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Multiple Light Scattering in Nematic Liquid Crystals
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We present a rigorous treatment of the diffusion approximation for multiple light scattering in
anisotropic random media, and apply it to director fluctuations in a nematic liquid crystal. For a
typical nematic material, 5CB, we give numerical values of the diffusion constaptend D, .

We also calculate the temporal autocorrelation function measured in diffusing wave spectroscopy.
[S0031-9007(96)01115-5]
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Light transport in random or turbid media has long beemmagnetic fieldH is zero [17,18]. The diffusion constants
treated by radiative transfer theories, the first of whichD; and D, which in isotropic systems are proportional
was formulated as early as 1905 by Schuster [1]. For disto the transport mean free path, are, however, finite when
tances large compared to the transport mean freefath H — 0 as shown in Fig. 1. In this Letter, we develop
beyond which the direction of light propagation is ran-a systematic treatment of the diffusion approximation
domized, these theories can be reduced [2] to a diffufor multiple light scattering in anisotropic random media
sion equation for the light energy density with diffusion (for recent approaches see [19]), which allows us to
constantD = ¢l*/3 wheret is the speed of light in the calculateD; and D, from known properties of nematics
medium. In 1984 Kuga and Ishimaru [3] discovered co-and to obtain the time-dependent response measured in
herent backscattering of light in colloidal suspension, preDWS experiments [20]. Figure 1 shows our calculated
dicted in earlier papers [4], and physicists realized thevalues ofD; and D, as a function of external magnetic
connection of wave propagation in disordered media tdield H for the compound 5CB. The anisotropy ratio
weak localization [5], a precursor of Anderson localiza-D /D, = 1.45 is in good agreement with measurements
tion [6]. Since then, our theoretical understanding of lightreported in a companion Letter [21].
transport in random media has advanced considerably. We start with the wave equation for the electric light
Detailed studies of multiple scattering of scalar waves [7field E(r, 1):
was followed by the generalization to include the polariza- | 8
tion of light [8], broken time reversal symmetry and op- [V XV X +— _2[80 + 5e(r,;)]}E(r,t) =0. (1)
tical activity [4,9], and long-range correlations in random c* at
scatterers [10,11]. Multiple scattering emerged as a poWrhe homogeneous part of the dielectric tensoreis
erful probe of dynamical properties of turbid media with 54 the randomly fluctuating padte(r,7) is a Gaussian

the development of diffusing wave spectroscopy (DWSkandom variable described by the correlation function
[12,13] as an experimental technique capable of measur-

ing dynamic correlations at time scales much shorter [14]
than can be probed with single scattering. 18
Nematic liquid crystals are strong light scatterers, exhib-

iting turbidity and coherent backscatter [15]. They differ, 1.6
however, in significant ways from colloidal suspensions, 14
the most widely studied multiple-scattering media. First, 1.2
nematic liquid crystals are anisotropic with barlike 1
molecules aligned on average along a unit veetor, r) 0.8

called the director. They are birefringent with different .6
velocities of light for ordinary and extraordinary rays. g4
As a result the photon energy density, like particle

density in an electron system [16], obeys an anisotropic 0.2 . . . .
diffusion equation with diffusion coefficient®; and 00 02 0.4 0.6 0.8 1
D, for directions parallel and perpendicular to the ’ ’ ' '
equilibrium directorny. Second, the dominant scattering H/3.6x10°G

O; t\ﬂSIde? “%ht |st;‘]ron:r:ong]:rangetht¢r:11al fl_tjr::tgatlonts FIG. 1. The field dependence of the normalized diffusion
ot the director rather than irom particies wi lame ersconstantsD” and D, and the anisotropyD; — D,)/D, for

comparable to the wavelength of light. This leads to aarameters of a typical nematic liquid crystal 5CB;/K; =
divergent scattering mean free path when the external79, K,/K; = 0.43, andAg/es = 0.228.
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being the scattering mean free path of a light mode
{k® | e, (k)} with wave vectork® = Zn,k and polariza-
tion e, (k). The structure factof By.,s(t = 0)].p de-
cribes the scattering ofkc® | e, (k)} into {g? |eg(k)}.

he symbolfq,; always stands for an angular integration:

B®(R,t) = ‘;’—jwe(ze,t) ® 5¢(0,0))V, 2)

where w is the frequency of light. The superscri@¥)
means that we interchange the second and third ind
in the tensor producbe ® S to defineB“: [B® J;ji;
(6eidej). We call B°(R,t) the structure factor of B aQ, 5 .
the system. It is measured in single light scattering ]q[,"' ) @en) ng(q)--- . (7)
experiments [22] and contains information about the ] R/A o
elastic and dynamic properties of a system. The locall© the order of our calculation& ™) (k, w) is diagonal

uniaxial dielectric tensor can be expressed as in the polarizationea(l?,)._ In what follows, a Greek in-
dex will refer to the “basis vectors{’a ®e,0rd* ® d°.
e(r,1) = e,1 + Ae[n(r,1) ® n(r,1)]. (3)  The scattering mean free path(k, w) in the nematic

Here &, and e are the dielectric constants for elec- Phase has been calculated [17,18]. Forkigia’d)r;[)f(lgze;(—

tric fields, respectively, perpendicular and parallel to thetraordinary ray it has the forny, ! « (2)* % In(xra/ep
director, andAe = g — £,. We assume that the inho- Wherek is an appropriately averaged elastic constant.
mogeneity of the director field comes only from thermal Let us look at the spatial and temporal autocorre-
fluctuations of the director around its equilibrium valuelation function for the electric light field(E(R + 3,
no. n(r,t) = ng + 8n(r,t), where n has to be per- T + %) ® E*(R — 5,T — %)), where we have already
pendicular ton, for small fluctuations. The dominant introduced the center of “mas$R,T) and relative(r, t)
contribution to B®(R,t) is proportional to the director coordinates. From this quantity, others follow as spe-
correlation function{én(R,?) ® r(0,0)) which we ex- cial cases: the energy density of light at tinfée is
press in momentum space [23]: Wi(R,T) = (E(R,T) - ¢gE*(R, T)), where thel' depen-
(5n(q.1) ® 5n"(¢.0)) dence is, e.g., due to_ time-dependent sources; t.he tgm—
’ ) ’ poral correlation Iunctlon of a s;teady—state light field is
_ Z kgT exp{ K.(q) t}ﬁa(q) ®,(g). (4) Wa(R, 1) = (E(R,5) - &0E*(R, —3)), which reflects the
£ Kalq) Ne(q) dynamics of the scattering media measured in DWS ex-
periments. The Fourier transform with respeck tgives
Here K.(q) = Kaq1 + K3qj + AxH?, whereK;, K», the energy density with wave vectdr [2]. To calcu-
and K; are the Frank elastic constantq, is the exter- |ate the autocorrelation function for special light sources
nal field parallel torny, and Ay is the anisotropy of the and/or given boundary conditions, we need the “two par-
magnetic susceptibility. The quantity,(g) is a combi- ticle” Green’s function® = (G* ® G*)™). Our goal is
nation of viscosities which appear in the hydrodynamicto derive the diffusion pole o> in momentum and fre-
equations of the director field, the Leslie-Erickson equaquency space. With all arguments, Green’s function is
tions [23]. The unit vectors,(q) specify the direction of ®;.(K,Q,1). K,Q correspond to the center of mass co-
on(g,t) in modea = 1 and 2. ordinatesR, T andk, k' to the relative coordinates, r'.
In an anisotropic medium with a homogeneous dielecThe superscripi is the light frequency, and thedepen-
tric tensor e, the electromagnetic field traveling along dence explicitly comes from the structure fac®f(z).
the unitAvectork has two modes Witl’l indices of refrac- In the weak-scattering approximatio®;; (K, Q,¢) can
tion n, (k) and electric polarizations, (k). The polariza- be represented as a sum of ladder diagrams, which is
tion d*(k) of the displacement fieldd“ (k) = €oen(k),  equivalent to the Bethe-Salpeter equation:
obeysd*(k) - k = 0. After an appropriate normaliza-

C 3
tion, the vectors fulfill the biorthogonality relatiatf: (k) - AR fe (K Q)BE (002 (K. Q.1)
eg(k) = 65 [24]. We can now write down the momen- 2m) @
tum space representation of the averaged retarded and ad- = i (K, W), (8)

vanced Green'’s function of Eq. (1) in the weak scatteringyhere
approximation: X 4 ™
) [ (K, Q) =[G (k+, ws) ® (G”) (k—, 0-)]",
(G ke, 0) = Y llw/c + i/2na#)lalk, )P ©)
a=1

. R R with k- = k = K/2, w+r = w * 9/2, and[l;;c),],-jkl =
— k2 /n(k)} eq (k) ® eak), (B)  (2m)?8(k — k') (848 + 816,4)/2. The multiple inte-

with grals and the sum can be done analytically defunction
5 | correlations but not for the anisotropic, long-range corre-
A N © . B lations of our problem. Volhardt and Wélfle [25] derived
lalk, 0) = [ 2 ”a("); LB[B"”WU N 0)]“'8} the diffusion pole for isotropic electron transport directly

(6) from Eqg. (8), and MacKintosh and John [11] applied their
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method to light. In the anisotropic case one has to bé&reen’s function of the homogeneous medium.) The

more careful [16]. |f\Ifl({")(K,Q’t) andA"(K,Q,r) are, coupling between the zeroth and the other eigenvectors

respectively, theith eigenvector and eigenvalue of the in- then produces the diffusion tensor, and, finally, Green’s
tegral operator of Eq. (8), function takes the form

ki [ @) " ” (n) e () » _ 1 AG{(0,0) ® AG;(0,0)
Q)3 [, — £ (K, Q) B (1% = A" 0", P (K, Q1) ~ & o w(w,t) + K - D(w)K’

(10) (16)
with T,i")(K,Q,t) the eigenvectors of the Hermitian with N = —2n3w?/(7c3) and n? being the angular and
adjoint operator, it is straightforward to show that arithmetic average of the two refractive indices. The de-

IIII((") o W nominator represents a diffusion pole, which also contains
D (K, Q,1) = Z T"f,ff(K,Q) (11) an “absorption” coefficieni(w, t). The diffusion tensor
n follows from
solves the Bethe-Salpeter equation [11]. In the case of c
K = 0andQ = ¢ = 0, it can be shown that the quantity K - D(w)K = i[Q(K)]* - B7'G(K), (17)

AG{ (0,0), where
AGY (K, Q) = (G®) (k+,01) — (G (k—,0-), (12)

is an eigenvector with eigenvalué®”(0,0,0) = 0. This [G(K)].i = 77] na(i})[
is a very general result, based on the Ward identities ke

valid beyond the weak-scattering approximation [25]. We,

have identified the diffusion pole, as we shall explicitly

see soon. All other eigenvalues are positive, and, in [B]%ii = Z{”] ] {[gpla(]})]*gp;r(]})gg
real space, they give exponentially decaying contributions ‘ y ke Jgv '

to @ (K,Q,r) of Eqg. (11), which are not important T (BT B (VST R®

at long length scales [11]. To establish the diffusion Lo ()] ¢j (§)05} [Bitegr (0)]ay} -
approximation we have to apply perturbation theory toln principle all ¢ (k) of odd parity contribute tdD (w).
calculateA© (K, , 1) for small K, Q, ands. Therefore, For isotropic systems we choose spherical harmonics:
we expand the eigenvectors into a set of basis functiongy* (k) — Y;,.(9, ¢). Only the componentsg (K)]ai=1m

and turn the eigenvalue equation (10) into a matrixare nonzero an[jB]j‘;ﬁf’,’n, « §;. Therefore, only spherical
equation. For the componeatof W, we use the ansatz harmonics of/ = 1 contribute to D(w) and we get

_ _ ) the familiar formulaD = %cl* « [(1 — cos?)]'. The
W « [AGY (0, 0)]“[‘1’077 + Z‘I’? gof‘(k)}, (13)  absorption coefficient reads

3
where mlw, 1) = % Z j; [ﬁ[Bfﬂqﬁ(O) — Bjige(D)]ap -
A A a, “Jq
[AGE(0,0)]* ~ —im ina(k)(S(% n (k) — k). g
w

with
9G, !
ok

} ) [ (R)]'

It represents an angular average over all the dynamical
(14) modes of the system. (Far= 0, it is zero and then

The first factor on the right-hand side of Eq. (13) i Increases due to the decaying temporal correlations in

(6e ® 8¢).) The numerator in Eg. (16) indicates which

due to the momentum shell approximation, Eq. (14); nitial and final polarization states have a nonzero overlap

is strongly peaked grourjd the wave numbers of the Iigh\5\/ith the diffusion pole. The second factaiG;’ (0, 0) de-
modes. The amplitudal, then represents the zeroth nds only on the input wave. The first factoG (0, 0)

. p%
s o e e e space Bl only he olut vabe and determines fhe ra
9 tio of densities of photons in the two output polariza-

on the unit sphere, e.g., spheri_cal harmonics, which ¢ on states 1 and thdependenbdf the state of the input
n g(_eneral depend on polarization. We also use the wave. An integration ovek ([ k2 dk) shows that this ra-
relation tio if [n;(k)/n2(k)] for the wave directiork. This effect
[AGY (K, Q)]* = [ f¢’(0,0)]** should be measurable. Finally, Green’s function corre-
Gy " Gy ;pondin_g tow,(R, t) follows fror_n @ (K, Q = 0 t) by

ok K — WQ} , (15) integrating overk, k' and applying the appropriate trace

« operation.

which gives [AGY (K, Q)]* correctly to first order in The diffusion tensorD(w) has the same uniaxial
K, Q, and X (see [26]). B is the mass operator and form as the dielectric tensor in Eq. (3). We express the
A3} is defined the same way asGy’. G, stands for diffusion coefficientsD; and D, in terms of a typical

« [AE,‘;’(0,0) -
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length Ij — 97 % &% 2(c, = ¢/ /&T) times unitless to thank Ming Kao, Kristen Jester, and Arjun Yodh for

numerical factors); andD, via helpful discussions. ,
. i Note added— While this paper was being processed for
Dy = c,14Dy/3, D, =clyD,/3, (18)  publication, a very similar paper [Bart A. van Tiggelen,

Roger Maynard, and Anne Heiderich, Phys. Rev. Lett.
77, 639 (1996)] was published. Its results are in good
agreement with ours.

whereD) andD, depend orK, /K3, K»/K3, andAe/e | .
For the material 5CB,K3; = 53 X 1077 dyne, &, =
2.381, andAe/e, = 0.228. With T = 300 K and green
light (w/c = 1.15 X 10> cm™') we get [, = 2.3 mm,
which is in agreement with experiments [15,21]. As ba-
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