liquid-solid transition

prove but no significant changes would be detected fof"d: inside of the solid region, the coexistence curve

the energies and, therefore, for the coexistence densiti&l the solid-solid transition. Observe that, due to the
weakness of the attractive potential, there is no fluid

TABLE I. Lennard-Jones liquid) and solid p,) densities c_ondensati'on. Howevgr, the'solid-'solid transitiqn is a
at coexistence at several temperatures (all in Lennard-Jonddnd of solid condensation which arises from a different
parameters units) as predicted by the simulations of Hansen armdechanism than the usual fluid condensation. It is related
Verlet [14] and the present theory. The Lindemann parametefo the commensurability of the lattice parameter of the
L of the solid phase at coexistence is also shown. solid structure with the well width of the potential
Simulation Theory [15,16]. The dotted lines correspond to the perturbation
ksT pi s L i Py L weighted density approximation (PWDA) [9,16] which
was, to our knowledge, the best approach so far able to
describe the complete phase diagram of this system. The
iég 8322 igég 8123 8332 18‘713 8823 continuous lines cprrespond to the present theory using
274 1113 1179 0140 1116 1199 0.090 the Tarazona functional [13] for the reference hard-sphere
solid. The results using any other functional would be

0.75 0875 0973 0.145 0.884 0.970 0.087
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