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Synchronizing Spatiotemporal Chaos in Coupled Nonlinear Oscillators
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The synchronization of spatiotemporal chaos of two arrays of coupled nonlinear oscillators is achieved
by discrete time coupling of individual cells of the arrays. This synchronization method is based on the
knowledge of the local dynamics and can be applied to any type of arrays where the synchronization
properties of the cells are known. Furthermore, we discuss possible applications of synchronizing
spatiotemporal chaos in communication and anticontrol of chaos. [S0031-9007(96)00935-0]

PACS numbers: 05.45.+b, 64.60.Cn

Many nonlinear phenomena in physics, biology, and To demonstrate spatiotemporal synchronization of ar-
engineering can be modeled by an array of diffusivelyrays, we use as an example an arrayvafiiffusively cou-
coupled oscillators or, in other words, coupled ordinarypled Lorenz systems
differential equations (CODE). A list of examples of .
such phenomena includes: current-biased series arrays ' o(yi = xi) + Dxivy = 22 + xie),
of Josephson junctions [1], dynamic arrays of nonlinear Vi =rx;i — yi — XiZi, (1)
electrical circuits [2], discrete reaction-diffusion equations
[3], and networks of neurons and cardiac pacemaker cells
[4]. The most interesting type of behavior encountered irvhere i = 1,...,N, and the values of the parameters
large interconnections of chaotic oscillators is spatiotemare fixed too = 10, r =23, b = 1, andD = 6. For
poral chaos where the observed dynamics exhibits chaotibe numerical simulations presented in this Letter, we
properties both in time and space. In this Letter weuse periodic boundary conditiong = xy and xy+; =
describe a general method for synchronizpagrs of uni-  x;, but similar results have been obtained with other
directionally coupled CODEs with spatiotemporal chaotictypes of boundary conditions. Figure 1(a) depicts the
dynamics. Chaos synchronization [5-7], generalizedpatiotemporal evolution of an array &f = 100 Lorenz
synchronization [8,9] and phase synchronization [10,11]systems. This figure shows the grey-coded values af the
in dynamical systems are presently a field of active recoordinates as a function of tinmreand spatial coordinate
search in view of potential applications in communicationi. The evolution is chaotic, with Lyapunov dimension
[12-14] and system identification [15,16]. equal toD; = 69.3. The array (1) drives a similar array

Chaos synchronizatiowithin single CODEs has also °
been studied extensively. For example, synchronized xf

zi = x;y;i — bz;,

=0 — %) + DXir1 — 2% + Xi-1),

behavior has been investigated in mean-field coupled Vi =rX — ¥ — XiZi, (2)
Lorenz oscillators [17], Rdssler oscillators [18], laser v - bE
systems [19], neural networks [20], and electronic circuits “ Wi L

[21]. In all these examples, synchronization leads to avhich will be calledresponse systerm the following.

coherent motion of the elements within the given array,The coupling between the two arrays (1) and (2) is active

that is, the variables in thgh and jth cell are identical at discrete times only. This type @&poradic coupling

in time. However, the problem of interaction betweenof continuous systems has been introduced for low

many CODEs, and especially their synchronization [22] dimensional systems only recently [23,24]. The dynamics

is important for both understanding the nature of CODEf the jth cell in (2) is influenced by thdrive systen{l)

and potential applications. in the following way. At the moment;, = ;T; + (n —
This Letter is organized as follows. First we illustrate 1)NT», n = 1,2,..., the state variablg; is replaced by

numerically how local coupling at discrete times leadsthe value of the state variabje, that isy;(¢;,,) = y;(t;.)

to the synchronization of spatiotemporal chaos in arf25]. In other words, the dynamical system (2) oscillates

array of diffusively coupled Lorenz systems. Then wefreely and independently from the drive system (1) except

give arguments why it can be expected that the couplindor the momentst, ,, t2.,,...,ty» When the variables

mechanism used leads to synchronization for a large class ,,, y2.,...,9v, are forced to the new values ,,

of pairs of CODEs, and finally we discuss the relevance, ,, ..., ¥y, respectively [26]. In genera}, < t(+1).,

of our results for applications in communication systemsalthough the cas&; = 0, that ist; , = t(j+1), for all j,

and anticontrol of chaos. can also be considered (simultaneously driving of cells in
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switch off the coupling between the two systems at time
t = 20 and switch it on again at= 50 as denoted by the
arrows. One can see that the synchronization is achieved
already after a short time of 30 time units.

Figure 1(c) shows the modulus of the difference of the
x variables of the drive and the response system. The
dark regions indicate the desynchronization of the arrays
in particular during the time interval0 < ¢ < 50 when
the coupling is switched off. This effect can also be seen
in Fig. 2 that gives the global synchronization erecais a
function of time, whereby

100

N
e = J% D = X2+ (v = P+ (@~ 2
i=1

80 (3)
As can be seen the synchronization error tends to zero as
L soon as the coupling is switched on.
o We explain now why the two arrays synchronize
40 despite the fact that most of the time they oscillate freely
and independently. For this purpose we first consider the
RO synchronization mechanism for a pair of individual cells,
i.e., without the diffusive coupling to neighboring cells
within the array. A single cell of the drive
x=o0( —x),
100 .
y=rx —y — xz, 4)
807 z=uxy — bz,
80 drives a cell of the response
1 1 P ~ o~
40 )'C - O-(y x) )
y=rx —§y - Xz, ®)
200 2 ~~ ~
Z=xy — bZ,
in the following way: At discrete times, = n7, n =

1,2,..., the value of they component is forced to

FIG. 1. Synchronization of spatiotemporal chaos. (a) Spaihe new valuey, that is §(z,) = y(t,). Let us assume
tiotemporal evolution of the coordinates of the array (1) as a for a moment that this unidirectional driving is applied
function of timez and spatial coordinateé (b) The same as continuously as time goes on. In this case) = y(r)

in (a) for the response array (2). The arrows denote the timegy, ]| t, and Eqg. (4) becomes the,z) subsystem of

t = 20 and ¢+ = 50 when the coupling between the arrays is S .
switched off and on, respectively. (c) The same as in (a) fOIIhe Lorenz system, which is known to be asymptotically

the differencdx — /. stable [7]. This property ensures synchronization of

the response system). For simplicity, in the following we 10

usel, =T, =T.
The results of our numerical simulations are shown in
Fig. 1. Figure 1(b) depicts the spatiotemporal evolution

of the array (2). In the simulation we have usgd= e 0.1

0.01. This means that the time intervaj.;, — t;, 0.01 4

between the driving of neighboring cells equals= 0.01

and that a fixed Lorenz system in the response systems T S —

is coupled to its counterpart in the drive array after time 0 20 40 60 B0 100

intervals of lengthVT, which in our case is equalto 1. To t
show how effective this method of synchronization is, we FIG. 2. The synchronization error Eq. (3) versus time.
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drive and response even when they are coupled only dimit of time continuous coupling, then there exist critical
discrete times [23,24,27]. Indeed, using the analyticalalues for the coupling constant in the array and the char-
arguments of [23], from asymptotical stability of the z)  acteristic time of sporadic coupling [29] such that two ar-
subsystem, it follows that there exists a critical valtye rays coupled at discrete times are synchronized. A more
such that for al- < 7., sporadically coupled systems (4) detailed analysis of the above results, as well as some
and (5) are synchronized. Numerically we have foundgeneralizations for the case of synchronization based on
that in this case. = 0.45. active-passive decomposition [14], will be presented in an
Now let us consider the arrays (1) and (2) againextended version of this work. We stress here that the
Our numerical simulations for different values of the method is applicable not only to arrays, but also in the
parameters of the Lorenz system, the coupling constartase of PDEs.
D and the characteristic time for sporadic couplifig We now discuss two possible applications of the
show that there exist critical valueg. and D, such synchronization method introduced in this Letter.
that for all T < T, and D < D., the arrays (1) and The first application is communication. The basic idea
(2) are synchronized [28]. We give now a heuristicis to transmit an information signal using a chaotic signal
explanation of this property. If the coupling is small, as a broadband carrier and the synchronization is neces-
then the cells behave almost independently, and on thgary to recover the information at the receiver. This idea
basis of the analysis for a single cell, one can concludevas discussed, for example, in [13,14]. Assume that the
that the arrays will synchronize. Clearly, in this casedrive system is the transmitter, its copy is the receiver,
. = 7./N = 0.0045, becauseT.N = 7. = 0.45. On and they are:-sporadically coupled, whene stands for a
the other hand, if the couplind is large, for example variable of the cells in the array [in the example above, (1)
D = 6 as above, then the dissipative character of thés the transmitter, (2) is the receiver, and= y]. Analo-
coupling tends to diminish the differences between cells irgous to the encoding method proposed in Refs. [13,14]
each array, and together with the arguments given abowhe information signal is injected in the transmitter, while
for a single cell, this will also lead to a synchronization ofthe transmitted signal is a sequence of number§T),
both arrays. In general, scalar diffusive coupling can alsa(T), ..., uy(T), u1(2T), u,2T),...,uy(2T),.... Us-
lead to synchronization of the celgithin a given array. ing similar arguments as in [13,14], one can show that the
In such cases the dynamics of the whole array is reduceidformation can in principle be recovered at the receiver
to the dynamics of a single cell, and the array will thuswithout errors. The advantage of the new implementation
not show spatiotemporal chaos. The graphical illustratiorusing sporadic coupling is the fact that the transmitted sig-
in Fig. 1(a) and the high Lyapunov dimension Bf =  nal is only a discretely sampled sequence of numbers and
69.3, however, show that the array (1) is fd = 6 that this sequence is generated by a hyperchaotic system.
not in a synchronous state. Nevertheless, the dissipativ/e would like to point out here the recent question of
character of the coupling influences strongly the valuesynchronizing hyperchaotic systems with a scalar continu-
of critical parameterd. andD.. This is the reason why ous signal. That this is possible was shown, for example,
the cells are synchronized even for=TN = 1 > 7. = in [14,31,32] for acontinuousdriving signal. Moreover,
0.45. That this interpretation of the observed phenomenavith the sporadic driving used in this Letter it is also pos-
of synchronization is correct is also supported by thesible with a scaladiscretelysampled signal.
fact that we were able to synchronize the two arrays The second application is anticontrol and control of
(1) and (2) even when they are coupled every secondhaos. Itis well known that in some biomedical systems,
cell only. This property is an immediate consequencehaotic behavior is “normal,” or, in another words, the
of the diffusive type of interaction within a single array. loss of chaos in these systems is often associated with dis-
Therefore the synchronization of the arrays (1) and (2pase. A list of examples of emergent regular (periodic)
is thus due to two facts: (i) the dissipative character ofbehavior in otherwise irregular (chaotic) but normal dy-
the interaction between the cells in the arrays and (iinamics includes: cardiac interbeat interval patterns in a
the synchronization properties of the sporadically drivervariety of cardiac disorders [33], experimental epilepsy
cells. We emphasize here that the knowledge abouB4], immunological rejection of heart transplants [35],
the local dynamics (of each cell) is used to manipulateand ventricular fibrillation in human subjects [36], to men-
systematically the behavior of the global dynamics of thetion only a few. Assume that when a biomedical system
whole CODE, namely to synchronize two CODEs. operates in normal and chaotic mode, one can store the
How general is this method for synchronization of spa-data from the system in a file (measuring a suitable vari-
tiotemporal chaos? We have performed numerical experable at discrete times). Later when the system starts to
ments with different arrays of coupled (non)identical cellsoperate periodically, one can use these data and the above
and different types of internal couplings between cellsnethod or a similar coupling to (re)establish chaotic dy-
within the arrays. In all cases we have observed similanamics again in the system (anticontrol of chaos). This
results, namely, if the sporadic coupling between singlexample shows that the described synchronization method
cells leads to an asymptotically stable subsystem in thean also be used to control spatiotemporal chaos.
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To conclude, the synchronization method proposed itji17] J.M. Kowalski, G.L. Albert, and G.W. Gross, Phys.
this Letter can be applied to a pair of unidirectional cou- Rev. A42, 6260 (1990).
pled arrays where the synchronization mechanism of thé8] R.R. Klevecz, J. Bolen, and O. Duran, Int. J. Bifurcation
local elements or cells is known. Synchronization of spo- _ Chaos Appl. Sci. Eng2, 941 (1992).
radically coupled individual cells can be achieved, for[19] H.G. Winful and L. Rahman, Phys. Rev. Le€5 1575
example, using the subsystem decomposition introduce (1990).

by Pecora and Carroll [7] or using an active-passive de* 0 (Dl.glgg)nsel and H. Sompolinsky, Phys. Rev. L&, 718

composition [14]. Therefore this synchronization strat€gy,1; v/ Belykh, N.N. Verichev, L. Kocarev, and L.O. Chua
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