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Gaussian Pulse Propagation in a Dispersive, Absorbing Dielectric
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The modified asymptotic description of dispersive Gaussian pulse propagation, which is uniform
valid in the initial pulse envelope width, is shown to reduce to the energy velocity description whe
the propagation distance becomes sufficiently large in a Lorentz model dielectric. This then resolv
the apparent controversy between the modern asymptotic description upon which the energy velo
description is based and the classical group velocity description of Gaussian pulse propagation
related experimental results. [S0031-9007(96)01070-8]

PACS numbers: 42.25.Bs
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The effects of frequency dispersion and absorption
the dynamical evolution of an electromagnetic pulse
it propagates through a homogeneous, isotropic, lin
dielectric are properly described by asymptotic metho
of analysis as originally investigated by Sommerfeld [
and Brillouin [2] in 1914 using the method of steepe
descents and improved upon and corrected by Ough
and Sherman [3–5] using modern asymptotic expans
techniques [5]. This analysis clearly shows that after
pulse has propagated a sufficiently large distance i
the medium its dynamics settle into a mature dispers
regime [5,6] in which the propagated field becom
locally quasimonochromatic with fixed local frequenc
wavelength, and attenuation in each region of sp
that travels with its own characteristic velocity. Th
theory provides asymptotic expressions for the local wa
properties at any given space-time point in the fie
domain. A physical explanation of these local wa
properties was provided by Sherman and Oughstun
in 1981 with its entire proof just recently given [8
In 1982, Chu and Wong [9] published experimen
results for picosecond laser pulses propagating thro
thin samples of a linear dispersive dielectric who
peak absorption never exceeded 6 absorption leng
that were purported to disprove the energy veloc
description while verifying the group velocity descriptio
When combined with the Gaussian pulse results [1
of the modern asymptotic theory, the recently publish
modified asymptotic description [11,12] of Gaussian pu
propagation is found to provide the basis for a compl
explanation of this apparent discrepancy.

Consider an input Gaussian envelope modulated h
monic wave of constant applied carrier frequencyvc . 0
and initial full pulse width2T . 0 that is centered abou
the timet0 . 0 at the planez ­ 0, given by

fstd ­ ustd sinsvct 1 cd

­ exp

Ω
2

µ
t 2 t0

T

∂
2
æ

sinsvct 1 cd , (1)
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which is propagating in the positivez direction through a
linear dielectric whose frequency dispersion is describ
by the single resonance Lorentz model with compl
index of refraction

nsvd ­

µ
1 2

b2

v2 2 v
2
0 1 2idv

∂1y2

, (2)

which occupies the source-free half spacez $ 0. Here
v0 is the undamped resonance frequency,b is the plasma
frequency, andd is the phenomenological damping con
stant of the dispersive, lossy dielectric. The integral re
resentation of the propagated plane wave pulse in the
spacez $ 0 is given by

Asz, td ­
1

2p

Z
C

f̃svd exp

∑
z
c

fsv, ud
∏

dv , (3)

whereu ­ ctyz is a dimensionless space-time paramet

fsv, ud ­ ivfnsvd 2 ug (4)

is the classical complex phase function, and wheref̃svd
is the temporal Fourier spectrum of the initial puls
fstd ­ As0, td at the input plane atz ­ 0. The spectral
amplitudeÃsz, vd of Asz, td satisfies the scalar Helmholt
equationf=2 1 k̃2svdgÃsz, vd ­ 0, with complex wave
numberk̃svd ­ vnsvdyc.

From Eqs. (1) and (3), the classical integral represen
tion of the propagated Gaussian envelope pulse is foun

Asz, td ­
1

2p
R

Ω
i
Z

C
ũsv 2 vcd exp

∑
z
c

fsv, u0d
∏

dv

æ
,

(5)

for z $ 0, with the initial pulse spectrum

ũsvd ­ p1y2T exp

∑
2

T 2

4
v2

∏
expf2isvct0 1 cdg , (6)

where u0 ­ u 2 ct0yz. The contour of integrationC
appearing here may be taken as any contour in
complexv plane that is homotopic to the real frequen
© 1996 The American Physical Society
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axis. Since this spectrum is an entire function ofv, the
propagated field has the asymptotic representation [10

Asz, td , ASsz, td 1 ABsz, td , (7)

asz ! `, with

Ajsz, td ­ aj

µ
c

2pz

∂1y2

R

Ω
i

ũsvSPj 2 vcd
f2fs2dsvSPj , u0dg1y2

3 exp

∑
z
c

fsvSPj , u0d
∏æ

(8)

for j ­ S, B. HereaS ­ 2 andvSPj ­ v
1
SPD

su0d denotes
the distant first-order saddle point location offsv, u0d in
the right half of the complexv plane for allu0 . 1, while
aB ­ 1 for 1 , u0 , u1 andaB ­ 2 for u1 , u0 where
vSPB ­ v

1
SPN

su0d denotes the near first-order saddle po
location of fsv, u0d in the right half of the complex
v plane. Here u1 > u0 1 2d2b2yu0v

2
0 s3v

2
0 2 4d2d

denotes the space-time point at which the two near fi
order saddle points coalesce into a single second-o
saddle point, whereu0 ­ ns0d ­ s1 1 b2yv

2
0d1y2 de-

notes the space-time point at which the upper near sa
point crosses the origin [3–5]. The nonuniform behav
exhibited in Eqs. (7) and (8) in any small neighborho
of the space-time pointu0 ­ u1 may be corrected using
uniform asymptotic expansion techniques [4,5]. T
asymptotic contribution due to the near saddle poi
is referred to as a generalized Brillouin precursor fie
while that due to the distant saddle points is referred to
a generalized Sommerfeld precursor field [10,11].

Because of the initial Gaussian envelope spectrum
the asymptotic description of each pulse compon
ASsz, td and ABsz, td contains a Gaussian amplitude fa
tor of the form exph2sTy2d2fRsvSPj d 2 vcg2j, j ­ S, B.
In addition, each pulse component contains an expon
tial attenuation factor that is given by the product of t
propagation distancez with the attenuation that is char
acteristic of the real phase behaviorRhfsvSPj dj at the
relevant saddle point, and the instantaneous oscilla
frequency of each pulse component in the mature d
persion regime is approximately given byRhvSPj j in the
ultrashort pulse limit asT ! 0. Consequently, for a be
low resonance carrier frequencyvc [ s0, v0d the instan-
taneous oscillation frequency of the generalized Brillou
precursorABsz, td crossesvc as it chirps upward towards
v0, while for an above resonance carrier frequencyvc [
sv1, `d the instantaneous oscillation frequency of the ge
eralized Sommerfeld precursorASsz, td crossesvc as it
chirps downwards towardsv1, in each case the Gaussia
amplitude factor peaking to unity whenRhvSPj su0dj ­
vc. For an intra-absorption band carrier frequencyvc [
sv0, v1d the carrier frequency is never attained by eith
pulse component.

If the input signal frequencyvc is within the ab-
sorption band of the medium, so thatv0 # vc # v1,
then both pulse componentsASsz, td and ABsz, td will be
present in roughly equal proportion; the Brillion precurs
componentABsz, td becomes more pronounced asvc is
nt

st-
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dle
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d
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6),
nt
-

en-
e

ion
is-

in

n-

n

er

r

decreased fromv1 to v0 and dominates the propagate
field evolution asvc is decreased below the medium
resonance frequency, whereas the Sommerfield precu
componentASsz, td becomes more pronounced asvc is
increased fromv0 to v1 and dominates the propagate
field evolution asvc is increased abovev1. The numeri-
cally determined dynamical field evolution, due to a
input ultrashort Gaussian pulse with initial pulse wid
2T ­ 0.2 fsec and carrier frequencyvc ­ 5.75 3

1016 sec21 that is near the upper end of the absorpti
band of a single resonance Lorentz medium with param
ters v0 ­ 4 3 1016 sec21, b2 ­ 20 3 1032 sec22, and
d ­ 0.28 3 1016 sec21, is illustrated in Fig. 1. This case
is of particular interest since the group velocity at this s
nal frequency is very nearly equal to the speed of lighc
in vacuum. The generalized Sommerfeld precursor pu
component is seen to first emerge in the propagated fi
structure as the propagation distance increases into
mature dispersion regime, its peak amplitude propaga
with a velocity just belowc; notice that the smalles
propagation distance considered is nearly 21 absorp
depths into the medium at this intra-absorption ba
carrier frequency. As the propagation distance increa
the generalized Brillouin precursor pulse compone
emerges, its peak amplitude propagating with a veloc
that approaches the valuecyu0 ­ cyns0d from above.
The propagated field due to an input ultrashort Gauss
pulse then separates into two distinct pulse compone
that propagate with different peak velocities, the fas
pulse component being the high-frequency generali
Sommerfeld precursor whose instantaneous oscilla
frequencyvssud chirps downward towardsv1, followed
by the slower, low-frequency generalized Brillou
precursor whose instantaneous oscillation freque
vBsud chirps upward towardsv0. Each feature of this
dynamical field evolution is properly described by th
energy velocity description of Refs. [7,8].

As the initial pulse width2T is increased, the asymp
totic approximation (7) and (8) of the propagated fie
evolution remains qualitatively correct, while its quantit
tive accuracy decreases at a fixed propagation dista
This asymptotic description will remain quantitative
accurate as the pulse width is increased provided
the propagation distance is allowed to increase, in ke
ing with the definition of an asymptotic expansion
Poincare’s sense [13] asz ! `. However, since the
medium is attenuative, the usefulness of this descript
decreases as2T increases, since the important features
the field evolution (particularly when compared to expe
mental observations) are typically observed at some fi
observation distance in the medium.

The classical integral representation (5) with the sp
trum (6) may be rearranged so as to yield the modifi
integral representation [12]

Asz, td ­
1

2p
R

Ω
i
Z

C
ŨM exp

∑
z
c

FM sv, u0d
∏

dv

æ
(9)
2211
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FIG. 1. Numerically determined dynamical field evolutio
of an input 0.2 fsec Gaussian pulse with intra-absorpt
band carrier frequencyvc ­ 5.75 3 1016 sec21 in a single
resonance Lorentz model dielectric.

for all z $ 0, where the modified spectral amplitud
function

ŨM ­ p1y2T expf2isvct0 1 cdg (10)
2212
n

is independent of the angular frequencyv, and where

FM sv, u0d ­ fsv, u0d 2
cT2

4z
sv 2 vcd2 (11)

is the modified complex phase function. In the ultrash
pulse limit, as 2T ! 0, the modified phase function
reduces to the classical phase functionfsv, u0d and the
asymptotic behavior of (9) is determined by the behav
about the saddle points offsv, u0d, as in Eqs. (7) and (8)
Hence, if the classical asymptotic description given
Eqs. (7) and (8) is valid (to some specific degree
accuracy) for some given input pulse width 2T at a giv
propagation distance z, then this description will rema
equally valid (to that same degree of accuracy) as the
tial pulse width is increased provided that z is also i
creased in such a manner that the ratioT2yz remains fixed.

The saddle point dynamics of the modified phase fu
tion are now dependent upon both the initial pulse wid
and the propagation distance, as well as upon the dim
sionless space-time parameteru0. These saddle points ar
found [12] to remain isolated from each other for allu0

when T fi 0 and are each of first order. Only two o
these saddle points are found [12] to contribute to
asymptotic behavior of the modified integral represen
tion (9) asz ! `, so that the propagated field has t
same asymptotic representation given in Eq. (7) with

Ajsz, td ­

µ
c

2pz

∂1y2

R

Ω
i

ŨM

f2F
s2d
M svj , u0dg1y2

3 exp

∑
z
c

FMsvj , u0d
∏æ

(12)

for j ­ S, B. Here vj denotes the modified distan
s j ­ Sd and nears j ­ Bd saddle-point locations in the
right half of the complexv plane whose dynamics ar
described in Ref. [12]. Each pulse componentAjsz, td,
j ­ S, B, contains a Gaussian amplitude factor, the pe
amplitude point of each pulse component propagating
the classical group velocity evaluated at the instantane
oscillation frequency of the field at the space-time poin

The dispersive action of the same Lorentz model diel
tric on an input 5 fsec Gaussian pulse, whose carrier
quencyvc ­ 5.625 3 1016 sec21 is just below the upper
end of the medium absorption band, produces a supe
minal velocity of the peak in the envelope of the prop
gated field at a sufficiently small propagation distance
indicated in Fig. 2 by data point 1. The envelope pe
in the propagated field at this propagation distance (19
absorption depths atvc) has the associated instantaneo
frequency vpS

> 5.71 3 1016 sec21, and it propagates
with the classical group velocityypS ­ ygsvpS d > 1.16c.
This same envelope peak slows down to a subluminal
locity as the propagation distance increases (data poin
because the instantaneous oscillation frequency of
peak amplitude point increases as the propagation dist
increases. The envelope peak in the propagated fiel
this propagation distance (49.91 absorption depths atvc)
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FIG. 2. Inverse relative velocity of propagation of the pe
amplitude point of the propagated field due to an input Gaus
pulse (data points 1,2 anda, b). The solid curve describes th
frequency dependence of the inverse relative group velo
cyygsvpk d evaluated at the instantaneous oscillation freque
vpk of the peak amplitude point of the propagated pu
component Aksz, td, while the dashed curve in the figur
describes the frequency dependence of the inverse rela
energy velocitycyyEsvpk d of a monochromatic field of angula
frequencyvpk .

has shifted to the higher instantaneous oscillation
quencyvpS > 5.83 3 1016 sec21, and it now propagates
with the classical group velocityypS ­ ygsvpS d > 0.65c.
Thus, as the propagation distance increases, the inst
neous oscillation frequency evolves out of the absorpt
band and the pulse dynamics evolve toward the ene
velocity description which is valid in the mature dispe
sion regime.

Negative velocity motions of the amplitude peak a
obtained from the modified asymptotic description [1
for an input 10 fsec Gaussian pulse with applied c
rier frequencyvc ­ 5.25 3 1016 sec21, as indicated by
data pointsa and b in Fig. 2. At the smallest propaga
tion distance considered (58.05 absorption depths atvc)
the envelope peak of the propagated pulse has the a
ciated instantaneous oscillation frequencyvpS > 5.29 3

1016 sec21 . vc and propagates with the classical gro
velocity ypS

­ ygsvpS
d > 22.86c. As the propagation

distance is increased to 145.13 absorption depths, the
stantaneous oscillation frequency at the envelope p
has shifted to the higher frequency valuevpS

> 5.35 3

1016 sec21 and the envelope peak now propagates w
the classical group velocityypS ­ ygsvpS d > 24.45c.
The modified asymptotic description then shows th
as the propagation distance increases, the low-freque
components that are present in the input pulse spect
are attenuated at a larger rate than are the high-frequ
k
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components, so that the propagated pulse spectrum b
comes dominated by an increasingly higher frequenc
component, and the peak in the envelope of the prop
gated pulse propagates with the group velocity at thi
frequency value. Again, as the propagation distance in
creases into the mature dispersion regime, the pulse d
namics evolve toward the energy velocity description
however, the overall field amplitude also rapidly attenu
ates to zero in this case.

Because of the small propagation distance of at mo
6 absorption depths in their laboratory arrangement, th
experimental results of Chu and Wong [9] are restricte
to the small propagation distance limit below the mature
dispersion regime. The modified asymptotic descriptio
[12] bridges the gap between these two regimes, bein
in agreement with the experiment results [9] at sma
propagation distances, while reducing to the classica
asymptotic description at sufficiently large propagation
distances in the dispersive, lossy medium. Moreove
the modified asymptotic description provides, for the firs
time, a mathematically rigorous derivation of the correc
group velocity description of Gaussian pulse propagatio
in a dispersive, lossy medium and clearly shows how tha
description evolves into the energy velocity description
as the propagation distance increases into the matu
dispersion regime.
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