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Endoscopy in the Paul Trap: Measurement of the Vibratory Quantum State of a Single Ion
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We reconstruct the density operator of the center-of-mass motion of an ion stored in a Paul trap by
mapping the dynamics of the motion onto the internal dynamics of the ion. Our technique takes into
account the explicit time dependence of the trap potential, operates outside the Lamb-Dicke limit, and
is not restricted to pure states. We demonstrate the feasibility of this method using the example of a
damped Schrödinger cat state. [S0031-9007(96)01127-1]

PACS numbers: 32.80.Pj, 03.65.Bz, 42.50.Vk
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The recent experimental generation [1,2] of nonclas
cal states of the motion of an ion in a Paul trap [3] h
propelled the field of quantum state preparation [4,5] i
a new era. But how can we prove that the ion is inde
in a Fock, a squeezed, or a Schrödinger cat state? H
can we measure a motional state which, due to the
plicit time dependence of the binding force of the Pa
trap, displays [6] a complicated time dependence? In
Letter we present the first method [7] that measures a
bratory state of an ion taking into account the compl
time dependence of the Paul trap. Moreover, our te
nique operates outside the Lamb-Dicke regime [8] and
not limited to pure states only.

The central idea of our approach is to map the dynam
of the center-of-mass motion onto the internal degree
the ion. The dynamics of the latter we can read out us
quantum jumps [9]. Three techniques make this appro
possible: (i) the well-known Floquet solution [10] o
the harmonic oscillator with time-dependent frequen
(ii) the rotating wave approximation [11] resulting in
time independents-phonon Jaynes-Cummings interactio
Hamiltonian between the center-of-mass motion and
internal states of the ion [12], and (iii) the application
quantum state endoscopy [13,14] originally devised
the measurement of a field state to the problem at ha
We demonstrate the feasibility of Paul trap endosco
using the example of a damped Schrödinger cat state.

We start from the Hamiltonian

Ĥstd ­ Ĥa 1 Ĥcmstd 1 Ĥintstd (1)

of a single two-level ion moving along one direction
a Paul trap and interacting with a classical laser fie
where Ĥa ­

1
2 h̄vaŝz describes the two internal state

with transition frequencyva andŝz is the Pauli matrix.
The one-dimensional center-of-mass motion of an

with massm in a harmonic potential with time-depende
steepness

v2std ­
1
4 v2

rffa 1 2q cossvrftdg (2)

follows from the Hamiltonian
Ĥcmstd ­

1
2m p̂2 1

1
2 mv2stdx̂2 . (3)

The dimensionless parametersa and q are proportional
[3] to the dc and ac voltages applied to the tra
98 0031-9007y96y77(11)y2198(4)$10.00
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respectively, andvrf ; 2pyT is the frequency of the ac
voltage.

In the rotating wave approximation we model th
interaction of the classical laser field with the two leve
of the ion by the Hamiltonian [15]

Ĥintstd ­ h̄ghŝ1 expf2isvLt 2 kx̂dg 1 H.c.j , (4)

where g and k denote the interaction strength and t
wave vector of the light field with frequencyvL, respec-
tively. The Pauli matrixŝ1 is the raising operator for the
internal levels of the ion. Hence the laser field coup
the center-of-mass motion to the internal states.

In order to solve the Schrödinger equationih̄j ÙCl ­
ĤstdjCl for the state vectorjCstdl describing both the in-
ternal states and the center-of-mass motion it is conven
to work in the interaction picture. We recall the relatio
[16]

ˆ̃xstd ; Ûy
cmstdx̂Ûcmstd ­

q
h̄

2mvr
fepstdb̂ 1 estdb̂yg ,

(5)
whereÛcmstd ­ T̂ expf2 i

h̄

Rt
0 dt0Ĥcmst0dg is the propaga-

tor of the center-of-mass motion,T̂ is the time-ordering
operator, and operators with a tilde are in the interact
picture. We denote the annihilation and creation ope
tors of a time independent reference harmonic oscilla
[10,17] with frequencyvr by b̂ andb̂y. Note that the ref-
erence frequencyvr is an arbitrary real parameter, whic
we choose later in a convenient way. The complex fu
tion estd satisfies the classical Mathieu differential equ
tion

ëstd 1 v2std estd ­ 0 (6)

with the initial conditionses0d ­ 1 and Ùes0d ­ i vr .
To bring out most clearly that the laser field in

duces transitions between the energy eigenstatesjnl of
the time-independent reference oscillator we express
center-of-mass motion part of the interaction Hamilto
ian equation (4) in these states. Indeed the interac
Hamiltonian

ˆ̃Hintstd ­
X̀
n­0

X̀
s­2n

h̄Vsn,n1sdstdŝ1jnl kn 1 sj 1 H.c.

(7)
© 1996 The American Physical Society
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in the interaction picture involves all possib
s-phonon transitions [12]. The time-dependent f
quenciesVsn,n1sdstd ; ge2iDtknjD̂fastdgjn 1 sl follow
from Eq. (4) with the help of Eq. (5). They involve th
matrix elements of the displacement operatorD̂sad ;
expsab̂y 2 apb̂d at the complex valued time
dependent displacementastd ; ihestd, whereh ; kfh̄y
s2mvr dg1y2 denotes the Lamb-Dicke parameter. H
D ; vL 2 va is the detuning between the laser fr
quency and the atomic transition frequency. When
evaluate [18] the matrix elementknjD̂fastdgjn 1 sl the
frequenciesVsn,n1sdstd read fors $ 0

Vsn,n1sdstd ­ g

∑
n!

sn 1 sd!

∏1y2

exps2iDtd fihepstdgs

3 exp

∑
2

h2

2
jestdj2

∏
Ls

nsssh2jestdj2ddd . (8)

Here Ls
n denotes the generalized Laguerre polynom

Similar relations hold fors , 0.
We note that the time dependence ofVsn,n1sdstd results

from the detuningD and the complex valued functio
estd. In order to simplify this time dependence and he
the interaction Hamiltonian equation (7) we focus on
so-called Floquet solution

esFdstd ­ expsimtdfstd . (9)

Here the characteristic exponentm and the periodic
function

fstd ­ fst 1 Td ­
X̀

n­2`

cn expsinvrftd (10)

are determined [10] by the trap parametersa and q.
In the stable region of the Mathieu equation [19] t
expansion coefficientscn and the characteristic expone
m are purely real. Then the frequencym gives the secula
frequency of the motion of the ion. Note that it is t
specific choice [10]

vsFd
r ­ m 1 vrf

X̀
n­2`

ncn (11)

of the reference frequencyvr as the initial condition
Ùes0d ­ ivsFd

r , which enforces the quasiperiodic soluti
Eq. (9) of the differential equation (6).

We substitute the Floquet solutionesFdstd, Eq. (9), into
the time-dependent frequencies Eq. (8) and arrive at

Vsn,n1sdstd ­
X̀

l­2`

v
sn,n1sd
l expfisl vrf 2 sm 2 Ddtg ,

where the coefficients

v
sn,n1sd
l ; g

∑
n!

sn 1 sd!

∏1y2

sihds

3
Z Ty2

2Ty2

dt
T

ffpstdgse2h2jfstdj2y2

3 Ls
nsssh2jfstdj2ddde2ilvrft (12)

follow by expanding the part ofVsn,n1sd in Fourier series
which is periodic inT ­ 2pyvrf. When we now use thi
-

e
-
e

l.

e
e

e
t

expression forVsn,n1sd the interaction Hamiltonian in the
interaction picture reads

ˆ̃Hintstd ­
X̀
n­0

X̀
s­2n

X̀
l­2`

h̄v
sn,n1sd
l

3 expfislvrf 2 sm 2 Ddtg

3 ŝ1jnl kn 1 sj 1 H.c. (13)

We emphasize that this representation is exact. It sh
that the time dependence of̃̂Hintstd is governed by the
specific combinationlvrf 2 sm 2 D of all harmonics of
the frequencyvrf and of the secular frequencym, and
the detuningD. This feature allows us to perform a tim
average [11] of ˆ̃Hintstd in order to obtain ans0-phonon
Hamiltonian as we show now.

So far we have not yet specified the detuningD. We
choose it in such a way that one of the terms in t
sums in Eq. (13) is slowly varying, whereas all the othe
are rapidly oscillating. This happens whens0m 1 D ;
l0vrf. Note that this condition leads to an interestin
number theoretical problem. In order to achieve a la
coupling to the field we chooseD such that only the term
with the largest coefficientv

sn,n1s0d
l0

survives the time
averaging fors0 fixed. Hence we chooseD ­ l0vrf 2

s0m provided thatD 1 sm is not a multiple integer of
the frequencyvrf for all s fi s0. With the help of the
rotating wave approximation we therefore arrive at t
time averaged Hamiltonian

ˆ̄Hint ­
X̀
n­0

h̄v
sn,n1s0d
l0

ŝ1jnl kn 1 s0j 1 H.c., (14)

which is thes0-phonon Jaynes-Cummings Hamiltonian.
Since we face the Jaynes-Cummings Hamiltonian,

can use the method of quantum state endoscopy [13
and reconstruct the initial vibrational density operat
r̂s0d of the ion from the measured time evolution of i
internal state. For the application of this method we u
the coherent superpositionjCal ­ sjel 1 eiwjgldy

p
2 of

the excited and the ground state as initial internal sta
We then can extract from the probability

Pest; wd ; Trcmkeje2i ˆ̄H intty h̄fr̂s0d ≠ jCal kCajgei ˆ̄Hintty h̄jel

­
1
2 2

1
4

s021X
n­0

rn,n

1
1
4

X̀
n­0

coss2v
sn,n1s0d
l0

td srn,n 2 rn1s0,n1s0 d

2
1
2

X̀
n­0

sins2v
sn,n1s0d
l0

tdImfs2ids0 rn,n1s0e
2iwg

of finding the ion in the excited statejel the matrix ele-
mentsrn,n1s0 ­ knjr̂s0djn 1 s0l of the density operator
of the center-of-mass motion. Following Ref. [14], w
measure the internal dynamics, that is,Pest; wd, for two
different phasesw, N interaction times, andsmax detun-
ings. HereN andsmax denote the dimensions over whic
2199
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the density matrix has significant elements. The algorit
of Ref. [14] then allows us to reconstruct from these d
the full density matrix.

We demonstrate the feasibility of the reconstruct
scheme using as the initial center-of-mass density ope
r̂s0d a damped Schrödinger cat state

r̂s0d ­ pr̂incohsad 1 s1 2 pdr̂catsad . (15)

Herep is a weight factor,

r̂incohsad ­
1
2 fjal kaj 1 j 2 al k2ajg

is a incoherent superposition of two coherent states, a

r̂catsad ­ jN j2

2 fjal 2 j 2 alg fkaj 2 k2ajg

is a Schrödinger cat state with normalization constantN .
Note that we have chosen the coherent statejal with
respect to the time-independent reference oscillator w
frequencyv

sFd
r . We emphasize that Ref. [2] reported t

birth of Schrödinger cats of this kind.
For the numerical simulation of Paul trap endosco

we use the parametersp ­ 0.5 and a ­ 1.5. Since in
this case the Schrödinger cat lies on the real axis,
matrix elementsrn,m are real. Moreover, we take th
trap parametersa ­ 0, q ­ 0.4, andh ­ 1. In order to
simulate experimental uncertainties in a simple way
to test the stability of the reconstruction procedure,
round the calculated values ofPest; wd to the precision of
one-tenth.

In Fig. 1(a) we show the relevant matrix elementsrn,m

of the exact density operator Eq. (15). Note that the ma
elements of the reconstructed density operatorr̂srd become

FIG. 1. Paul trap endoscopy illustrated by a damp
Schrödinger cat. In (a) we show the matrix elementsrn,m
in energy representation of the cat to be reconstructed.
matrix elements are real. In (b) and (c) we display the r
and imaginary parts of the reconstructed matrix elementsrsrd

n,m.
The tiny differences between the two density matrices in th
real and imaginary parts as shown in (d) and (c) demons
the feasibility of Paul trap endoscopy.
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complex. In Figs. 1(b) and 1(c) we show the real p
and the imaginary part of its elements, respectively.
emphasize that there is an excellent agreement betwee
exact and reconstructed density matrix as is apparent f
Figs. 1(c) and 1(d) where we show the difference betw
the exact and the reconstructed matrix elements in t
imaginary and real parts.

The present treatment takes into account the comp
time dependence of the trap potential. To bring out
importance of this time dependence, we now compare
exact treatment to the effective potential approximat
[15]. The latter describes the vibrational degree
freedom in the limit a, q ! 0 by an effective, time-
independent harmonic oscillator with frequencym. In this
case, Eq. (10) simplifies tofstd . 1, and hence Eq. (9
reduces toesFdstd . eimt. As a consequence, the Ra
frequenciesv

sn,n1sd
l Eq. (12) all vanish except forl ; 0

which read [12]

v
sn,n1sd
eff ­ g

∑
n!

sn 1 sd!

∏1y2

sihdse2h2y2Ls
nsh2d . (16)

In Fig. 2 we show the effective Rabi frequenci
v

sn,n11d
eff of the one-phonon transition by crosses and co

pare it to the exact frequenciesv
sn,n11d
l­0 for the trap pa-

rametersa ­ 0 and the three different valuesq ­ 0.01
(diamonds),q ­ 0.2 (triangles), andq ­ 0.4 (squares).
These parameters are often used [1,2,20] in experime
For this figure we have chosen the Lamb-Dicke param
h ­ 1. To guide the eye we have connected the disc
values by continuous curves. Whereas for the sm
value q ­ 0.01 the frequencies almost coincide, w
find considerable differences for the valuesq ­ 0.2
and 0.4. In these cases the differences between
exact and the effective Rabi frequencies are of
same order as the differences between neighboring R

FIG. 2. Comparison between the Rabi frequenciesv
sn,n11d
eff

within the effective potential approximation (crosses) a
the exact frequenciesv

sn,n11d
0 including the micromotion for

the trap parametersa ­ 0 and three different values ofq. Note
that according to Eqs. (12) and (16) these frequencies are pu
imaginary. The diamonds correspond toq ­ 0.01, the triangles
to q ­ 0.2, and the squares toq ­ 0.4. The inset shows the
squeezing parameterS for a ­ 0 as a function ofq.
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frequencies. However, for reconstructing the den
operator, it is crucial to distinguish neighboring Ra
frequencies. Hence the influence of the micromotion
not negligible for these values ofq.

Another consequence of the effective potential appro
mation is that the statesjnl represent now the energ
eigenstatesjnlm of the static oscillator with frequencym.
The two different sets of basis states corresponding to
two oscillators with frequenciesv

sFd
r andm are connected

by the squeezing operation̂Ssrd ­ expfrsb̂y 2 2 b̂2dy2g
characterized by the parameterr. It is the ratio S ­
myv

sFd
r ­ exps2rd which determines the magnitude

squeezing. In the inset of Fig. 2 we show this ratio
a function ofq for a ­ 0. Again the diamond, triangle
and square correspond to the value forq ­ 0.01, 0.2, and
0.4, respectively.

We conclude by summarizing our main results. W
have presented a technique that allows us to mea
the quantum state of the center-of-mass motion of
ion moving in a Paul trap. In contrast to related wo
[7] our scheme takes the explicit time dependence of
Paul trap into account. This time dependence might a
be relevant for the recent discussions on quantum g
[21] and the quantum computer [22] resulting from ma
ions stored in a linear trap. We note that our meth
operates outside of the Lamb-Dicke limit. Moreover,
emphasize that the method is not limited to pure sta
only. Using the example of a damped Schrödinger cat
have shown that it is possible to perform endoscopy in
Paul trap.
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Note added.—After the completion of this work we
have learned that the Boulder group [23] has ind
measured the quantum state of the motion of an ion
a Paul trap.
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