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The first well founded perturbation theory for classical solid systems is presented. Theoretical
approaches to thermodynamic and structural properties of the hard-sphere solid provide us with the
reference system. The traditional difficulties of all previous approaches are overcome. The perturbation
is a first order term in an expansion of the Helmholtz free energy functional instead of an additivead
hoc term and the proper solid reference structure is used instead of some kind of mapping into the fluid
structure at some effective density. As the theory reduces to the usual liquid perturbation theory in the
uniform limit, it can describe consistently the complete phase diagram. Excellent results are obtained
when applied to different model systems. [S0031-9007(96)01105-2]

PACS numbers: 64.60.–i, 64.70.Dv, 64.70.Kb
o
2
d
fo
o
a
m
e
b

e
th

c
t
e

e
n

p
t

x
it

r
ie
e
o

e
d
u
t
b

nal
ribe

o-
the
ro-
ost
he
low

za-

an
rties
ory

ent
9].
ltz
s,

The
sity
lid

ing
the
ted

he
.

er-
ere
the
rm
nt

se
cribe
son-
od
ems
of
In the last two decades, we have witnessed a continu
progress in the theory of nonuniform classical fluids [1,
Inside this context, where classical solids are regar
as an extremely nonuniform system, a considerable ef
has been devoted to develop a theory for solids. Fr
this point of view, the theory would provide not only
description of solids but a unified view of classical syste
[2]. However, due to the inherent difficulties in th
nonuniform systems, this progress is still not compara
to that reached in uniform liquids.

An important part of the enormous progress of the th
ory of simple uniform liquids has been due to the dev
opment of perturbation theories. Within this scheme,
liquid properties are described by those of a reference s
tem (usually built with the repulsive part of the intera
tion potential) modified by a perturbation (usually due
the attractive part of the interaction potential). The us
fulness of these theories is based on the knowledge
the thermodynamic and structural properties of the ref
ence system. The foremost, if not the unique, refere
system is the hard-sphere fluid, which describes many
the essential features of realistic interacting repulsive
tentials. For this reason, much effort has been devo
to understanding its properties. Nowadays, the virial e
pansion, the analytically solvable Perkus-Yevick appro
imation and semiempirical approximations supply qu
accurate results for thermodynamics and structure up to
crystallization density [1]. The seminal article by Ande
senet al. [3] establishes the relation between the propert
of a hard-sphere fluid and those of realistic repulsive int
actions, completing the scheme of the perturbation the
for simple liquids.

The same strategy has been pursued in the solid ph
of classical systems. The aims of the theory are ess
tially two: the formal development of the theory itself an
the determination of accurate thermodynamic and str
tural properties of the reference system. To this end,
density functional formalism has been successfully ela
rated to describe thethermodynamicproperties of the hard-
0031-9007y96y77(11)y2249(4)$10.00
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sphere solid [4]. At present, there are different functio
approaches for the Helmholtz free energy which desc
the solid phase and reduce to that of the fluid in the hom
geneous limit [2]. Recently, it has been showed that
equation of state obtained from these functionals rep
duces the simulation results quite well even up to alm
close packing [5]. For all that, the thermodynamics of t
hard-sphere system can be accurately described from
densities to almost close packing, including the crystalli
tion phase transition.

However, up to very recently, there was neither
accessible theoretical approach to the structural prope
of the hard-sphere solid nor a proper perturbation the
[6]. All the perturbation approaches proposed by differ
authors, two of us included, are rather primitive [7–
Basically, they follow the same scheme: the Helmho
free energy of the solid is written as a sum of two term
namely, the reference and perturbation free energies.
former is assumed to be any of the available den
functionals for the free energy of the hard-sphere so
while the perturbation is anad hocterm built without any
connection with the hard-sphere potential which is be
assumed as the reference potential. Furthermore,
structure of the reference hard-sphere solid is substitu
in the perturbative term by some kind of mapping into t
structure of the hard-spherefluid at some effective density
Typically, the Andersenet al. (WCA) criterium is used
to divide the interacting potential, whereas the Bark
Henderson criterium [1,10] is used to fix the hard-sph
diameter of the reference solid. To worsen things,
Barker-Henderson criterium does not distinguish unifo
from nonuniform systems. Any intent to do a consiste
approach gives disastrous results.

In spite of the crudeness and the fragility of the
approaches, all pieces assembled achieved to des
the phase diagram of the Lennard-Jones system rea
ably well [8]. This success is not completely understo
though some clues have been suggested [9]. It se
that for large-ranged attractive interactions some kind
© 1996 The American Physical Society 2249
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numerical error cancellation should occur. When they
applied to systems with slightly more sophisticated p
tentials, they merely give a qualitative description of t
thermodynamic properties or even fail completely. Th
is what happens when short-ranged attractive interacti
are present. In any case, these theories are far from b
satisfactory.

The first step in order to develop a proper theory
perturbations for solids has been carried out recently
determining theoretically the averagẽgsrd of the pair
distribution function rs2dsr1, r2d [6]. This average is
defined by

g̃sr12d 
1

4pVr2

Z
dV

Z
dr1rs2dsr1, r2d , (1)

whereV is the volume,r is the mean density, anddV

the differential solid angle aperture aroundr12. Excellent
results are obtained for the hard-sphere solid up to alm
close packing.

In this Letter, we develop a perturbation theory whe
to first order, all the structural information needed is p
cisely the functiong̃srd. As it is usually done in pertur-
bation theories for uniform liquids, we divide the interac
ing potential into the reference and the perturbative pa
fsrd  frsrd 1 fpsrd. Then, we start from the genera
expression for the Helmholtz free energy of a nonunifo
system as a functional of the densityrsrd which is written
exactly as [4,11]

Ffrsrdg  Fr frsrdg 1 Fpfrsrdg , (2)

beingFr frsrdg the Helmholtz free energy of the referenc
system at densityrsrd and

Fpfrsrdg 
1
2

Z 1

0
da

Z
dr1 dr2rs2dsr1, r2; adfpsr12d ,

(3)

where a is the coupling parameter for the interactio
potential fsr; ad  frsrd 1 afpsrd and rs2dsr1, r2; ad
is the pair distribution function when the potential
fsr12; ad but the density isrsrd. To lowest order, Eq. (3)
yields

Fpfrsrdg 
1
2

Z
dr1 dr2rs2d

r sr1, r2dfpsr12d , (4)

which after an appropriate integration becomes exactly

Fpfrsrdg  2prN
Z

dr r2g̃r srdfpsrd , (5)

whereN is the number of particles and̃gsrd is precisely
the average of the pair distribution function given b
Eq. (1). For any realistic system, the reference interact
potential is chosen to describe the rapidly varying sho
ranged repulsive part of the interacting potential. Ho
ever, the thermodynamic and structural properties of th
systems are unknown. Therefore, a treatment to re
these properties to those of a hard-sphere solid is evide
2250
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necessary. The procedure is analogous to that of the
ory of liquids. Letesr1, r2d  exps2bfjr1 2 r2jd be the
Boltzmann factor. It depends only onr12, but for clear-
ness in some of the expressions below it is convenien
keep the formal dependence on the two locationsr1 and
r2. As in the liquid theory, letDesr1, r2d be the blip func-
tion, i.e., the difference of the Boltzmann factors of t
reference potential and the hard-sphere potential of di
eterdHS, ersjr1 2 r2jd 2 eHSsjr1 2 r2jd. If this diame-
ter is comparable to the range of the reference poten
the blip function is different from zero in a small range
the order ofjdHS with j , 1. We can then expand th
Helmholtz free energy functional of the reference syst
in powers of the blip function

Fr frsrdg  FHSfrsrdg

1
1
2

Z
dr1

Z
dr2

dFHSfrsrdg
deHSsr1, r2d

Desr1, r2d

1 higher-order terms. (6)

The functional derivative of the Helmholtz free ener
with respect to the Boltzmann factor is easily obtained

2b
dFfrsrdg
desr1, r2d


1
2

rsr1drsr2dysr1, r2d , (7)

where theysr1, r2d function is the generalization of th
ysr12d function in uniform systems. This last one
defined bye2bfsr12dgsr12d, whereas the former is define

by esr1, r2d rs2dsr1,r2d
rsr1drsr2d . Introducing Eq. (7) into Eq. (6) and

after some simple algebraic steps, it is found that

Frfrsrdg  FHSfrsrdg

1 2prN
Z

dr r2ỹHSsrdDesrd

1 higher-order terms, (8)

where ỹHSsrd is the average of theyHSsr1, r2d function
which can also be expressed as

ỹHSsrd  expfbfHSsrdgg̃HSsrd .

Until here, the hard-sphere diameter has remained a
trary. Now we specify it by imposing that the first ord
term in the functional expansion Eq. (8) be zero. T
yieldsZ `

dHS

dr r2ỹHSsrd 
Z `

0
dr r2ỹHSsrd expfbfrsrdg . (9)

Notice that it is analogous to the well known WC
criterium [3] in liquid theory except that thẽysrd function
instead of theysrd function is used. From Eqs. (6) an
(7) and after averaging, we find

ỹrsrd  ỹHSsrd 1 higher-order terms, (10)

which can be used to lowest order to evaluate
perturbation term Eq. (5). It is interesting and easy
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prove that, if Eq. (9) holds, the convergence propertie
the expansions (8) and (10) are similar to those found
the uniform limit [12], i.e.,

Fpfrsrdg  FHSfrsrdg

1 2prN
Z

dr r2ỹHSsrdDesrd

1 Osj4d , (11)

ỹrsrd  ỹHSsrd 1 Osj2d . (12)

With the above expressions the theoretical formalism
completed. It is straightforward to see that in the unifo
limit the theory reduces to the WCA perturbation theo
of simple liquids. Observe also that all the problems
previous approaches are automatically overcome: the
malism provides a proper expansion of the free ene
with precise thermodynamic and structural properties
a reference solid, namely, any of the functionals for
Helmholtz free energy and the correlation functiong̃srd,
and the criterium to determine the appropriate refere
system enhances the convergence of the expansion.

We have applied the theory to the Lennard-Jones
system and to an extremely short-ranged square well
tential. In Table I we show the LJ liquid (rl) and solid
(rs) densities at coexistence at several temperatures
in LJ parameter units) obtained from the present the
using the Tarazona functional [13] for the reference ha
sphere solid, compared to simulation data of Hansen
Verlet [14]. The theoretical predictions are quite go
and the small deviations are quantitatively similar to th
obtained by previousad hoc approaches. Nevertheles
contrary to what it is predicted by the latter, the pres
theory gives the correct slopes of the coexistence de
ties as functions of the temperature. This improvemen
undoubtfully due to the adequate dependence of the h
sphere diameter with the density. Table I also shows
solid Lindemann parameter at coexistence. It is sign
cantly smaller than the simulation result. This is due
the functional approach we have used for the refere
hard-sphere solid, as it is well known. If any other fun
tional were used, the Lindemann parameter would
prove but no significant changes would be detected
the energies and, therefore, for the coexistence dens

TABLE I. Lennard-Jones liquid (rl) and solid (rs) densities
at coexistence at several temperatures (all in Lennard-J
parameters units) as predicted by the simulations of Hansen
Verlet [14] and the present theory. The Lindemann param
L of the solid phase at coexistence is also shown.

Simulation Theory
kBT r1 rs L rl rs L

0.75 0.875 0.973 0.145 0.884 0.970 0.08
1.15 0.936 1.024 0.139 0.974 1.049 0.08
1.35 0.964 1.053 0.137 0.996 1.077 0.08
2.74 1.113 1.179 0.140 1.116 1.199 0.09
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FIG. 1. Phase diagram of the square well system for the
width dydHS  0.02. The temperature is given in well dep
units. The solid line is the prediction of the present the
The dashed line corresponds to the simulations by Bolhuis
Frenkel [15]. The dotted line is the prediction of the PWDA

shown in Table I. However, the important point is th
for the first time, a classical system can be studied wi
unique, proper, and consistent theory.

Much more impressive are the results obtained by
theory when it is applied to a system with an extrem
short-ranged attractive interaction. Simulation res
have recently proved [15] that this kind of system pres
quite interesting isostructural solid-solid transitions.
to now, as one could expect, no theory had been
to give a reasonable quantitative account of this beha
[16,17]. Therefore, these systems offer an interesting
stringent test for the present theory. Figure 1 shows
phase diagram of the square well potential character
by a short widthdydHS  0.02. The dashed lines of th
figure, which correspond to simulation results [15], sh
the coexistence densities of the liquid-solid transit
and, inside of the solid region, the coexistence cu
of the solid-solid transition. Observe that, due to
weakness of the attractive potential, there is no fl
condensation. However, the solid-solid transition i
kind of solid condensation which arises from a differ
mechanism than the usual fluid condensation. It is rel
to the commensurability of the lattice parameter of
solid structure with the well width of the potenti
[15,16]. The dotted lines correspond to the perturba
weighted density approximation (PWDA) [9,16] whi
was, to our knowledge, the best approach so far ab
describe the complete phase diagram of this system.
continuous lines correspond to the present theory u
the Tarazona functional [13] for the reference hard-sp
solid. The results using any other functional would
2251
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indistinguishable in the scale of this figure. The drama
improvement is clear and the global agreement of
theoretical predictions with the simulation results is qu
good. Equivalent quantitative agreement is obtained
the phase diagrams corresponding to square wells
different widths.

In summary, we have developed a perturbation the
with remarkable characteristics. It is the first well found
perturbation theory for classical solids. It reduces to
well known WCA perturbation liquid theory in the appr
priate uniform limit. Its versatility allows its use with an
of the functional approaches available for the Helmho
free energy of hard spheres. It gives quite good res
even for systems where otherad hoc approaches hav
failed. Finally, but not less important, the computation
effort is drastically reduced. The cumbersome mapp
of the structure of the solid into the structure of the l
uid at certain effective density, which usually involves
dious autoconsistent and recursive processes, is rep
by a simple integral.
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