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Endoscopy in the Paul Trap: Measurement of the Vibratory Quantum State of a Single lon
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We reconstruct the density operator of the center-of-mass motion of an ion stored in a Paul trap by
mapping the dynamics of the motion onto the internal dynamics of the ion. Our technique takes into
account the explicit time dependence of the trap potential, operates outside the Lamb-Dicke limit, and
is not restricted to pure states. We demonstrate the feasibility of this method using the example of a
damped Schrodinger cat state. [S0031-9007(96)01127-1]

PACS numbers: 32.80.Pj, 03.65.Bz, 42.50.Vk

The recent experimental generation [1,2] of nonclassirespectively, andv,s = 277 /T is the frequency of the ac
cal states of the motion of an ion in a Paul trap [3] hasvoltage.
propelled the field of quantum state preparation [4,5] into In the rotating wave approximation we model the
a new era. But how can we prove that the ion is indeednteraction of the classical laser field with the two levels
in a Fock, a squeezed, or a Schrédinger cat state? Houwf the ion by the Hamiltonian [15]
can we measure a motional state which, due to the ex- » _ g . “
plicit time dependence of the binding force of the Paul Hin(r) = higlo ™ expl—i(wrt = kO] + Hel, - (4)
trap, displays [6] a complicated time dependence? In thishere ¢ and k denote the interaction strength and the
Letter we present the first method [7] that measures a viwave vector of the light field with frequenay,, respec-
bratory state of an ion taking into account the completdively. The Pauli matrixs* is the raising operator for the
time dependence of the Paul trap. Moreover, our techinternal levels of the ion. Hence the laser field couples
nique operates outside the Lamb-Dicke regime [8] and i¢he center-of-mass motion to the internal states.
not limited to pure states only. _In order to solve the Schrddinger equatioh|W) =
The central idea of our approach is to map the dynamic#l (1)| W) for the state vectof¥ (¢)) describing both the in-
of the center-of-mass motion onto the internal degrees dernal states and the center-of-mass motion it is convenient
the ion. The dynamics of the latter we can read out usingo work in the interaction picture. We recall the relation
quantum jumps [9]. Three techniques make this approachi6]
possible: (i) the well-known Floquet solution [10] of At R = A "
the harmonic oscillator with time-dependent frequency, X(1) = Ucy()iUem(t) = 4/ zmg; [€7 ()0 + ()b ],
(i) the rotating wave approximation [11] resulting in a (5)
time independent-phonon Jaynes-Cummings interaction where (., (t) = Texr[—% [odt'Hon(1")] is the propaga-
Hamiltonian between the center-of-mass motion and thgyy of the center-of-mass motiod; is the time-ordering
internal states of the ion [12], and (iii) the application of gperator, and operators with a tilde are in the interaction
quantum state endoscopy [13,14] originally devised fopjcture. We denote the annihilation and creation opera-
the measurement of a field state to the problem at hangprs of a time independent reference harmonic oscillator
We demonstrate the feasibility of Paul trap endoscopyio,17] with frequencyw, by 5 andbt. Note that the ref-
using the example of a damped Schrodinger cat state.  erence frequency, is an arbitrary real parameter, which

A

We start from the Hamiltonian we choose later in a convenient way. The complex func-
H(G) = H, + Hn(t) + Hi (1) (1) tion €(z) satisfies the classical Mathieu differential equa-
tion

of a single two-level ion moving along one direction in
a Paul trap zlamd interacting with a classical laser field, e(t) + 0> e(r) =0 (6)
where A, = ;liw,6, describes the two internal states . _— " _ Con
with transition frequencys, andé-, is the Pauli matrix.  With the initial conditionse(0) = 1 andé(0) = i w, .

The one-dimensional center-of-mass motion of an ion du-lc;gs btrrg]r?sit(i)g;snz)%st\t/vgé?\a:h,e tgﬁterthee:aZErst;ggf n-
with massm in a harmonic potential with time-dependent dy €lg

the time-independent reference oscillator we express the

steepness . : : ;
) L f:enter—of—_mass motion part of the interaction Hamllton—
w”(t) = 7 wyla + 2q codwist)] (2)  ian equation (4) in these states. Indeed the interaction
follows from the Hamiltonian Hamiltonian
3 Lo, 1 2082
Hom(1) = 5. p~ + 3 mw~(1)3°. 3) s » =
7. — (n,n+s) ~+
The dimensionless parametarsand ¢ are proportional Him (1) ’; X:Z_n hQ (06 In) (n + sl + He.
[3] to the dc and ac voltages applied to the trap, @)
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in the interaction picture involves all possible expression fol) " *$) the interaction Hamiltonian in the
s-phonon transitions [12]. The time-dependent fre-interaction picture reads

quenciesQ " )(r) = ge A (n|Dla(r)]ln + s) follow . ®  ®

from Eq. (4) with the help of Eq. (5). They involve the Hut)= > 3 S hiw™™
matrix elements of the displacement operafofa) = n=0 s=—n |=—o

explab? — a*h) at the complex valued time- X exfi(log — su — A)r]

dependent displacemen(r) = ine(r), wheren = k[h/
(2mw,)]'* denotes the Lamb-Dicke parameter. Here
A = w, — w, is the detuning between the laser fre- We emphasize that this representation is exact. It shows
quency and the atomic transition frequency. When wehat the time dependence &fi,(r) is governed by the
evaluate [18] the matrix elemeiit|D[a(t)]ln + s) the  specific combinatiodw,; — su — A of all harmonics of

X ¢*|n){(n + s| + H.c. 13
(13)

frequencied) " *9)(r) read fors = 0 the frequencyw,; and of the secular frequengy, and
al 12 the detuningA. This feature allows us to perform a time
Qunt)() = g[m} exp(—iAt)[ine (1)) average [11] off;,(r) in order to obtain ars-phonon

Hamiltonian as we show now.
5 - :
_n Y P ) So far we have not yet specified the detunihg We
X ex;{ 2 le ()] }Ln(" le@l). (8 choose it in such a way that one of the terms in the

Here L denotes the generalized Laguerre polynomial.SumS in Eq. (13) is slowly varying, whereas all the others

Similar relations hold fos < 0. are rapidly oscillating. This happens whegu + A =

We note that the time dependencef*(¢) results lowys. Note that this condition leads to an interesting

. -~ number theoretical problem. In order to achieve a large
from the detuningA and the complex valued function . )
A L coupling to the field we choos& such that only the term
e(¢). In order to simplify this time dependence and hence

the interaction Hamiltonian equation (7) we focus on theV!th the largest coefficient,, survives the time
so-called Floquet solution averaging fors, fixed. Hence we choosA = [yw,s —

(F)(\ — . som provided thatA + su is not a multiple integer of

€ (t? ] expli 1) (1). _(9)_ the frequencyw,¢ for all s # so. With the help of the
Here the characteristic exponept and the periodic rotating wave approximation we therefore arrive at the
function time averaged Hamiltonian

$(t) =t +T) = :Z_w cn eXplinwst) (10) Hi = > ﬁw,(o"’"“°>a+|n><n + sol + He., (14)
n=0

are determined [10] by the trap parametersand q. o ) o

In the stable region of the Mathieu equation [19] theWhich is theso-phonon Jaynes-Cummings Hamiltonian.
expansion coefficients, and the characteristic exponent ~Since we face the Jaynes-Cummings Hamiltonian, we
w are purely real. Then the frequengygives the secular €an use the method of quantum state endoscopy [13,14]
frequency of the motion of the ion. Note that it is the @d reconstruct the initial vibrational density operator

specific choice [10] p(0) of the ion from the measured time evolution of its
o internal state. For the application of this method we use
o) = p+ ox D ne, (11)  the coherent superpositid¥,) = (le) + ¢?|g))/+/2 of
n=-—o the excited and the ground state as initial internal state.

of the reference frequency, as the initial condition \ve then can extract from the probability
€(0) = iw™, which enforces the quasiperiodic solution

Eq. (9) of the differential equation (6). Po(t; @) = Tremele Tt/ [ 5(0) ® [W,) (W, |]eimi/f|e)
We substitute the Floquet solutie”)(¢), Eq. (9), into so—1
the time-dependent frequencies Eqg. (8) and arrive at = % - % Z Pun
- n,n+s n=0
QU9 (1) = Z w§ ’ +‘)exp[i(l wig — su — A)t], L& —
[=—c + 7 COS(Zw e t)( nn — Pn+syn so)
where the coefficients 4 ,ZO b P Prtsons
1/2 ®
(n,n+s) _ n! Y 1 . (n,n+s0) S0 —i
w) = g[m} (im) -3 ,;) Sin2w,, DIM(=)* pup+se '?]
% [T/z dt [(l,*(t)]se—nzld>(z)|2/2 of finding the ion in the excited stafe) the matrix ele-
-t T mentsp, ,+s, = (n|p(0)|n + so) of the density operator
X L2 (2l (1)[2)eent (12) of the center-of-mass motion. Following Ref. [14], we

measure the internal dynamics, that #5(z; ¢), for two
follow by expanding the part df " %) in Fourier series, different phasesp, N interaction times, andy.x detun-
which is periodic inT = 27 /w,s. When we now use this ings. HereN andsg.x denote the dimensions over which
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the density matrix has significant elements. The algorithntomplex. In Figs. 1(b) and 1(c) we show the real part
of Ref. [14] then allows us to reconstruct from these datand the imaginary part of its elements, respectively. We
the full density matrix. emphasize that there is an excellent agreement between the
We demonstrate the feasibility of the reconstructionexact and reconstructed density matrix as is apparent from
scheme using as the initial center-of-mass density operatétigs. 1(c) and 1(d) where we show the difference between

p(0) a damped Schrédinger cat state the exact and the reconstructed matrix elements in their
A A . imaginary and real parts.
P0) = ppincon(@) + (I = p)pcar(a). (15) The present treatment takes into account the complete
Here p is a weight factor, time dependence of the trap potential. To bring out the
importance of this time dependence, we now compare our
Dincon(@) = %[la}(al + | — a)(—al] exact treatment to the effective potential approximation

[15]. The latter describes the vibrational degree of
freedom in the limita,q — 0 by an effective, time-
Pear(a) = %[lcﬁ — | — &[Kal = (—al] independent harmonic oscillator with frequeney In this
case, Eq. (10) simplifies tg () = 1, and hence Eq. (9)
is a Schrodinger cat state with normalization const&fit  reduces toe")(r) = ¢#’. As a consequence, the Rabi
Note that we have_chosen the coherent stat}_s with _ frequencieau,"’"ﬂ) Eq. (12) all vanish except far = 0
respect to the time-independent reference oscillator withyhich read [12]

is a incoherent superposition of two coherent states, and

frequencywﬁF). We emphasize that Ref. [2] reported the | 12

birth of Schrédinger cats of this kind. wé’gf’"m = g[”_} (in)sefnz/sz(nz)_ (16)
For the numerical simulation of Paul trap endoscopy (n + 5)!

we use the parameteys = 0.5 and o = 1.5. Since in In Fig. 2 we show the effective Rabi frequencies

this case the Schrddinger cat lies on the real axis, thg,é’gf’"“) of the one-phonon transition by crosses and com-

matrix elementsp, , are real. Moreover, we take the pare it to the exact frequenciesl(’i’gﬂ) for the trap pa-
trap parameters = 0, ¢ = 04, andn = 1. Inorderto 3 metersy = 0 and the three different valuag = 0.01
simulate experlr_n'ental uncertainties in a simple way a”‘édiamonds),q — 0.2 (triangles), andg = 0.4 (squares).

to test the stability of the reconstruction procgt_jure, WeThese parameters are often used [1,2,20] in experiments.
round the calculated values B (r; ¢) to the precision of £ his figure we have chosen the Lamb-Dicke parameter
one-tenth. n = 1. To guide the eye we have connected the discrete

In Fig. 1(a) we show the relevant matrix elemepis,  yajyes by continuous curves. Whereas for the small
of the exact density operator Eq. (15). Note that the matrix, 5| e g = 001 the frequencies almost coincide, we
elements of the reconstructed density operatrbecome find considerable differences for the valugs= 0.2

and 0.4. In these cases the differences between the
o g (b} exact and the effective Rabi frequencies are of the
| same order as the differences between neighboring Rabi

(a,a+1)

)

FIG. 1. Paul trap endoscopy illustrated by a dampedFIG.2. Comparison between the Rabi frequencie” "
Schrodinger cat. In (a) we show the matrix elemepis, within the effective potential approximation (crosses) and
in energy representation of the cat to be reconstructed. Althe exact frequenciem(()"’"” including the micromotion for
matrix elements are real. In (b) and (c) we display the reathe trap parameters = 0 and three different values qf Note

and imaginary parts of the reconstructed matrix elempfits. that according to Egs. (12) and (16) these frequencies are purely
The tiny differences between the two density matrices in theiimaginary. The diamonds correspondste= 0.01, the triangles

real and imaginary parts as shown in (d) and (c) demonstrat®s ¢ = 0.2, and the squares t9 = 0.4. The inset shows the

the feasibility of Paul trap endoscopy. squeezing parametér for = 0 as a function of.
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