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Gaussian Pulse Propagation in a Dispersive, Absorbing Dielectric
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The modified asymptotic description of dispersive Gaussian pulse propagation, which is uniformly
valid in the initial pulse envelope width, is shown to reduce to the energy velocity description when
the propagation distance becomes sufficiently large in a Lorentz model dielectric. This then resolves
the apparent controversy between the modern asymptotic description upon which the energy velocity
description is based and the classical group velocity description of Gaussian pulse propagation and
related experimental results. [S0031-9007(96)01070-8]

PACS numbers: 42.25.Bs

The effects of frequency dispersion and absorption onvhich is propagating in the positivedirection through a
the dynamical evolution of an electromagnetic pulse ainear dielectric whose frequency dispersion is described
it propagates through a homogeneous, isotropic, linedny the single resonance Lorentz model with complex
dielectric are properly described by asymptotic method$ndex of refraction
of analysis as originally investigated by Sommerfeld [1] b2 1/2
and Brillouin [2] in 1914 using the method of steepest n(w) = <1 - 5 . ) 2
descents and improved upon and corrected by Oughstun w* — wp + 20w
and Sherman [3-5] using modern asymptotic expansiowhich occupies the source-free half space 0. Here
techniques [5]. This analysis clearly shows that after they,, is the undamped resonance frequericys the plasma
pulse has propagated a sufficiently large distance int@requency, and is the phenomenological damping con-
the medium its dynamics settle into a mature dispersiotant of the dispersive, lossy dielectric. The integral rep-

regime [5,6] in which the propagated field becomesresentation of the propagated plane wave pulse in the half
locally quasimonochromatic with fixed local frequency, spacez = 0 is given by

wavelength, and attenuation in each region of space
that travels with its own characteristic velocity. The
theory provides asymptotic expressions for the local wave
properties at any given space-time point in the field
domain. A physical explanation of these local wavewhered = ct/z is a dimensionless space-time parameter,
properties was provided by Sherman and Oughstun [7] b(0,0) = io[n(w) — 6] (4)
in 1981 with its entire proof just recently given [8].
In 1982, Chu and Wong [9] published experimentalis the classical complex phase function, and whg(e)
results for picosecond laser pulses propagating througié the temporal Fourier spectrum of the initial pulse
thin samples of a linear dispersive dielectric whosef(t) = A(0,) at the input plane at = 0. The spectral
peak absorption never exceeded 6 absorption lengttRmplitudeA(z, ) of A(z, 1) satisfies the scalar Helmholtz
that were purported to disprove the energy velocityequation[V? + k*(w)JA(z, w) = 0, with complex wave
description while verifying the group velocity description. numberk(w) = wn(w)/c.
When combined with the Gaussian pulse results [10] From Egs. (1) and (3), the classical integral representa-
of the modern asymptotic theory, the recently publishedion of the propagated Gaussian envelope pulse is found as
modified asymptotic description [11,12] of Gaussian pulse
propagation is found to provide the basis for a completey(; ) = th{ ] i(w — wc)exp{i ¢(w,0')i|dw},
explanation of this apparent discrepancy. 2 c ¢

Consider an input Gaussian envelope modulated har- ()

monic wave of constant applied carrier frequergy> 0 for ; = 0, with the initial pulse spectrum
and initial full pulse width2T > 0 that is centered about

2
the time#, > 0 at the plane = 0, given by i(w) = wl/zTex;{—TT wz}exd—i(a)cto + ], (6)
f(0) = u@)sinwct + )

Aet) = 5= [ F@rex] £ (.0 do, @

where 8’ = 6 — cty/z. The contour of integratiorC
— 1\?] . appearing here may be taken as any contour in the
s sifwer + ), (1) complexw plane that is homotopic to the real frequency
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axis. Since this spectrum is an entire functionsgfthe  decreased fromw; to wy and dominates the propagated
propagated field has the asymptotic representation [10] field evolution asw. is decreased below the medium
Alz, 1) ~ As(z, 1) + Ap(z, 1), (7)  resonance frequency, whereas the Sommerfield precursor
componentAs(z, r) becomes more pronounced as is
increased fromw, t0 w; and dominates the propagated
c V2. [, Wowsp, — o) field evolution asw, is increased above;. The numeri-
) *‘{l [— @D (wsp,, 0/)]1/2 cally determined dynamical field evolution, due to an
; ! input ultrashort Gaussian pulse with initial pulse width
X ex;{— ¢(wspj,0’)” (8) 2T =0.2fsec and carrier frequencyw. = 5.75 X
¢ 10'® sec’! that is near the upper end of the absorption
for j = S,B. Hereas = 2 andwsp, = wfpb(e’) denotes band of a single resonance Lorentz medium with parame-
the distant first-order saddle point location@fw, ') in  ters wy = 4 X 10'% sec’!, »b?* = 20 X 10*? sec?, and
the right half of the complew plane for all¢’ > 1, while 8 = 0.28 X 10'¢ sec’!, is illustrated in Fig. 1. This case
ag = 1for1 <6’ <6, andap = 2 for 6; < ¢’ where is of particular interest since the group velocity at this sig-
wsp, = wsp, (') denotes the near first-order saddle pointnal frequency is very nearly equal to the speed of light
location of ¢(w,#’) in the right half of the complex in vacuum. The generalized Sommerfeld precursor pulse
w plane. Here 6, = 6, + 28%b%/0ywi(3wi — 48%)  component is seen to first emerge in the propagated field
denotes the space-time point at which the two near firststructure as the propagation distance increases into the
order saddle points coalesce into a single second-ordenature dispersion regime, its peak amplitude propagating
saddle point, wheref, = n(0) = (1 + b?/w?)"/> de- with a velocity just belowc; notice that the smallest
notes the space-time point at which the upper near saddf@opagation distance considered is nearly 21 absorption
point crosses the origin [3—5]. The nonuniform behaviordepths into the medium at this intra-absorption band
exhibited in Egs. (7) and (8) in any small neighborhoodcarrier frequency. As the propagation distance increases,
of the space-time poin#’ = #; may be corrected using the generalized Brillouin precursor pulse component
uniform asymptotic expansion techniques [4,5]. Theemerges, its peak amplitude propagating with a velocity
asymptotic contribution due to the near saddle pointthat approaches the valug/6, = ¢/n(0) from above.
is referred to as a generalized Brillouin precursor field,The propagated field due to an input ultrashort Gaussian
while that due to the distant saddle points is referred to apulse then separates into two distinct pulse components
a generalized Sommerfeld precursor field [10,11]. that propagate with different peak velocities, the faster
Because of the initial Gaussian envelope spectrum (6yulse component being the high-frequency generalized
the asymptotic description of each pulse componenSommerfeld precursor whose instantaneous oscillation
As(z,t) and Ap(z, 1) contains a Gaussian amplitude fac- frequencyw,(#) chirps downward towards, followed
tor of the form ex@—(T/2)2[§R(wSpj) — w.?},j=S,B. by the slower, low-frequency generalized Brillouin
In addition, each pulse component contains an exponemrecursor whose instantaneous oscillation frequency
tial attenuation factor that is given by the product of thewg(#) chirps upward towards,. Each feature of this
propagation distance with the attenuation that is char- dynamical field evolution is properly described by the
acteristic of the real phase behaviti{¢ (wsp,)} at the  energy velocity description of Refs. [7,8].
relevant saddle point, and the instantaneous oscillation As the initial pulse width27 is increased, the asymp-
frequency of each pulse component in the mature distotic approximation (7) and (8) of the propagated field
persion regime is approximately given Bi{wsp } in the  evolution remains qualitatively correct, while its quantita-
ultrashort pulse limit a§” — 0. Consequently, for a be- tive accuracy decreases at a fixed propagation distance.
low resonance carrier frequenay. € (0, wo) the instan- This asymptotic description will remain quantitatively
taneous oscillation frequency of the generalized Brillouinaccurate as the pulse width is increased provided that
precursordg(z, t) crossesw,. as it chirps upward towards the propagation distance is allowed to increase, in keep-
wg, While for an above resonance carrier frequenagcye  ing with the definition of an asymptotic expansion in
(w1, ) the instantaneous oscillation frequency of the genPoincare’s sense [13] as— «. However, since the
eralized Sommerfeld precursdrs(z, r) crossesw,. as it  medium is attenuative, the usefulness of this description
chirps downwards towards, in each case the Gaussian decreases &7 increases, since the important features of
amplitude factor peaking to unity whel{wsp,(6)} =  the field evolution (particularly when compared to experi-
w.. For an intra-absorption band carrier frequeagy€  mental observations) are typically observed at some fixed
(wg, w1) the carrier frequency is never attained by eitherobservation distance in the medium.

asz — o, with

Aj(z,t) = aj(%

pulse component. The classical integral representation (5) with the spec-
If the input signal frequencyw. is within the ab- trum (6) may be rearranged so as to yield the modified
sorption band of the medium, so thaf = w. = w;, integral representation [12]

then both pulse components(z,¢) and Ag(z, t) will be
present in roughly equal proportion; the Brillion precursor 1. . Z ,
componentdz(z, ) becomes more pronounced as is Alz,1) = th "o Un ex ?‘DM(‘”’Q) dor (9)
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o, = 5.75x10'% s is independent of the angular frequensyand where

2T =2.0x10* sec CT2
2.5x10° — Dy (w,0") = ¢(w,0') - 2 @ o) (11)
7z, = 20,66 —

is the modified complex phase function. In the ultrashort
pulse limit, as2T — 0, the modified phase function
| reduces to the classical phase functi#fw, ') and the
o lun-l\n AA ] asymptotic behavior of (9) is determined by the behavior
about the saddle points @f(w, #'), as in Egs. (7) and (8).
Hence, if the classical asymptotic description given in
Egs. (7) and (8) is valid (to some specific degree of
accuracy) for some given input pulse width 2T at a given
25¢10° propagation distance z, then this description will remain
equally valid (to that same degree of accuracy) as the ini-
5x10° — tial pulse width is increased provided that z is also in-
1, =4132 — creased in such a manner that the rafid/z remains fixed.
Alz1) The saddle point dynamics of the modified phase func-
tion are now dependent upon both the initial pulse width
T and the propagation distance, as well as upon the dimen-
° AN 6 sionless space-time parametér These saddle points are
found [12] to remain isolated from each other for &l
" whenT # 0 and are each of first order. Only two of
these saddle points are found [12] to contribute to the
asymptotic behavior of the modified integral representa-
6 2 3 4 5 tion (9) asz — o, so that the propagated field has the
same asymptotic representation given in Eq. (7) with

Alzp)

-5x10°
1

1x107?

“ I
: I LA o] x ex < byl 0) || 12)

\Y%

| ‘ ) / \/ for j = S,B. Here w; denotes the modified distant

! V (j = §) and near(j = B) saddle-point locations in the

-1x10° HH right half of the complexw plane whose dynamics are

% described in Ref. [12]. Each pulse componentz, 1),

1 2 2.8 j = S, B, contains a Gaussian amplitude factor, the peak

6x10 : I amplitud(_e point of each .pulse component propagating at
the classical group velocity evaluated at the instantaneous

oscillation frequency of the field at the space-time point.

f The dispersive action of the same Lorentz model dielec-

“ N A A 0 tric on an input 5 fsec Gaussian pulse, whose carrier fre-

quencyw. = 5.625 X 10'° sec’! is just below the upper

] end of the medium absorption band, produces a superlu-

\ minal velocity of the peak in the envelope of the propa-

j R gated field at a sufficiently small propagation distance, as

6 i indicated in Fig. 2 by data point 1. The envelope peak

: in the propagated field at this propagation distance (19.96

. ) . ] ~absorption depths at.) has the associated instantaneous
FIG. 1. Numerically determined dynamical field evolution frequency w,, = 5.71 X 10'¢ sec’!, and it propagates
N * 1

of an input 0.2 fsec Gaussian pulse with intra-absorption, . f . o N
band carrier frequencyw. = 5.75 X 10'6 sec’! in a single "With the classical group velocity,, = v, (w,,) = L.16c.

resonance Lorentz model dielectric. This same envelope peak slows down to a subluminal ve-
locity as the propagation distance increases (data point 2)
for all z = 0, where the modified spectral amplitude because the instantaneous oscillation frequency of this
function peak amplitude point increases as the propagation distance
increases. The envelope peak in the propagated field at
Uy = 7'PTexd—i(w.to + )] (10)  this propagation distance (49.91 absorption depths at

1/2
C UM
| Aj(z,1) = <—> Eﬁ{i
2= 61% — / 27z [—(I),(j)(wj,e’)]l/z

]

ml 7, = 8264
il T

-8x10*

1 2 28
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3 components, so that the propagated pulse spectrum be-

comes dominated by an increasingly higher frequency
component, and the peak in the envelope of the propa-
gated pulse propagates with the group velocity at this
frequency value. Again, as the propagation distance in-
creases into the mature dispersion regime, the pulse dy-
namics evolve toward the energy velocity description;
however, the overall field amplitude also rapidly attenu-
ates to zero in this case.
ey (x10% ™) Because of the small propagation distance of at most
@ 6 absorption depths in their laboratory arrangement, the
experimental results of Chu and Wong [9] are restricted
to the small propagation distance limit below the mature
dispersion regime. The modified asymptotic description
[12] bridges the gap between these two regimes, being
in agreement with the experiment results [9] at small
propagation distances, while reducing to the classical
asymptotic description at sufficiently large propagation
distances in the dispersive, lossy medium. Moreover,
the modified asymptotic description provides, for the first
FIG. 2. Inverse relative velocity of propagation of the peaktime, a mathematically rigorous derivation of the correct
amplitude point of the propagated field due to an input Gaussiagroup velocity description of Gaussian pulse propagation

pulse (data points 1,2 and b). The solid curve describes the i, 5 gispersive, lossy medium and clearly shows how that
frequency dependence of the inverse relative group velocit '

c/vq(w,,) evaluated at the instantaneous oscillation frequenc&jescription eVOIV_es int_o the er_lergy veloqity description
w,, of the peak amplitude point of the propagated pulsedS the_propaganon distance increases into the mature
componentA,(z,t), while the dashed curve in the figure dispersion regime.

describes the frequency dependence of the inverse relative This research has been supported by United States Air
energy velocitye/vg(w,,) of @ monochromatic field of angular Force Office of Scientific Research Grant No. F49620-
frequencyw,, . 94-1-0430.
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